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Abstract: We consider the problem of estimating the derivatives of a regression func-
tion by the corresponding derivatives of regression splines. Unlike kernel smoothers,
these spline derivative estimators do not have boundary problems. In addition, they
have simple expressions and are easy to compute. In this paper, we study the local
asymptotic properties of these derivative estimators. Under regularity conditions,
the asymptotic bias and variance of these estimators are derived, and asymptotic
normality is established. Furthermore, we extend the results to random designs
and heteroscedastic errors.
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1. Introduction

In nonparametric regression, it is often of interest to estimate some function-
als of a regression function, such as its derivatives. For example, in the study of
growth curves, the first (speed) and second (spurt) derivatives of the height as a
function of age are important parameters for study (Miiller (1988)). Other needs
for derivative estimation often arise in nonparametric regressions themselves. For
example, in constructing interval estimates for a regression function (Eubank
and Speckman (1993)) and kernel bandwidth selection (Ruppert, Sheather and
Wand (1995)), estimators of higher order derivatives are employed in estimating
the leading bias terms. In this work, we study the estimation of derivatives of
regression functions using regression spline estimators.

Suppose we observe

where the ¢;’s are uncorrelated with Fe; = 0 and Eejz = 02 > 0. Here the
design points {a:j};?zl are either deterministic or random, and we assume that
each z; € [0,1]. Our goal is to estimate the derivatives g (i < m—2) provided
g™ exists.

There is a long history, and extensive studies, on the use of spline functions
in nonparametric regression. As a result, many of their properties are already
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well understood. For example, Agarwal and Studden (1980) have shown that the
regression spline can achieve the optimal rate of convergence in the univariate case
with fixed design points. Stone (1985, 1994) has extended this result to additive
and multivariate models, among other things. Friedman and Silverman (1989)
and Friedman (1991) have studied the implementation of regression splines. The
application of regression splines to model real data has also been studied by many
authors; see, for example, Stone and Koo (1986) and Friedman and Silverman
(1989).

In the context of derivative estimation, Stone (1985) has shown that spline
derivative estimators can achieve the optimal Lo rate of convergence. However,
it appears that their asymptotic bias and variance properties have not been
studied. In this paper, we derive the asymptotic form of the leading terms in
the bias and variance of regression spline derivative estimators, and establish
asymptotic normality for the proposed derivative estimators. Furthermore, we
extend our results to random designs, heteroscedastic errors, and weighted least
squares regressions. The present work is a generalization of the work by Zhou,
Shen and Wolfe (1998), where the asymptotic bias and variance for regression
spline estimators are derived.

In Section 2, we describe the spline regression and provide expressions for the
spline derivative estimator. In Section 3, we derive forms for the asymptotic bias
and variance for the proposed estimator, and establish the asymptotic normality.
In Section 4, we generalize our results to heteroscedastic errors and random
designs. Technical details are given in Section 5.

2. Spline Derivative Estimators

Spline regression is a natural generalization of polynomial regression. In
polynomial regression, a single polynomial function is used to fit the data. The
main drawback of this method is that the estimated curve may be unstable and
oscillative in some regions due to the nature of polynomials, especially when
higher order polynomials are fitted. To overcome this problem, spline regression
fits the model by piecewise polynomials with some smooth constraints at the
joints. The use of spline functions as an approximation tool has been extensively
studied and its properties are well understood. However, by comparison, its
theoretical properties in statistics are much less understood. Schumaker (1981)
contains a good overview on this topic.

In order to describe regression splines in detail, we need some notation. For
any | <m,lett = (to(=0),t1,...,tx11(= 1)) be a partition of [0, 1] with t; < ¢; if
I < j,and let Ny(z) = (N14(t), ..., Npp1a(t)) be a vector of normalized Ith order
B-splines associated with an extended partition of [0,1] generated by {tj}fiol
(Schmaker (1981), p.224).
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Let S(l,t) be the space spanned by {N;, fii The regression spline of order

m is defined as g(x) = aN,, with @ minimizing

After some simple algebra, we have the equivalent expression
§(x) = N,,,(2)G'XY, (2)

provided G~! exists, where Y = (y1,...,yn) s X = n {(Np(x1), ..., N (22)),
and G = nXX'.

