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Abstract: In spatial modeling the presence of measurement error, or “nugget”,

can have a big impact on the sample behavior of the parameter estimates. This

article investigates the nugget effect on maximum likelihood estimators for a one-

dimensional spatial model: Ornstein-Uhlenbeck plus additive white noise. Consis-

tency and asymptotic distributions are obtained under infill asymptotics, in which a

compact interval is sampled over a finer and finer mesh as the sample size increases.

Spatial infill asymptotics have a very different character than the increasing domain

asymptotics familiar from time series analysis. A striking effect of measurement er-

ror is that MLE for the Ornstein-Uhlenbeck component of the parameter vector is

only fourth-root-n consistent, whereas the MLE for the measurement error variance

has the usual root-n rate.
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1. Introduction

There has been growing interest in statistical inference for stochastic process
models. In spatial statistics, for instance, a basic model may be expressed by

Y (s) = Z(s) + ε(s), s ∈ S ⊂ Rd, (1.1)

where Z is a spatially correlated process on S and ε is a “measurement error”
process independent of Z. It is often assumed that Z is a Gaussian process
with a covariance function Γµ, where µ is an unknown parameter, and ε’s are
independent and identically distributed (i.i.d.) random variables with mean 0
and variance η2. In the geostatistics literature ε is known as the “nugget” effect;
see Cressie (1991) for example . An important statistical problem is to identify
the model or, equivalently, estimate parameters µ and η2 from observations Y (si),
si ∈ S, i = 1, . . . , n. An extension of (1.1) is to incorporate a deterministic trend,
or a regression function into (1.1):

Y (s) = β′f(s) + Z(s) + ε(s), (1.2)
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where components of f are some known base functions and of β, unknown param-
eters. Ripley (1981) and Cressie (1991) provide detailed descriptions of numerous
models and applications.

Despite the widespread use of spatial process models, few theoretical results
are available in the literature. This is primarily due to the lack of the analytical
tools that abound in the classical setting of independent observations. It appears
that asymptotic properties of statistical procedures as the sampling points {si}
grow dense (what Cressie (1991) called infill asymptotics) are extremely difficult
to obtain, even when Z and ε are endowed with the simplest probability struc-
tures. In principle, the parameters µ and η2 in model (1.1) may be estimated by
maximizing the likelihood of the observed {Y (si)}. This involves, among other
things, inverting an n × n matrix, which may be increasingly difficult as n be-
comes large. Due to the lack of an explicit, or at least a manageable, form for
the inverse of the covariance matrix of {Y (si), i = 1, . . . , n}, analytic properties
of maximum likelihood estimators have been difficult to obtain in general.

We mention several notable exceptions. Stein (1990) considered a model of
the form (1.1) in which Z is a driftless Brownian motion process with an unknown
scale parameter and ε is white noise, also with an unknown scale parameter. He
established asymptotic normality of certain modified maximum likelihood esti-
mators under infill asymptotics and increasing domain asymptotics, in each case
assuming that the process is observed over an equally-spaced grid. In Stein
(1993), he further studied the infill asymptotics for modified likelihood estima-
tors assuming a general periodic Gaussian process in model (1.1). Ying (1991,
1993) considered a pure Ornstein-Uhlenbeck process without measurement error,
and a multivariate extension. He established root-n consistency and asymptotic
normality of maximum likelihood estimators.

Mardia and Marshall (1984) derived asymptotic properties of maximum like-
lihood estimators for some spatial process models under restrictive assumptions,
which are not satisfied in our infill asymptotic problem.

The purpose of this paper is to study asymptotic properties of the maximum
likelihood estimators in the process-error model (1.1) when Z is an Ornstein-
Uhlenbeck process with covariance function

Γ(t, s; θ, σ2) = σ2 exp{−θ|t − s|}, (1.3)

and the ε are i.i.d. white noise random variables with mean zero and variance
η2. Thus, the model considered here generalizes the model investigated by Ying
(1991). It will be established that the presence of measurement error in the model
has a serious impact on the infill asymptotics, reducing the rate of convergence
of the Ornstein-Uhlenbeck component of the maximum likelihood estimator from



SPATIAL PROCESS WITH MEASUREMENT ERROR 143

order n−1/2 to order n−1/4. Stein (1990) observed a similar phenomenon in the
Brownian motion plus white noise model.

