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Abstract: A frequency can be estimated by few Discrete Fourier Transform (DFT)

coefficients, see Rife and Vincent (1970), Quinn (1994, 1997). This approach is

computationally efficient. However, the statistical efficiency of the estimator de-
pends on the location of the frequency. In this paper, we explain this approach from

a point of view of an Approximate Maximum Likelihood (AML) method. Then we

enhance the efficiency of this method by using more DFT coefficients. Compared

to 30% and 61% efficiency in the worst cases in Quinn (1994) and Quinn (1997),
respectively, we show that if 13 or 25 DFT coefficients are used, AML will achieve

at least 90% or 95% efficiency for all frequency locations.
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1. Introduction

A model that has been discussed widely in Time Series Analysis and Signal
Processing is the following:

xt = Acos(tω + φ) + ut, t = 0, . . . , T − 1, (1)

where 0 < A, 0 < ω < π, and {ut} is a stationary sequence satisfying certain
conditions to be specified later. The objective is to estimate the frequency ω

from the observations {xt}. After obtaining an estimator of the frequency, the
amplitude A and the phase φ can be estimated by a standard linear least squares
method.

Two topics have been of interest in the study of this model: estimation
efficiency and computational complexity. Following the idea of Best Asymp-
totic Normal estimation (BAN), the efficiency hereafter is measured by the ratio
of the Cramer - Rao Bound (CRB) for unbiased estimators over the variance
of the asymptotic distribution of the estimator. Theoretically, Maximum Like-
lihood Estimation (MLE) is efficient in this sense and has an especially high
convergence rate Op(T−3/2). However, simulation results in Rice and Rosenblatt
(1988) show that the MLE obtained by using a standard search program may
not be efficient for small and middle sample sizes. This may relate to the com-
putational issue. Since the likelihood function changes from its local maximum
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to a local minimum within a distance π/T, there is no guarantee that numerical
procedures like Newton’s method will work even if we use the maximizer of Dis-
crete Fourier Transform (DFT) coefficients as the initial value (see Quinn and
Fernandes (1991)).

Many other methods have been proposed to obtain a quick solution, see, for
example, Pisarenko (1973), Kay and Marple (1981), Kedem (1986). However,
most of them only have convergence rate Op(T−1/2). Several methods that aim
at both estimation efficiency and computational complexity have been proposed.
Starting from an initial value within a distance less than O(T−1/2) from ω, the
iterated algorithms in Truong-Van (1990) and Quinn and Fernandes (1991) pro-
duce more and more precise estimators. After a few iterations the estimator
achieves efficiency. Hannan and Huang (1993) introduced an on-line algorithm
that invokes a re-initiation technique to produce an efficient estimator without
iteration. The re-initiation technique uses a criterion to decide whether a new
time window and a new initial value are needed. However, it also needs an initial
value for the true frequency.

A natural initial estimator is the maximizer of DFT coefficients, in the sense
of moduli, that can be calculated by the Fast Fourier Transform (FFT) algorithm
at the so called Fourier frequencies 2jπ/T , j = 0, . . . , T−1. Although FFT cannot
be performed recursively, rapid developments in hardware make it possible to
obtain the maximizer of DFT coefficients in real time. Also, we shall prove later
that as T tends to infinity, the probability that the maximizer is within a distance
not greater than π/T from the true frequency tends to one.

Thus, a question is whether we can use the maximal DFT coefficient and its
neighbors to estimate ω directly and efficiently? Such an idea may go back to
Rife and Vincent (1970). However, as pointed by Quinn (1994), the algorithm in
Rife and Vincent (1970) cannot produce an estimator with error order Op(T−3/2)
for all ω. Algorithms are presented in Quinn (1994, 1997) to achieve this order.
The estimator in Quinn (1994) uses two DFT coefficients: the maximal DFT
coefficient and one of its two nearest neighbors. By analyzing the representation
of DFT coefficients for model (1), an equation is derived and its solution gives
an estimator of the frequency. This method is similar to the moment method in
general statistical inference. A Central Limit Theorem is obtained and the error
has the order Op(T−3/2) for all ω. However, efficiency changes according to the
location of the frequency ω in relation to the nearest Fourier frequency. Roughly
speaking, the estimator achieves 99% efficiency for the best case when ω is in the
middle of two Fourier frequencies, and 30% efficiency for the worst case when ω
is a Fourier frequency. To improve this result, three DFT coefficients are used in
Quinn (1997) to achieve 61% efficiency for the worst case.