Since §(z) is an estimator of g(z), it is natural to consider §()(z) as an
estimator of ¢ (z) for any i = 1,...,m — 2. Meanwhile, because j(z) is a spline
function, its derivatives also have simple expressions and are, therefore, relatively
easy to analyze. From de Boor (1972), we know that the derivatives of spline
functions can be simply expressed in terms of lower order spline functions. More
precisely, let s(t) = Zf:lﬂ ajNjm(t) € S(m,t) be any spline function. Then we

have
k+m—I1

sD@)= Y ) Nji(@), (3)

=1

where a§-0) =a;,1<j<k+m,and

af) = (m =Dy = af )/t~ tjomer). 1<G<kAm—l (@

We easily obtain the following expression for §(¥ () from (3):

§% () = N,,_;(2)DVG XY, (5)
where D®) = M;M; | --- My, with
—1
7t1_t11_m+l _01 0 0 0
t1—t1—mi tz—tzl—m+l _01 -0 0
M; = (m —1) 0 to—ta—mii BB—t3—met 0 0 ; (6)
0 0 00—

for1<i<i<m-2.

From (6), it is easy to see that the additional expense of computing derivative
estimators is minimal. After the regression coefficient vector a is obtained by
the standard linear least squares estimation procedure, a® can be computed
inductively by (4) in less than 4i(k + m) extra steps.
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3. Local Asymptotic Results

In this section, we study the asymptotic properties of the bias and variance
of §)(x). In order to analyze ¢\ (z) in detail, it is necessary to characterize the
elements of G and G~'. Note that the elements of G depend on the distributions
of the knots ¢; and the design points. Therefore we need some restrictions on
both the knots and the design points. For simplicity, we first discuss the fixed
design and then generalize the result to random designs in Section 3. For a fixed
design, the following two assumptions are sufficient.

A1l (Condition on the Knots)

max |hjy1/hj =1 =o(1) and h/ min h;<e, (7)
where h; = t; —tj_1, h = maxj<j<pt1 hj, o(1) = 0ask — 0, and ¢; > 0is a
pre-determined constant.

The upper bound on the global mesh ratio implies that C1_1 < hk < ¢ and
therefore O(h!) = O(k~") for any | € (—00,00). This bound is not essential and
can be replaced by a much weaker assumption. In fact, under the assumption
that nminj<j<j41 h; — 00 as n — oo, it can be shown that the (I, j)th element

of G~ is bounded by cm’an,ll_j'/\/(tl — t1—m)(t; — tj—m) for some constant c,, > 0
and v, € (0,1). As a result, results similar to those in Zhou, Shen and Wolfe
(1998) can be derived under the additional assumption that there is a constant
¥ € (Ym, 1) such that maxi<; j<gs1{(t—ti—m)(tj —tj—m) 71771} < co. However,
our analysis is more elegant under this restriction, as we shall see in the proofs.
A2 (Condition on Fixed Designs)
For fixed designs, we assume that

sup |Qn () — Q(z)| = o(k™1), (8)
z€[0,1]
where Qn(z) is the empirical distribution function for {z;}7_,, and Q(z) is a
distribution with a positive, continuous density Q(x).
Assumption (A2) is a mild restriction on the design points. For instance, if
the design points are generated according to a positive continuous density ¢(x)
(called regular sequences by Sacks and Ylvisaker (1970)) such that

Tj+1

[ atw)de = 1/m,

zj

forall j =1,...,n—1, then it is easy to verify that (8) holds, provided k/n — 0.
In the context of Lo approximation, it is known that the approximation error

for a spline function and its derivatives behave like scaled Bernoulli polynomials

in Ly norm (Barrow and Smith (1979)). Under Assumptions (Al) and (A2),
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this property is preserved for least squares approximation and, in fact, the bias
behavior of §(¥)(z) is like a scaled Bernoulli polynomial under the L., norm, as
stated in the next theorem.