Two Gaussian probability measures induced by covariance function of form
(1.3) are absolutely continuous with each other if and only if the products of the
two parameters, σ2θ, are equal (Ibragimov and Rozanov (1978)). Therefore, the
parameters in (1.3) are asymptotically identifiable only up to σ2θ. In view of
this, we consider estimation of either one parameter (assuming the true value of
the other to be known) or the product of the two parameters.

The main results will be stated in the next section. The first part of the
section deals with the estimation of η2 and σ2 assuming θ to be known. We
show that maximum likelihood estimators of the two unknown parameters are
consistent and asymptotically normal. The second part deals with the estimation
of η2, σ2 and θ, but only asymptotic properties of estimators of η2 and the product
σ2θ will be derived. All the technical developments are given in Section 3, where
we show how the likelihood function can be approximated by more manageable
functions when the si are equally spaced. The technical tools developed here may
provide the means for attacking other problems, and they may suggest alternative
computational techniques. In Section 4, we discuss implications of our results
and some possible extensions.

2. Main Results

The main results concern the asymptotic properties of maximum likelihood
estimators when the observations are taken from Y modeled by (1.1), with Z a
zero-mean Ornstein-Uhlenbeck process whose covariance function is parametrized
by (1.3). Throughout the rest of the section, we consider an equally-spaced
sampling scheme, i.e., si = i/n, i = 0, . . . , n. Thus observations consist of yi =
Y (i/n), i = 0, . . . , n.

Additional notation is needed. Let y = (y0, . . . , yn)
′
, and ρθ = exp {−θ/n}.

Then the covariance matrix of y may be written as Σ(η2, σ2, θ) = (σ2ρ
|i−j|
θ )0≤i,j≤n

+η2In+1, where In+1 is the (n + 1) × (n + 1) identity matrix. The likelihood
function can be expressed by

L(η2, σ2, θ) = (2π)−(n+1)/2[det Σ(η2, σ2, θ)]−1/2 exp
{
−1

2
y

′
[Σ(η2, σ2, θ)]−1y

}
.

(2.1)
Furthermore, we let σ2

0 , η2
0 and θ0 denote the true values of σ2, η2 and θ, respec-

tively.
We first assume that θ = θ0 is known and consider estimation of σ2 and η2.

Let their maximum likelihood estimators be denoted by σ̂2 and η̂2, so

L(η̂2, σ̂2, θ0) = sup
(η2, σ2)∈D

L(η2, σ2, θ0), (2.2)
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where D = [a, b] × [c, d], with 0 < a < b < ∞ and 0 < c < d < ∞ for technical
reasons.

Theorme 1. Suppose that domain of the maximization D contains (η2
0 , σ

2
0).

Then the maximum likelihood estimators η̂2 and σ̂2 are consistent in the sense
that η̂2 → η2

0 with probability one and σ̂2 → σ2
0 in probability.

Remark 1. The discrepancy in type of convergence reflects our inability to deal
effectively with σ̂2, which has a lower-than-usual convergence rate. However, we
believe σ̂2 → σ2

0 with probability one.

Remark 2. The consistency of η̂2 is somewhat interesting. According to the
approximations to the log-likelihood functions developed in Section 3, η̂2 remains
consistent even when σ2 is misspecified.

The asymptotic distribution of the estimators η̂2 and σ̂2 is considered in the
following theorem.

Theorem 2. Suppose the true parameter vector (η2
0, σ2

0) lies in the interior of
D. Then for the maximum likelihood estimators η̂2 and σ̂2 defined in (2.2),(

n1/4(σ̂2 − σ2
0)

n1/2(η̂2 − η2
0)

)
D→ N

((
0
0

)
,

(
4
√

2η0θ
−1/2
0 σ3

0 0
0 2η4

0

))
. (2.3)

Remark 3. The theorem shows that the rates of convergence for estimators of
the two parameters are quite different. According to Ying (1991), however, σ2 can
be estimated at the root-n rate when there is no measurement error term. The
same convergence as (2.3) is also shown in Stein (1990), but with Z a Brownian
motion process and so-called modified maximum likelihood estimators, which
are commonly called restricted maximum likelihood estimators in the literature.
Since the Ornstein-Uhlenbeck process and the Brownian motion have similar
local behavior, we would expect more or less the same asymptotic results for the
two cases. In fact, as will become clear in the proof of Theorem 2, a key technical
development is borrowed from Stein (1990).