In this paper, we introduce an Approximate Maximum Likelihood (AML)
method to explain and improve the methods in Rife and Vincent (1970) and
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Quinn (1994, 1997). Since model (1) is nonlinear in the frequency ω, the like-
lihood function is very complicated. Taking a Fourier transform, we are still
unable to get a sufficient statistic for ω. However, the Fourier transform really
simplifies the likelihood function in the sense that only few DFT coefficients
near the true frequency are significant. Using these DFT coefficients, we can
construct an approximation of the true likelihood function and derive an AML
Estimator (AMLE) based on maximizing this approximation. More importantly,
we can increase the efficiency of this method by using more DFT coefficients to
construct the approximate likelihood function. A formula is derived for calcu-
lating the efficiency of an AMLE according to the number of DFT coefficients
used. In computational aspect, a closed form of the AMLE is derived when two
DFT coefficients are involved. Starting from this estimator and using Fisher’s
method of scoring for parameters (see, for example, Kendall and Stuart (1967,
V2, Chap.18)), we obtain a closed form for an estimator based on more DFT
coefficients. This estimator has the same asymptotic distribution as that of the
AML estimator while the computational cost is basically the same as that in Rife
and Vincent (1970) and Quinn (1994, 1997). For example, no matter where the
location of the frequency is, 90% or 95% efficient and tractable estimators can
be obtained by using 13 or 25 DFT coefficients respectively. Thus, we solve the
problem of estimating frequency efficiently and quickly, without any initial value.

Section 2 derives the AML target function. Section 3 proves the asymp-
totic properties of the maximizer of the target function. Section 4 explains the
calculations. Simulation results are given in Section 5.

2. Target Function for AML

Let

S (λ) =




1 1
e−iλ eiλ

...
...

e−i(T−1)λ ei(T−1)λ


 , B =

A

2

[
e−iφ

eiφ

]
, U =




u0
...

uT−1


 .

Then model (1) can be rewritten as

X =




x0

x1
...
xT−1


 = S (ω)B + U. (2)

Consider the log-likelihood function when the noise {ut} is an i.i.d. N(0, σ2)
sequence:

L (λ, σ,A, φ) = −T

2
log

(
2πσ2

)
− 1

2π
‖X − S (λ) B‖2.
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Here ‖V ‖ =
√

V ∗V for a vector V and * denotes the complex transpose. To max-
imize L(λ, σ,A, φ) over all four variables, we only need to minimize Q(λ,A, φ) =
‖X−S(λ)B‖2 over its three variables. Let λk = 2kπ/T be the Fourier frequencies
and λm be the maximizer of DFT coefficients, p and q be nonnegative integers
such that p ≤ m ≤ T −q−1. We divide a T ×T Fourier matrix into two matrices
with dimensions (q − p + 1) × T and (T − q + p − 1) × T respectively:

F1 =
1√
T

[
eikλj

]
j=p,p+1,...,q;k=0,...,T−1

,

F2 =
1√
T

[
eikλj

]
j=0,...,p−1,q+1,...,T−1; k=0,...,T−1

.

Let I be the identity matrix with an appropriate dimension. Since

F ∗
1 F1 + F ∗

2 F2 = [F ∗
1 , F ∗

2 ]

[
F1

F2

]
= I,

we have

Q (λ,A1, A2) = ‖F1X − F1S (λ)B‖2 + ‖F2X − F2S (λ)B‖2. (3)

Let D(α) = sin(Tα/2)
T sin(α/2) be the Dirichlet function. Then

1
T

T−1∑
t=0

eitα =
eiTα − 1

T (eiα − 1)
= ei(T−1)α/2D (α) . (4)

so

1√
T

F1S (λ)=




ei(T−1)(λm−p−λ)/2D (λm−p−λ)
...

ei(T−1)(λm−λ)/2D (λm−λ)
...

ei(T−1)(λm+q−λ)/2D (λm+q−λ)

ei(T−1)(λm−p+λ)/2D (λm−p+λ)
...

ei(T−1)(λm+λ)/2D (λm+λ)
...

ei(T−1)(λm+q+λ)/2D (λm+q+λ)




.