Theorem 3.1. Under Assumptions (Al) and (A2), if g € C™|[0, 1] with m > 2
and if k/n — 0, then for any i=1,...,m — 2,

E(3"(2)) = ¢ (x) = bi(w) + o),

(m) () pm—t _
bi(z) = 97(;8) e m—i(m

i\ .
— ti <z <t =0,...,k
(m—z)' hj+1 )7 Zf 7 z j+15 J ; s vy
and Bp,—i(+) is a Bernoulli polynomial (Ghizzetti and Ossicini (1970)).

From (5), the following expression for Var () (z)) can be obtained:

. 2 ’ . N
Var (5 (z)) = %Nm_i(x)D(l)G_l(D(”) N (). (9)

The asymptotic form of Var (§(*)(z)) is provided by the next theorem.

Theorem 3.2. Under Assumptions (A1) and (A2), if k/n — 0, then

0.2

Var (39 (2)) = TN, _,(2)DVG (q) (DY)

’

Ny —i(z)+o (h_zi_ln_l> ,

where .
G@) = | Nu@N,(@)g(x)de.
Using Theorems 3.1 and 3.2, we establish the asymptotic normality of §() ()
in the next theorem.

Theorem 3.3. In addition to Assumptions (Al) and (A2), suppose that the e;
are i.i.d. from some distribution with mean 0 and variance 0. If g € C™[0,1]
and k > cont/(2m+1) for some positive constant co, then

§9 ()~ ¢V (@) = bi(x) a
Var (90 (2))

N(0,1).

Remark 1. From Theorems 3.1 and 3.2, the bias of §()(z) is O(h™*) and the
variance is O(h=2~1n~!) (see also Lemma 5.4). As a result, if the number of
knots k is of order O(n!/™+1)) the mean square error is

MSE(§" (2)) = @G (@) - ¢¥(x))? = O (n2m=0/@m+1) — (10)
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for any x € [0,1]. This agrees with the result on local convergence rate for a
nonparametric regression estimator in Stone (1982). An interesting fact about
the optimal number of knots is that its order in magnitude does not depend on
i. This may provide a clue on how to choose the optimal number of knots for
G (x). We will discuss this topic in a forthcoming paper.

Remark 2. Unlike kernel smoothers, §()(x) achieves the optimal rate noted in
(10) for any x € [0,1]. Meanwhile, we should note that the variance of ¢ (x)
near the boundary of [0, 1] is significantly larger than in the interior. This can

be seen clearly in Figure 1 which plots the ratio of boundary y/Var (§()(x)) to

the average interior |/Var (¢(?). This phenomenon can easily be explained by
the fact that there are fewer observations near the boundary contributing to the
regression.

Remark 3. The local asymptotic results in Zhou, Shen and Wolfe (1998) can
be considered a special case of the results in this work. In fact, if we define
DO = I, where Iy, is the (k +m) by (k + m) identity matrix, then
Theorems 3.1 and 3.2 also provide the local asymptotic expressions for g(x),
corresponding to the case ¢ = 0.

L1
[CIC

[

Ratio

Figure 1. Ratio of boundary y/Var (§()(z)) to average y/Var (§(V) in the
interior, where ¢ is a cubic spline with £ = 9 equally spaced knots, where

z=ua/h.
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4. Extensions

Random Design. In addition to the fixed design where the experimenters
can determine or control the design points, another possible sampling scheme
corresponds to selecting the design points by a random process. This is often the
case in observational studies. Under certain conditions, an appropriate model to
describe this situation corresponds to x1,...,x, being a random sample from a
distribution Q(x), as stated in the following assumption.

(A2') (Condition on the random Design)

X1,...,%, are 1.i.d. with cdf Q(x), where Q(x) is a continuous distribution
function with a positive, continuous density ¢(z) on [0, 1].