Remark 4. The covariance matrix of the limiting distribution in (2.3) is diago-
nal. Moreover, the asymptotic variance for η̂2 does not depend on the values of
other parameters so distributional properties of the process Z do not affect the es-
timation of η2. A (1−α)×100% confidence interval for η2 is (η̂2−z1−α/2

√
2η̂2/

√
n,

η̂2 + z1−α/2

√
2η̂2/

√
n), where z1−α/2 is the 1−α/2 quantile of the standard nor-

mal distribution. On the other hand, the asymptotic variance of σ̂2 depends not
only on θ and σ2 but also on η2.

Remark 5. The asymptotic variances for both estimators provide variance sta-
blizing transformations. Specifically, log η̂2 is the variance stablizing transforma-
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tion for η̂2, while σ̂1/2 is for σ̂2. These transformations may be used to construct
better confidence intervals.

Let θ̃, σ̃2 and η̃2 satisfy

L(η̃2, σ̃2, θ̃) = max
(η2,σ2,θ)∈D̃

L(η2, σ2, θ), (2.4)

where D̃ denotes a compact region in R3
+, R+ = (0,∞). We investigate the

asymptotic properties of θ̃σ̃2 and η̃2 when θ is unknown. The results are given
by the following theorem.

Theorem 3. Let θ̃, σ̃2 and η̃2 be defined by (2.4). If D̃ contains the true
parameter vector (η2

0 , σ
2
0 , θ0), then η̃2 → η2

0 with probability one and θ̃σ̃2 → θ0σ
2
0

in probability. Furthermore, if (η2
0 , σ

2
0 , θ0) is in the interior of D̃, then(

n1/4(θ̃σ̃2 − θ0σ
2
0)

n1/2(η̃2 − η2
0)

)
D→ N

((
0
0

)
,

(
4
√

2η0(θ0σ
2
0)

3/2 0
0 2η4

0

))
.

Remark 6. Comparing Theorem 3 with Theorem 2, the convergence for η̃2 and
η̂2 are the same. In addition, n1/4(θ0σ̂

2 − θ0σ
2
0)

D→ N(0, 4
√

2η0(θ0σ
2
0)

3/2), which
is the same as the limiting distribution of n1/4(θ̃σ̃2 − θ0σ

2
0). In that sense, the

results of the two theorems agree.

Remark 7. For simplicity, we have assumed that Z has mean zero. Results
parallel to those of Theorem 3 can be obtained by similar, but much more com-
plicated, arguments for the case of E(Z(s)) = µ, an unknown constant.

3. Proofs of Theorems

We deal first with Theorems 1 and 2. Recall that we assumed there that
θ0 is known. When there is no ambiguity, we will drop θ0 in certain definitions.
Specifically, let

l(η2, σ2) = l(η2, σ2, θ0) = y
′
[Σ(η2, σ2)]−1y+det[Σ(η2, σ2)]+(n+1) log 2π, (3.1)

where Σ(η2, σ2) = Σ(η2, σ2, θ0).
A key to our proofs is to write the inverse of the covariance matrix for y in a

manageable form. When there is no measurement error term, Ying (1991) applied
the Markovian property of the Ornstein-Uhlenbeck process to simplify the inverse
of the covariance matrix. With the measurement error term, Stein (1990) utilized
a well-known eigenvalue decomposition of a basic matrix to invert the covariance
matrix. In the present case, we shall apply suitable linear transformations related
to the Markovian property as well as to the eigenvalue decomposition of the basic
matrix.
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Let En be the n × n tridiagonal matrix with 2 on the diagonal and −1 on
the neighboring off-diagonals. Denote by γ1 ≥ · · · ≥ γn its eigenvalues and by
u1, . . . , un the corresponding eigenvectors. Let Un = (u1, . . . , un) = (uik). Then

UnEnU
′
n =




γ1
. . .

γn


 . (3.2)

It can be verified that

γk = 2
(

1 − cos
πk

n + 1

)
, i = 1, . . . , n, (3.3)

uik =
(

2
n + 1

)1/2

sin
πik

n + 1
, i = 1, . . . , n, k = 1, . . . , n; (3.4)

cf. Ortega (1987, p.230).
Recall ρθ = exp{−θ/n}. Let ρ0 = ρθ0 . Define β = η2ρ0, λ = σ2(1 − ρ2

0) +
η2(1 − ρ0)2, β0 = η2

0ρ0, λ0 = σ2
0(1 − ρ2

0) + η2
0(1 − ρ0)2 and

T =



−ρ0 1 0

. . . . . .
0 −ρ0 1




n×(n+1)

. (3.5)

We have the following lemma.