Since the true frequency ω should not be far away from λm (see Lemma 1 below),
we only need to search the estimator of ω in a neighborhood of λm. When
|λ − λm| < π/T, D(λk + λ) is not significant, so the second column in the above
matrix can be ignored. Similarly we can ignore the second term in (3) since
F2S(λ) is not significant.

Let

Z =
1√
T

F1X, (5)

H (λ) =
[
D (λm−p − λ) · · · D (λm − λ) · · · D (λm+q − λ)

]∗
,

Ψ = diag
{
ei(T−1)λm−p/2, . . . , ei(T−1)λm/2, . . . , ei(T−1)λm+q/2

}
.
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Then we have

1√
T

F1S (λ) B = A1e
−i(T−1)λ/2ΨH (λ) + O

(
T−1

)
.

Thus to minimize Q(λ,A1, A2) in (3), approximately, we consider

min
λm−1<λ<λm+1,C

∣∣∣|Z − Ce−i(T−1)λ/2ΨH (λ) |
∣∣∣ . (6)

Changing the double minimum for both λ and C in (6) to two iterated minimums
and using the standard least squares method, we can show that (6) is equivalent
to maximizing the target function f(λ) = |Z∗ΨH(λ)|2/‖H(λ)‖2.Thus, let

N (λ) =
1

‖H (λ) ‖H (λ) , Y = Ψ∗Z, R = Re {Y Y ∗} ;

we estimate ω by the maximizer of

f (λ) = N (λ)∗ RN (λ) , λ ∈ [λm−1, λm+1] . (7)

We call this maximizer the Approximate Maximum Likelihood Estimator
(AMLE).

3. Asymptotic Behavior of AMLE

First of all, we have

Lemma 1. Assume that {ut} is a purely non-deterministic ergodic stationary
series with zero mean and finite variance. Then

lim sup
T→∞

T |λm − ω| ≤ π, a.s. (8)

Proof. Using (4), we have

1
T

T−1∑
t=0

eitλxt

=
A

2
ei(T−1)(λ−ω)/2D (λ − ω) +

A

2
ei(T−1)(λ+ω)/2D (λ + ω) +

1
T

T−1∑
t=0

eitλut.

Since ω > 0, D(λ + ω) → 0 as T → ∞. Also, according to the lemma in
Hannan (1973), the third term in the above formula tends to zero uniformly for
all λ ∈ [0, π]. Further, there must be an integer k such that λk ∈ [ω − π

T , ω + π
T ].
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So,

lim inf
T→∞

∣∣∣∣∣ 1
T

T−1∑
t=0

eitλmxt

∣∣∣∣∣
= lim inf

T→∞
max

0≤k<T

∣∣∣∣∣ 1
T

T−1∑
t=0

eitλkxt

∣∣∣∣∣
≥ A

2
lim inf
T→∞

min
{

D (λ − ω) ; ω − π

T
≤ λ ≤ ω +

π

T

}

=
A

2
lim

T→∞
1

T sin π
2T

=
A

π
.

If there was a subsequence {λm = λm(Tj), j = 1, 2, . . .} such that

lim inf
j→∞

Tj |λm (Tj) − ω| > (1 + ε) π for ε > 0,

then

lim inf
T→∞

∣∣∣∣∣ 1
T

T−1∑
t=0

eitλmxt

∣∣∣∣∣
≤ lim inf

j→∞

∣∣∣∣∣∣
1
Tj

Tj−1∑
t=0

eitλm(Tj)xt

∣∣∣∣∣∣
≤ A

2
lim inf
j→∞

max

{
D (λ − ω) ; |λ − ω| ≥ (1 + ε) π

Tj

}

=
A

2
lim

Tj→∞
1

Tj sin (1+ε)π
2Tj

=
A

(1 + ε) π
.

This contradicts the above formula. So (8) holds.
Next, let ω̂ be the maximizer of f(λ) on [λm−p, λm+q].