For random designs, results similar to those in Section 3 can be established
for g (z), as stated in the following theorems.

Theorem 4.1. Under Assumptions (A1) and (A2'), if g € C™[0,1] with m > 2
and if k/n — 0, then for any i =1,...,m —2 and t; < x < tj41, we have

EGD(2)|x1, ..., 2) — gD (x) = bi(x) + op(h™ 7).

Theorem 4.2. Under Assumptions (A1) and (A2'), if k/n — 0, then

0.2

Var (§O(@)|y, ... on) =Ny (2) DUGH (@) (DY)Np () +op (A2 10 ).

Theorem 4.3. In addition to Assumptions (A1) and (A2'), suppose that the ¢;
are i.i.d. from some distribution with mean 0 and variance . If g € C™[0,1]
and k > con™ @™t for some positive constant ¢, then we have

§9 () — ¢ (2) — bi(x)
\/Var (9D (2)|z1, ..., 70)

< N(0,1).

Unconditional bias and variance. For a random design, there always exists
a probability that the Gram matrix G is singular and therefore that §(*) (x) is not
defined. However, if we slightly modify the definition of §()(z) by using the idea
of ridge regression to guard against the singularity of G, §(* () can still have
the desired unconditional bias and variance. For example, if we define

/

3 (z) = Npp (@) DV(G +n~°D XY, (11)

m—

where I is the (kK 4+ m) x (k 4+ m) identity matrix, then we have the following
theorem on the unconditional asymptotic bias and variance of gfi) (x).
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Theorem 4.4. Under Assumptions (A1) and (A2), if g € C™[0,1] and k — oo
but k/n® — 0 for some constant § € (0,1/2) as n — oo, then

E(3(2)) = ¢ (x) = bi(z) + o(h™ ). (12)

0.2

Var (3 (2)) = TN,

/

m—i(2) DV G (g)(DW) Ny () + o(R*"~
T (13)

Heteroscedastic errors. In practice, there are situations where the observa-
tions exhibit heteroscedastic errors. Hence the regression model becomes

y; = glx;) +v"%(x))e;,

where v(z) is a positive function on [0,1]. For such settings, it may be more
appropriate to use a weighted least squares criterion to define g(x). For example,
() = Z?I{” a;N;m(z) can be considered, where a is the minimizer of

n
>
j=1

It is known (see Zhou, Shen and Wolfe (1998)) that, if v(x) is continuous,

E(gu(2)) — g(x) = bo(z) + o(h™),
0'2 ’
Var (gu(x)) = gNm(fL‘)Gil(Q)Nm(w) +o((nh)™h),

1

v(z;)

(y; — aNp ().

where G,(q) = fol v(2)Nyy ()N (x)q(z)dz.
The results in Section 3 easily extend to g,(x), as stated in the following
theorems.

Theorem 4.5. Under Assumptions (A1) and (A2), if g € C™|0,1] with m > 2
and if k/n — 0, then for any i=1,...,m — 2,
E(g) () = g (x) = bi(w) + o(h™ ),
if ty < <tjy1.
Theorem 4.6. Under Assumptions (A1) and (A2), if k/n — 0,

Var (3 () = N, ()06 (0) (DY)

’

Nyi(2) + o0 (h27In7t).

Theorem 4.7. In addition to Assumptions (A1) and (A2), suppose that the €;
are i.i.d. from some distribution with mean 0 and variance 0. If g € C™[0,1]
and k > c2n1/(2m+1) for some positive constant co, then

3 (@) = g9 () — bi(x)
(

\/ Var (% (2))

< N(0,1).
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Proof of the above three theorems are similar to those in Section 3 and are,
therefore, omitted.

5. Proofs
We need some preliminary lemmas for the proof of Theorem 3.1.

Lemma 5.1. For any g € C™[0, 1], there ezists an sq(x) € S(m,t) such that
[tk + 1™ = s)@) = bo@)@] = o(1),

foranyi=0,....,m— 2.