Lemma 1. The log-likelihood function at (3.1) has the following expression

l(η2, σ2) =

(
y0 +

n∑
k=1

βu
′
1ku

′
kTy

βγk + λ

)2
1

σ2 + η2 −∑n
k=1

β2u2
1k

βγk + λ

+ log

(
σ2 + η2 −

n∑
k=1

β2u2
1k

βγk + λ

)

+
n∑

k=1

(u
′
kTy)2

βγk + λ
+

n∑
k=1

log(βγk + λ) + (n + 1) log 2π.

Proof. Define w0 = y0, w1 = y1 − ρ0y0, . . . , wn = yn − ρ0yn−1. We know that
w = (w0, . . . , wn)

′
has covariance matrix Σw = T̃ (Σz + η2In+1)T̃

′
, where Σz is

the covariance matrix of Z(si), i = 0, . . . , n, and

T̃ =




1
−ρ0 1

. . . . . .
−ρ0 1




(n+1)×(n+1)

. (3.6)
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It is easy to see that T̃ diagonalizes Σz so that the covariance matrix Σw can be
written as

Σw=




σ2

σ2(1 − ρ2
0)

. . .
σ2(1 − ρ2

0)


+η2




1 −ρ0

−ρ0 1 + ρ0
2 . . .

. . . . . . −ρ0

−ρ0 1 + ρ0
2




=




σ2 + η2 ... −η2ρ0 · · · 0
· · · · · · · · · · · · · · ·

−η2ρ0
...
0

...

...

...

βEn + λIn




(n+1)×(n+1)

. (3.7)

Also define

x = (x0, . . . , xn)
′
=




1
... 0 · · · 0

· · · · · · · · · · · · · · ·
0
...
0

...

...

...

Un




w = Ũw. (3.8)

Then x has a normal distribution N(0,Σx). with

Σx =




σ2 + η2 ... −βu11 · · · −βu1n

· · · · · · · · · · · · · · ·
−βu11

...
−βu1n

...

...

...

βγ1 + λ 0
. . .

0 βγn + λ




=
(

Σ11 Σ12

Σ21 Σ22

)
. (3.9)

Since Σ22 is diagonal, x1, . . . , xn are independent. The conditional distribution
of x0 given xn = (x1, . . . , xn)′ is normal with mean Σ12Σ−1

22 xn and variance
Σ11 − Σ12Σ−1

22 Σ21. From (3.9) it follows that

Σ12Σ−1
22 xn =

n∑
k=1

−βu1kxk

βγk + λ
, (3.10)

Σ11 − Σ12Σ−1
22 Σ21 = σ2 + η2 −

n∑
k=1

β2u2
1k

βγk + λ
. (3.11)

Therefore

l(η2, σ2) = −2 log f(x0|x1, . . . , xn; η2, σ2) − 2 log f(x1, . . . , xn; η2, σ2)
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=

(
x0 +

n∑
k=1

βu1kxk

βγk + λ

)2
1

σ2 + η2 −∑n
k=1

β2u2
1k

βγk + λ

+ log

(
σ2 + η2 −

n∑
k=1

β2u2
1k

βγk + λ

)
+ log 2π

+
n∑

k=1

x2
k

βγk + λ
+

n∑
k=1

log(βγk + λ) + n log 2π.

Since both T̃ and Ũ have Jocobian 1, the log-likelihood function based on y is
simply to substitute x by Ũ

′
y in l(η2, σ2). Hence, the lemma follows.

Lemma 2. For any constant δ > 0, there exists ξ > 0 such that

inf
|x−1|≥δ,x>0

(x − 1 − log x) ≥ ξ.

Proof. Note that log x is concave and is tangent to the function x − 1 at 1.

Lemma 3. For γk, β and γ defined at the beginning of the section, we have the
following results:

(i) The ratio (β0γk + λ0)/(βγk + λ) is monotone in k;
(ii) As n → ∞,

β0γk + λ0

βγk + λ
→



σ2
0

σ2 uniformly in k ≤ [(n + 1)1/3]
η2
0

η2 uniformly in k ≥ [n+1
3 ]

;

(iii) There exists M > 0 such that (β0γk + λ0)/(βγk + λ) ≤ M for all k and all
(η2, σ2) ∈ D.

Proof. Part (i) comes from monotonicity of γk in k. Part (ii) may be verified
by using explicit formula (3.3) for γk and the Taylor series expansion. Part (iii)
follows from (i) and (ii).