Lemma 2. Under the same condition in Lemma 1, we have

T (ω̂ − ω) → 0, a.s. (9)

Proof. Let E(λ) = T−1/2[ 1 e−iλ · · · e−i(T−1)λ ]∗. Using the notations in the
previous section, it follows from (2) and (5) that

Z =
A

2
e−i(T−1)ω/2−iφΨH (ω) + F1

(
A

2
eiφE (ω) +

1√
T

U

)
.

Let
W = Ψ∗F1

(
A

2
eiφE (ω) +

1√
T

U

)
.
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Then

Y = Ψ∗Z =
A

2
e−i(T−1)ω/2−iφH (ω) + W.

Thus,

R =
A2

4
H (ω)H∗ (ω) + M, (10)

where

M = Re
{

A

2

[
e−i(T−1)ω/2−iφH (ω) W ∗ + ei(T−1)ω/2+iφWH∗ (ω)

]
+ WW ∗

}
.

It follows from (7) and (10) that

f (ω̂) =
A2

4
|N (ω̂)∗ H (ω)|2 + N (ω̂)∗ MN (ω̂)

≥ f (ω) =
A2

4
‖H (ω) ‖2 + N (ω)∗ MN (ω) .

Then,

1 ≥ |N (ω̂)∗ N (ω)|2 (11)

≥ 1 − 4
A2‖H (ω) ‖2

[N (ω̂)∗ MN (ω̂) − N (ω)∗ MN (ω)] .

However, let ε2 be the largest singular value of M and ε > 0; then according
to the lemma in Hannan (1973), ‖ 1√

T
U‖ → 0, a.s., as T → ∞. Since ω > 0, by

(4), ‖F1E(ω)‖ → 0. Thus ‖W‖ → 0 and then ε → 0, a.s., as T → ∞. Also,

N (ω̂)∗ MN (ω̂) − N (ω)∗ MN (ω) (12)

= [N (ω̂) − N (ω)]∗ M [N (ω̂) + N (ω)]

≤ ε‖N (ω̂) − N (ω) ‖‖N (ω̂) + N (ω) ‖ ≤ 4ε.

Further, for all λ ∈ [λm−p, λm+q] and p + q > 0, we have

4
π2

≤ D

(
π

T

)2

+ D

(
−π

T

)2

(13)

≤
m+q∑

j=m−p

D (λj − λ)2 = ‖H (λ) ‖2.

So it follows from (11), (12) and (13) that

lim
T→∞

|N (ω̂)∗ N (ω)| = 1, a.s. (14)
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Next, let G(λ) = 2[ sinT (λm−p−λ)/2
T (λm−p−λ) · · · sin T (λm+q−λ)/2

T (λm+q−λ) ]∗. Since

∣∣∣∣D (λ) − sin (Tλ/2)
Tλ/2

∣∣∣∣ =
∣∣∣∣ sin (Tλ/2)
T sin (λ/2)

(λ/2) − sin (λ/2)
(λ/2)

∣∣∣∣ ≤ λ2

6
,

we have
sup

λm−p≤λ≤λm+q

‖H (λ) − G (λ) ‖ → 0, as T → ∞.

Thus, using (13) and (14) we have

lim
T→∞

|G (ω̂)∗ G (ω)|
‖G (ω̂) ‖‖G (ω) ‖ = 1, a.s. (15)

Since for any given ω, there is an integer sequence {Tj , j = 1, 2, . . .} such that
sin Tjω

2 �= 0, it follows from (15) that there is also a subsequence of {Tj , j =
1, 2, . . .} that sin Tj ω̂

2 �= 0. So, without losing generality, we may assume that
both sin Tjω

2 and sin Tjω̂
2 do not vanish. Let

V (λ) =
[

2(−1)m−p+1

2(m−p)π−Tλ , . . . , 2(−1)m+q+1

2(m+q)π−Tλ

]∗
.

Then (15) can be rewritten as limT→∞
|V (ω̂)∗V (ω)|
‖V (ω̂)‖‖V (ω)‖ = 1, a.s. Also, since ω̂ ∈

[λm−p, λm+q] , we conclude

lim
T→∞

V (ω̂)∗ V (ω)
‖V (ω̂) ‖‖V (ω) ‖ = 1, a.s.

So, when T → ∞,

‖V (ω̂) − V (ω) −
[‖V (ω̂) ‖
‖V (ω) ‖ − 1

]
V (ω) ‖2

= ‖V (ω̂) − ‖V (ω̂) ‖
‖V (ω) ‖V (ω) ‖2

= ‖V (ω̂) ‖2 − 2
‖V (ω̂) ‖
‖V (ω) ‖V (ω̂)∗ V (ω) + ‖V (ω̂) ‖2 → 0, a.s.,

2T (−1)j+1 (ω̂−ω)
(2jπ − T ω̂) (2jπ − Tω)

−
[‖V (ω̂) ‖
‖V (ω) ‖−1

]
2 (−1)j+1

2jπ−Tω
→ 0, a.s., m−p≤j≤m+q,

T (ω̂−ω)
2jπ−T ω̂

−
[‖V (ω̂) ‖
‖V (ω) ‖−1

]
→ 0, a.s., m − p ≤ j ≤ m+q.

In particular, taking j = m − p and j = m + q, we have

T (ω̂ − ω)
2 (m − p)π − T ω̂

− T (ω̂ − ω)
2 (m + q)π − T ω̂

→ 0, a.s., T → ∞.
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Thus, since p + q > 0, (9) holds.

Now we can establish a Central Limit Theorem for the maximizer ω̂. We call
a stationary sequence regular if its tail σ-algebra is trivial (see Hannan (1979)).
It is known that the regular condition implies the ergodic condition.

Theorem 3. Suppose that {ut} is a regular stationary sequence with zero mean,
its best linear prediction for ut is the best prediction and its spectral density
function ξ (λ) is continuous at ω. Let

ST =
A√
2T

‖H ′ (ω) − H (ω)∗ H ′ (ω)
‖H (ω) ‖2

H (ω) ‖. (16)

Then
T 3/2ST (ω̂ − ω) → N (0, 2πξ (ω)) .

Proof. First we have

ω̂ = ω − f ′ (ω)
f ′′ (ζ)

, |ζ − ω| ≤ |ω̂ − ω| . (17)

Consider f ′ (ω). Since N (ω)∗ H (ω) ≥ N (λ)∗ H (ω) for all λ, N ′ (ω)∗ H (ω) = 0.
Then, it follows from (10) that

f ′ (ω) = 2N ′ (ω)∗
[
A‖H (ω) ‖Re

{
eiφ+i(T−1)ω/2W

}
+ Re {WW ∗}N (ω)

]
.

Using the result in Hannan (1979), we can show that Re{eiφ+i(T−1)ω/2U} →
N(0, πξ(ω)I). Then, since ‖F1E(ω)‖ → 0, we have

√
TRe

{
eiφ+i(T−1)ω/2W

}
→ N (0, πξ (ω) I) . (18)

Also, let

K (ω) ≡ −‖H (ω) ‖ d

dω

(
1

‖H (ω) ‖
)

=
H ′ (ω)∗ H (ω)
‖H (ω) ‖2

.

Then
N ′ (ω) =

1
‖H (ω) ‖

[
H ′ (ω) − K (ω)H (ω)

]
. (19)

So, we have
√

2Tf ′ (ω)

A‖H ′ (ω) − H′(ω)∗H(ω)
‖H(ω)‖2 H (ω) ‖

→ N (0, 2πξ (ω)) . (20)

Next, we prove that

T−2 [
f ′′ (ζ) − f ′′ (ω)

]
= op (1) . (21)
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It follows from (7) that f ′′(λ) = 2N ′′(λ)∗RN(λ) + 2N ′(λ)∗RN ′(λ) , f ′′′(λ) =
2N ′′′(λ)∗RN(λ) + 6N ′′(λ)∗RN ′(λ) . By (4), | dk

dλk D(λ)| = O(T k). Then we have
from (13) that

‖ dk

dλk
N (λ) ‖ = ‖ dk

dλk

[
1

‖H (λ) ‖H (λ)
]
‖ = O

(
T k

)
for all λ. (22)

Thus, since f ′′(ζ)−f ′′(ω) = f ′′′(ζ1)(ζ −ω), |ζ1−ω| ≤ |ζ −ω| ≤ |ω̂−ω|, it follows
from (9) that (21) holds.