Lemma 4. For any (η2, σ2) ∈ D, we have the following approximations:
n∑

k=1

1
βγk + λ

=
n3/2

2
√

2ηθ1/2σ
+ O(n);

n∑
k=1

1
(βγk + λ)2

=
n5/2

8
√

2ηθ3/2σ3
+ O(n2).

Proof. Both can easily be proved by using (3.3) and by approximating sums by
integrals.

Lemma 5. Let {Wk,n; k = 1, . . . , n} be a sequence of i.i.d. N(0, 1) random
variables. Then for all α > 0, we have the following:
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(i)
∑n

k=1
1

βγk + λ(W 2
k,n − 1) = op(n5/4+α);

(ii)
∑n

k=1
1

βγk + λ(W 2
k,n − 1) = o(n7/4+α) a.s.;

(iii)
∑n

k=1(
β0γk + λ0
βγk + λ − 1)(W 2

k,n − 1) = o(n3/4+α) a.s.;

(iv)
∑n

k=1(
β0γk + λ0
βγk + λ − 1)(W 2

k,n − 1) = op(n1/4+α);

(v)
∑n

k=1
1

βγk + λW 2
k,n = op(n3/2+α);

(vi)
∑n

k=1
1

βγk + λ
W 2

k,n = o(n5/2+α) a.s.

Proof. All the approximations can be seen easily by observing that the tail
of W 2

k,n decreases to 0 exponentially fast and by applying Lemma 4 and the
Borel-Cantelli lemma.

Proof of Theorem 1.

To verify the consistency of η̂2, it suffices to show that for any fixed δ > 0,

inf
(η2,σ2)∈D,|η2−η2

0 |>δ
{l(η2, σ2) − l(η2

0 , σ
2
0)} → ∞ a.s. (3.12)

To show (3.12), let Wk,n = u
′
kTy/

√
β0γk + λ0. Obviously {Wk,n, k = 1, . . . , n} is

a sequence of i.i.d. N(0, 1) random variables. From Lemma 1,

l(η2, σ2) =
n∑

k=1

β0γk + λ0

βγk + λ
W 2

k,n +
n∑

k=1

log(βγk + λ) + n log 2π + R(η2, σ2), (3.13)

where

R(η2, σ2) =

[
y0 +

n∑
k=1

βu1k(u
′
kTy)

βγk + λ

]2
1

σ2 + η2 −∑n
k=1

β2
u2
1k

βγk + λ

+ log(σ2 + η2 −
n∑

k=1

β2u2
1k

βγk + λ
) + log(2π)

= R1(η2, σ2) + R2(η2, σ2) + log(2π), say. (3.14)

We claim that for any α > 0, uniformly in D,

R1(η2, σ2) = o(n1/2+α) a.s. ; (3.15)
R1(η2, σ2) = op(nα); (3.16)
R2(η2, σ2) = O(1) a.s. , (3.17)

We will verify (3.15)–(3.17) later. Based on (3.13)–(3.17), we have

l(η2, σ2) =
n∑

k=1

β0γk + λ0

βγk + λ
W 2

k,n +
n∑

k=1

log(βγk + λ) + n log 2π + o(n1/2+α) a.s.

(3.18)
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Therefore,

l(η2, σ2) − l(η2
0 , σ

2
0) =

n∑
k=1

(
β0γk + λ0

βγk + λ
− 1)W 2

k,n −
n∑

k=1

log
β0γk + λ0

βγk + λ
+ o(n1/2+α)

=
n∑

k=1

(
β0γk + λ0

βγk + λ
− 1 − log

β0γk + λ0

βγk + λ
)

+
n∑

k=1

(
β0γk + λ0

βγk + λ
− 1)(W 2

k,n − 1) + o(n1/2+α)

≥
n∑

k=[n/3]+1

(
β0γk + λ0

βγk + λ
− 1 − log

β0γk + λ0

βγk + λ
)+o(n3/4+α) a.s. ,

(3.19)

where the last inequality follows from Lemma 5(iii). Lemma 3 implies that

β0γk + λ0

βγk + λ
→ η2

0

η2
(3.20)

uniformly over k ≥ n/3 and (η2, σ2) ∈ D. Thus, from (3.19) and Lemma 2,

inf
(η2,σ2)∈D,|η2−η2

0 |>δ
{l(η2, σ2) − l(η2

0 , σ
2
0)} ≥ (n − [n/3])(

η2
0

η2
− 1 − log

η2
0

η2
)

+o(n3/4+α) a.s.