Further, manipulating N ′(ω) and N ′′(ω) and using (10), we have

f ′′ (ω)
T 2

=
A2

2T 2

[
[H ′ (ω)∗ H (ω)]2

‖H (ω) ‖2
− ‖H ′ (ω) ‖2

]

+
2
T 2

[
N ′′ (ω)∗ MN (ω) + N ′ (ω)∗ MN ′ (ω)

]
.

By (22) and that M = op(1), also notice that

‖H ′ (ω) − H ′ (ω)∗ H (ω)
‖H (ω) ‖2

H (ω) ‖2 = ‖H ′ (ω) ‖2 − [H ′ (ω)∗ H (ω)]2

‖H (ω) ‖2
,

and
f ′′ (ω)

T 2
= − A2

2T 2
‖H ′ (ω) − H ′ (ω)∗ H (ω)

‖H (ω) ‖2
H (ω) ‖2 + op (1) . (23)

Thus, (16) follows from (17), (20), (21) and (23).

Remark 1. Let δ = Tω
2π − m. When p = 0 and q = 1, we have

H (ω) =

[
sin(πδ)

πδ
sin(πδ)
π(1−δ)

]
+ O

(
1
T 2

)
,

T−1H ′ (ω) =


 cos(πδ)

πδ − sin(πδ)

(πδ)2

cos(πδ)
π(1−δ) + sin(πδ)

π2(1−δ)2


 + O

(
1
T 2

)
.

Substituting these into (16), one can verify that

2πξ (ω)
S2

T

=
16π5d2 (1 − |δ|)2 (

2δ2 − 2 |δ| + 1
)
ξ (ω)

A2 sin2 (πδ)
+ O

(
1
T 2

)
.

So, when two DFT coefficients are used, the “asymptotic variance” 2πξ(ω)
T 3S2

T
in

Theorem 1 is asymptotically equal to that in Quinn (1994). As in Quinn (1994),
the minimum of this quantity is π5ξ(ω)

2A2 , while the maximum is 16π3ξ(ω)
A2 . Also,

when p = q = 1, we have

2πξ (ω)
S2

T

=
8π5δ2

(
1 − δ2

)2 (
3δ4 + 1

)
ξ (ω)

A2 (3δ4 + 4δ2 + 1) sin2 (πδ)
+ O

(
1
T 2

)
.
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Then, when three DFT coefficients are used, the “asymptotic variance” is asymp-
totically equal to that in Quinn (1997).

Since ‖H ′(ω) − H′(ω)∗H(ω)
‖H(ω)‖2 H(ω)‖ is the norm of the regression error of the

vector H ′(ω) onto H(ω), it increases as the dimension p + q increases. So for all
p + q > 0,

1
T
‖H ′ (ω) − H ′ (ω)∗ H (ω)

‖H (ω) ‖2
H (ω) ‖ ≥ 1

2π
> 0. (24)

Also, an interesting problem is the relationship between the efficiency of AMLE
and the number of DFT coefficients used. We denote the efficiency of AMLE as

η (ω) ≡
48πξ(ω)
T 3A2

2πξ(ω)
T 3S2

T

=
12‖H ′ (ω) − H′(ω)∗H(ω)

‖H(ω)‖2 H (ω) ‖2

T 2
. (25)

Figure 1 shows η (ω) for 2, 3, 13 and 25 DFT coefficients. The X-axis is the
distance between the true frequency and λm in the unit π/T . It is clear that
the minimum of η (ω) occurs at λm. Also, when ω = λm and p = q, H ′ (ω) =[
− cos pπ

2 sin pπ/T · · · 0 · · · cos pπ
2 sin pπ/T

]
, H (ω)∗ H ′ (ω) = 0. Thus
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Figure 1. Efficiency curve of AML, 2, 3, 13 and 25 DFT coefficients are used.

Corollary 4. Under the conditions in Theorem 3 and when p = q,

min
0<ω<π

η (ω) ≥ 6
T 2

p∑
j=1

1
sin2 jπ

T

>
6
π2

p∑
j=1

1
j2

.