→∞ a.s.

Hence (3.12) holds.
It remains to show (3.15)–(3.17). Let

R3(η2, σ2) =

[
y0 +

n∑
k=1

βu1k(u
′
kTy)

βγk + λ

]2

.

Note that as n → ∞,

n∑
k=1

β0
2u2

1k

β0γk + λ0
=

2n
(n + 1)π

∫ π

0

β0
2 sin2 t

2β0(1 − cos t) + λ0
dt + o(1) → η2

0 . (3.21)

Denote X̃ = (X1, . . . ,Xn)
′
, where Xk = u

′
kTy. By the argument in Lemma 1,

we have

y0|X̃ = N

(
−

n∑
k=1

β0u1kXk

β0γk + λ0
,

1
σ2

0 + η2
0 −∑n

k=1 βu1k(u
′
kTy)/(βγk + λ)

)
.
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It follows that

(y0 +
n∑

k=1

β0u1kxk

β0γk + λ0
)2 = op(nα) ∀α > 0. (3.22)

Also, by noting that

E(y0 +
n∑

k=1

β0u1kxk

β0γk + λ0
)4 = O(1),

we can apply the Borel-Cantelli Lemma to show that for any α > 0,

(y0 +
n∑

k=1

β0u1kxk

β0γk + λ0
)2 = o(n1/2+α) a.s. (3.23)

We can also easily get
n∑

k=1

β0u1kxk

β0γk + λ0

βλ0 − β0λ

β0(βγk + λ)
= O(n−3/2) = o(1) a.s.

Since R3(η2, σ2) can be expressed as[
y0 +

n∑
k=1

β0u1kxk

β0γk + λ0
+

n∑
k=1

β0u1kxk

β0γk + λ0

βλ0 − β0λ

β0(βγk + λ)

]2

,

we have R3(η2, σ2) = op(nα) and R3(η2, σ2) = o(n1/2+α) a.s. Hence, (3.15) and
(3.16) hold.

To verify (3.17), one can show from (3.21) that for any (η2, σ2) ∈ D,

R2(η2, σ2) = log(σ2 + η2 −
n∑

k=1

β2u2
1k

βγk + λ
) → log σ2 = O(1).

Next, we show the consistency of σ̂2. Since η̂2 → η2
0 almost surely, it is

sufficient to show for any fixed δ > 0,

inf
|σ2−σ2

0 |>δ
{l(η2

0 , σ2) − l(η2
0 , σ

2
0)} P→ ∞. (3.24)

According to (3.5)–(3.8), write

l(η2, σ2) =
n∑

k=1

β0γk + λ0

βγk + λ
W 2

k,n +
n∑

k=1

log(βγk + λ) + n log 2π + op(nα).

By Lemma 5(iv),

l(η2, σ2) − l(η2
0 , σ

2
0) =

n∑
k=1

(
β0γk + λ0

βγk + λ
− 1)W 2

k,n −
n∑

k=1

log
β0γk + λ0

βγk + λ
+ op(nα)
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=
n∑

k=1

(
β0γk + λ0

βγk + λ
− 1 − log

β0γk + λ0

βγk + λ
)

+
n∑

k=1

(
β0γk + λ0

βγk + λ
− 1)(W 2

k,n − 1) + op(nα)

≥
n1/3∑
k=1

(
β0γk + λ0

βγk + λ
− 1 − log

β0γk + λ0

βγk + λ

)
+ op(n1/4+α). (3.25)

From (3.25), Lemma 2 and Lemma 3,

inf
|σ2−σ2

0 |>δ
{l(η2

0 , σ2) − l(η2
0 , σ

2
0)} ≥ n1/3(

σ2
0

σ2
− 1 − log

σ2
0

σ2
) + op(n1/4+α).

Hence, (3.24) follows.

Proof of Theorem 2.