Notice that
∑∞

j=1
1
j2 = π2

6 (see, for example, Dym and McKean (1972, Chap.
2)), the efficiency approaches one very quickly. For example, we can achieve 95%
efficiency, no matter where ω is, when p = 12.
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4. Algorithm

In this section, we use a subscript to indicate the number of DFT coefficients
on which the statistics are based. Subscript 0 means two DFT coefficients while
subscript p > 0 means (2p+1) DFT coefficients corresponding to the Fourier
frequencies λj , j = m − p, . . . ,m + p. For example,

Hp (λ) =
[
D (λm−p − λ) · · · D (λm+p − λ)

]∗
, fp (λ) = Np (λ)∗ RpNp (λ) .

First consider estimation based on two DFT coefficients. One of them is the
maximal DFT coefficient corresponding to λm. We choose the other by the sign
of f ′

1 (λm): let

j =

{
1, f ′

1 (λm) > 0;
−1, f ′

1 (λm) ≤ 0.

Then the target function is f0 (λ) = N0 (λ)∗ R0N0 (λ) with R0 =

[
r11 r12

r12 r22

]
,

r11 =

∣∣∣∣∣
T−1∑
t=0

eitλmxt

∣∣∣∣∣
2

, r22 =

∣∣∣∣∣
T−1∑
t=0

eitλm+j xt

∣∣∣∣∣
2

,

r12 = Re

[
e−i T−1

2
(λm+j−λm)

T−1∑
t=0

e−itλmxt

T−1∑
t=0

eitλm+jxt

]
.

Let [cos θ, sin θ] be the eigenvector corresponding to the maximum eigenvalue of
R0. Then

tan θ = −κ = −r11 − r22 −
√

(r11 − r22)2 + 4r2
12

2r12
.

So, we derive a closed form for ω̂0 :

D (λm+j − ω̂0)
D (λm − ω̂0)

=
sin λm

2 cos ω̂0
2 − cos λm

2 sin ω̂0
2

sin λm+j

2 cos ω̂0
2 − cos λm+j

2 sin ω̂0
2

= −κ,

ω̂0 = 2arctan
sin λm

2 − κ sin λm+j

2

cos λm
2 − κ cos λm+j

2

. (26)

Now, for any integer p > 0, let

ω̄p = ω̂0 −
f ′

p (ω̂0)
f ′′

p (ω̂0)
. (27)

Although ω̄p may not be exactly the same as the maximizer ω̂p of fp (λ) , we have



APPROXIMATE MAXIMUM LIKELIHOOD METHOD 169

Theorem 5. Under the same conditions as in Theorem 3,

T 1.5Sp (ω̄p − ω) → N (0, 2πξ (ω)) , (28)

where Sp = A√
2T

‖H ′
p (ω) − H′

p(ω)∗Hp(ω)

|Hp(ω)|2 Hp (ω) ‖.
Proof. Since

ω̄p − ω = ω̂0 − ω − f ′
p (ω̂0) − f ′

p (ω) + f ′
p (ω)

f ′′
p (ω̂0)

=

[
1 − f ′′

p (ζ)
f ′′

p (ω̂0)

]
(ω̂0 − ω) − f ′

p (ω)
f ′′

p (ω̂0)
, |ζ − ω| ≤ |ω̂0 − ω| ,

we have

T 1.5Sp (ω̂0 − ω) = Op (1) , 1 − f ′′
p (ζ)

f ′′
p (ω̂0)

= op (1) .

Now (28) follows by the argument in the proof of Theorem 3.

Remark 2. In practice, when the sample size is small and the Signal to Noise
Ratio (SNR) is low, it is better to modify (27) by adding one more step:

ω̄1 = ω̂0 −
f ′

p (ω̂0)
f ′′

p (ω̂0)
, ω̄p = ω̄1 −

f ′
p (ω̄1)

f ′′
p (ω̄1)

.

Remark 3. To reduce the computational complexity while keeping the same
asymptotic property, we can replace Hp (λ) by

Vp (λ) =
[

2(−1)p−1

2(m−p)π−Tλ · · · 2(−1)p+1

2(m+p)π−Tλ

]∗
.

When two DFT coefficients are used, this leads to

ω̄0 =
λm − κλm+j

1 − κ
,

which is similar to the estimator in Quinn (1994).