The log-likelihood function can be written as

l(η2, σ2) = l̃(η2, σ2) + R4(η2, σ2), (3.26)

where

l̃(η2, σ2) =
n∑

k=1

(u
′
kTy)2

βγk + λ
+

n∑
k=1

log(βγk + λ) + n log 2π

and R4(η2, σ2) is the remainder term. By similar approximations as in the proof
of Theorem 1, one can show that

∂R4

∂σ2
= Op(1) and

∂R4

∂η2
= Op(1). (3.27)

In view of (3.26) and (3.27), it follows that

∂l

∂η2
(η2, σ2)=−

n∑
k=1

(u
′
kTy)2(ρ0γk+(1−ρ0)2)

(βγk + λ)2
+

n∑
k=1

ρ0γk+(1−ρ0)2

βγk + λ
+Op(1),(3.28)

∂l

∂σ2
(η2, σ2)=−

n∑
k=1

(u
′
kTy)2(1 − ρ2

0)
(βγk + λ)2

+
n∑

k=1

1 − ρ2
0

βγk + λ
+Op(1). (3.29)

Again note that Wk,n = u
′
kTy/

√
β0γk + λ0 are i.i.d. N(0, 1). From (3.28) we get

∂l

∂η2
(η̂2, σ̂2)=−

n∑
k=1

(β0γk+λ0)(ρ0γk+(1−ρ0)2)
(β̂γk + λ̂)2

W 2
k,n+

n∑
k=1

ρ0γk+(1−ρ0)2

β̂γk + λ̂
+Op(1)

=−
n∑

k=1

ρ0β0

β̂2
W 2

k,n +
nρ0

β̂
− β0

β̂
((1 − ρ0)2 − ρ0λ̂

β̂
)

n∑
k=1

W 2
k,n − 1

β̂γk + λ̂
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−ρ0

β̂
(λ0 − β0

β̂
λ̂)

n∑
k=1

W 2
k,n

β̂γk + λ̂

−((1 − ρ0)2 − ρ0λ̂

β̂
)(λ0 − β0

β̂
λ̂)

n∑
k=1

W 2
k,n

(β̂γk + λ̂)2

+(1 − β0

β̂
)((1 − ρ0)2 − ρ0λ̂

β̂
)

n∑
k=1

1
β̂γk + λ̂

+ Op(1), (3.30)

where β̂ = η̂2ρ0 and λ̂ = σ̂2(1 − ρ2
0) + η̂2(1 − ρ0)2. By Theorem 1, (η̂2, σ̂2) →

(η2
0 , σ

2
0). From this and Lemma 5, it can be verified that the last four terms in

(3.30) are of order op(n1/2). For example,

β0

β̂
((1− ρ0)2 − ρ0λ̂

β̂
)

n∑
k=1

W 2
k,n − 1

β̂γk + λ̂
= O(1)O(1/n)Op(n5/4) = Op(n1/4) = op(n1/2).

Equating (3.30) to 0, we get

√
n(η̂2 − η2

0) =
η2
0√
n

n∑
k=1

(W 2
k,n − 1) + op(1). (3.31)

Likewise, we can show that

∂l

∂σ2
(η̂2, σ̂2) = −(1 − ρ2

0)
n∑

k=1

W 2
k,n − 1

β0γk + λ0
+ 2(1 − ρ2

0)
θ0σ̂

2 − θ0σ
2
0

n

n∑
k=1

1
(β0γk + λ0)2

+op(n1/4), (3.32)

which implies

n1/4(σ̂2 − σ2
0) =

n5/4

2θ0
∑n

k=1(β0γk + λ0)−2

n∑
k=1

W 2
k,n − 1

β0γk + λ0
+ op(1)

= 25/4η
1/2
0 θ

−1/4
0 σ

3/2
0

1√
2
∑n

k=1(β0γk + λ0)−2

n∑
k=1

W 2
k,n − 1

β0γk + λ0
+op(1),

(3.33)

where the last equality follows from Lemma 5. To prove (2.3), it suffices to show
that for every t,

√
n(η̂2 − η2

0) + tn1/4(σ̂2 − σ2
0)

D→ N(0, 2η4
0 + t225/2η0θ

−1/2
0 σ3

0). (3.34)

In view of (3.31) and (3.33), this means we need

1√
n

n∑
k=1

(W 2
k,n−1)+

t√
2
∑n

k=1(β0γk + λ0)−2

n∑
k=1

W 2
k,n − 1

β0γk + λ0

D→ N(0, 2+t2), (3.35)
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and this is standard.

Proof of Theorem 3.

The consistency of η̃2 and θ̃σ̃2 can be shown as in Theorem 1. Here and
below, Tθ is the same as T defined by (3.5) except with ρ0 replaced by ρθ.
Likewise βθ and λθ are the same as β and λ except, again, with ρ0 replaced by
ρθ. For proving asymptotic normality, we note that

l(θ, σ2, η2) = l̃(θ, σ2, η2) + R5(θ, σ2, η2), (3.36)

where

l̃(θ, σ2, η2) =
n∑

k=1

(u
′
kTθy)2

βθγk + λθ
+

n∑
k=1

log(βθγk + λθ) + n log 2π

and R5(θ, σ2, η2) is the remainder term. By an argument similar to the proof of
Theorem 1, one can show that

∂R5

∂σ2
= Op(1) and

∂R5

∂η2
= Op(1). (3.37)

From (3.36) and (3.37), it follows that

∂l

∂η2
(θ, σ2, η2) = −

n∑
k=1

(u
′
kTθy)2(ρθγk + (1 − ρθ)2)

(βθγk + λθ)2
+

n∑
k=1

ρθγk + (1 − ρθ)2

βθγk + λθ

+ Op(1), (3.38)

∂l

∂σ2
(θ, σ2, η2) = −

n∑
k=1

(u
′
kTθy)2(1 − ρ2

θ)
(βθγk + λθ)2

+
n∑

k=1

1 − ρ2
θ

βθγk + λθ
+ Op(1). (3.39)

Again the Wk,n = u
′
kTy/

√
β0γk + λ0, are i.i.d. N(0, 1). Then, (3.38) implies that

∂l

∂η2
(θ, σ2, η2) = −

n∑
k=1

(β0γk + λ0)(ρθγk + (1 − ρθ)2)
(βθγk + λθ)2

W 2
k,n +

n∑
k=1

ρθγk + (1 − ρθ)2

βθγk + λθ

+R6(θ, σ2, η2) + R7(θ, σ2, η2) + Op(1),

where

R6(θ, σ2, η2) = −
n∑

k=1

√
β0γk + λ0(ρθγk + (1 − ρθ)2)

(βθγk + λθ)2
u

′
k(Tθ − T )yWk,n,

and

R7(θ, σ2, η2) = −
n∑

k=1

ρθγk + (1 − ρθ)2

(βθγk + λθ)2
(u

′
k(Tθ − T )y)2.
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After some tedious arguments, the last terms can be shown to be of order
o(n1/4+α) and O(1), respectively. Furthermore, as at (3.30) and (3.31), we can
equate (3.38) = 0 to get

√
n(η̃2 − η2

0) =
η2
0√
n

n∑
k=1

(W 2
k,n − 1) + op(1). (3.40)

As at (3.32), we have

∂l

∂σ2
(θ̃, σ̃2, η̃2)=−(1−ρ2

θ̃
)

[
n∑

k=1

W 2
k,n−1

β0γk+λ0
− θ̃σ̃2−θ0σ

2
0

n

n∑
k=1

1
(β0γk+λ0)2

]
+op(n1/4).

(3.41)
Since (3.41) = 0, we get, similar to (3.33),

n1/4(θ̃σ̃2−θ0σ
2
0) = 25/4η

1/2
0 θ

3/4
0 σ

3/2
0

1√
2
∑n

k=1(β0γk + λ0)−2

n∑
k=1

W 2
k,n − 1

β0γk + λ0
+op(1).

(3.42)
The joint asymptotic normality follows by observing that, for every t, (3.40) +
t(3.42) → N(0, 2η4

0 + t225/2η0(θ0σ
2
0)

3/2).

4. Comments

It will be interesting and important to see whether the results here can be
extended to two or higher dimensional analogues of the model. One commonly
used method to extend a univariate process to a multidimensional spatial process
is via the product rule; cf. Sacks, Schiller and Welch (1989) and Sacks, Welch,
Mitchell and Wynn (1989). For the Ornstein-Uhlenbeck process, the product
rule results in a covariance function of the form

Γ(s, t) = σ2 exp{−θ1|s1 − t1| − θ2|s2 − t2|}
when dimension is two, where s = (s1, s2) and t = (t1, t2). Without measurement
error, Ying (1993) showed that the maximum likelihood estimators for the three
parameters are consistent and asymptotically normal. However, with measure-
ment error, the techniques developed there do not seem to be applicable.

Another method of extension is to add “marginal” processes together to form
a multi-dimensional spatial process. For example, we may consider

Y (s1, s2) = Z1(s1) + Z2(s2) + ε(s1, s2),

where Z1 and Z2 are two independent Gaussian processes and ε represents mea-
surement error. When the Ornstein-Uhlenbeck covariance structure is assumed
for the Zi, it is possible to construct ad hoc estimators of the error variance
and the parameters in the marginal covariance functions, as well as to show
that these estimators are consistent and asymptotically normal. However, the
maximum likelihood estimators for this model appear to be more elusive.
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