Remark 4. Compared with the existing methods, the computational complexity
of this method is acceptable. As in Rife and Vincent (1970) and Quinn (1994,
1997), the major computation is due to FFT and is O(T log T ) . For calculating ω̄p

based on Vp (λ) , one only needs O(p) extra multiplications and additions. So the
calculation of AML is basically the same as that in Rife and Vincent (1970) and
Quinn (1994, 1997). Suppose we set out to find the maximizer of the likelihood
function (Rice and Rosenblatt (1988)) or the periodogram (Hannan (1973)) by
iteration procedures like Newton’s method. Even if we start from the maximizer
of the periodogram and assume only one iteration is used (though this is far
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from enough according to the investigations in Quinn and Fernandes (1991) and
Quinn (1994)), the computational complexity is proportional to O(T log T ) plus
T ×C calculations for the first and second derivatives of log-likelihood functions,
or periodograms. The constant C in the second part is a very large number since
the derivatives consist of T sine and cosine functions and no fast algorithms are
available for the calculation.

5. Simulation

Simulation was done and some results are displayed in Tables 1 to 3. Two fre-
quencies, 50π

T and 51π
T with T = 128, are estimated, SNR(= 10 log10

A2

σ2 ) changed
from -5 to 5, and 2, 3, 13 and 25 DFT coefficients were used (p = 0, 1, 6, 12).
The entries in the tables are the average sample efficiencies of 1000 replications
for each case. These sample efficiencies are calculated by the ratio of CRB over
the sample mean squares errors. The theoretical efficiency η calculated by (25)
is listed on the last column.

Table 1. T = 128, ω = 50π
T , 128 DFT coefficients.

p −5 −4 −3 −2 −1 0 1 2 3 4 5 η

0 .4349 .4286 .4218 .4148 .4078 .4011 .3947 .3886 .3831 .3780 .3733 .3040
1 .5042 .5115 .5184 .5252 .5320 .5387 .5452 .5515 .5576 .5633 .5687 .6080
6 .8962 .9074 .9144 .9185 .9208 .9218 .9221 .9219 .9213 .9206 .9197 .9074
12 .9145 .9275 .9359 .9414 .9450 .9437 .9488 .9497 .9501 .9503 .9502 .9529

Table 2. T = 128, ω = 51π
T , 128 DFT coefficients.

p −5 −4 −3 −2 −1 0 1 2 3 4 5 η

0 .0001 .0029 .0577 .1111 .6376 .9409 .9456 .9486 .9501 .9503 .9490 .9855
1 .0001 .0026 .0564 .1006 .3700 .9420 .9452 .9470 .9477 .9472 .9453 .9912
6 .0001 .0004 .0586 .1112 .9442 .9633 .9626 .9611 .9586 .9549 .9501 .9999
12 .0001 .0025 .0594 .1105 .6708 .9619 .9609 .9591 .9564 .9527 .9477 .9999

In Tables 1 and 2, the standard DFT with 128 coefficients was used. For
ω = 50π

T , which corresponds to the worst case, the results were consistent with
the theoretical efficiency. However, for the best case ω = 51π

T , when SNR < 0, a
big difference between the efficiencies given by simulation and theory occurred.
We found that it is due to the location of λm. In this case |λm − ω| could be
more than π/T. To solve the problem, we calculated DFT on 256 frequencies
jπ
T , j = 0, . . . , 255. Suppose that nπ

T is the maximizer. Then let λm = nπ
T if n is

even; λm = (n+1)π
T if n is odd and |∑T−1

t=0 eit(n+1)π/T xt| > |∑T−1
t=0 eit(n−1)π/T xt|;

otherwise λm = (n−1)π
T . Based on such a λm, we obtained results which were

close to the theoretical values in Table 3.
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Table 3. T = 128, ω = 51π
T , 256 DFT coefficients.

p −5 −4 −3 −2 −1 0 1 2 3 4 5 η

0 .0455 .8978 .9132 .9253 .9343 .9409 .9456 .9486 .9501 .9503 .9490 .9855
1 .0456 .9130 .9235 .9315 .9375 .9420 .9452 .9470 .9477 .9472 .9453 .9912
6 .0457 .9625 .9643 .9648 .9647 .9639 .9626 .9606 .9577 .9539 .9490 .9999
12 .0457 .9650 .9647 .9645 .9638 .9626 .9609 .9586 .9566 .9517 .9466 .9999
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