L [0,1]

Lemma 5.1 was established by Barrow and Smith (1979) (see Lemma 1 of
that paper) under the condition that the knot sequence ¢ is generated according
to a continuous positive density. However, it can be seen that their proof needs
only a few changes to establish Lemma 5.1 under Assumption (Al). We omit
the details. From Lemma 5.1,

(9 = 59) (@) = bi(w) + o(h" ). (14)
Lemma 5.2. Forany 1 <i<m —2,
I D o= O(R™).
Proof of Lemma 5.2. By the definition of D),
I DO floo=[| Mi -+ My loo | Mi lloo -+ | Mi oo -

From (6), we have || M; ||oo= O(h™'). Hence it follows from the above inequality
that ‘ ‘
| DY [loe= O(A™").
For convenience, we next introduce several results from Zhou, Shen and

Wolfe (1998). For proofs, see Lemmas 5.3, 5.4 and 5.5 of that paper.
1. If A and B are [ x | nonnegative matrices, then

MyinTT(B) < Tr(AB) < Moo Tr(B), (15)
where M. and A2 are the minimum and maximum eigenvalues of A, re-
spectively.

2.
I G [loo= O(h 7). (16)
3.

1§11,le2§+m|ala ay;(q)| = o(h™), (17)

where ay; and ayj(q) are the (I, j)th element of G~! and G~1(q), respectively.
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Proof of Theorem 3.1. Let

Ry (w) =

g(m)(tj)h?:__li <{E —t

(m—i)! ),tj<fl:<tj+1,j:0,...,k.

hjt1
Note that since g € C™[0, 1], we have g™ (z) = g™ (t;) + o(1) and
R (z) — b;(z) = o(h™7).

m

Hence it suffices to show that
9" (z) = E(§W(2)) = R) () + o(h™ ).
From (14), we know that
(9 = 59)" (@) = R{)(x) + o(A™ ).
Hence Theorem 3.1 is established if we show that
DW(Eg(x) - sq(x)) = o(h™ ). (18)

In the proof of Theorem 2.1 of Zhou, Shen and Wolfe (1998) (see (24) of that
paper), it has been shown that

E(g(x)) — sg(z) = o(h™).
It follows from Lemma 5.2 that
| DD(Eg(x) — 54(2)) [l o)< D llscll Ed(x) — 54(2) |1 o,7= 0o(R™ ),

and the proof of Theorem 3.1 is complete.

Proof of Theorem 3.2. Let j, be the integer such that = € [t;,_1,t;,]. By the
definition of B-spline functions (see, e.g., de Boor (1972), p.52), we have

Njm—i(z) =0 ifj<ggorj>jgyp+m—i—1 (19)

Let Aj(z) = N, _.(x)D® = (ai(x),...,ax(z)). By the definition of M;, it is
easy to verify that

aj(x) =0 ifj<jgporj>j,+m-—1L1 (20)
Hence from (9), we have

9 Jet+m—1jz+m—1

Var(g@(x)):% YooY auai@alz), (21)

J=J= I=ja
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where a;; is the (j,1)th element of G™'. Let aji(g¢) be the (j,1)th element of
G~Y(q). Using similar arguments, we have

o’ N N g2 Jeim el
N @DOETH (D) Noie) = - 37 32 an(@)a(@)ar(x).
j:jz l:jz
(22)
Let
2

V() = Var (§(x)) - —N
It follows from (21) and (22) that

sz—i-m 1jz+m—1

— > Y (= au@)as(@)a(x).

J=jz  l=js
Hence,

0.2

max Jaj - aj(q)| | Npp DV |5, (23)

V <
| V() HLoo [0,1]= n 1<5,1<k+m

By (23), (17) and Lemma 5.2, we have
| V(@) o= oA )00t = o(h=2~1n"L),

and the proof of Theorem 3.2 is complete.

Let M,,—;; be the (m — i+ 1) x (m — i) sub-matrix of M; formed by the
elements of M; at row u, j+1 < u < j+m—iand column [, j+1 <[ < j+m—i+1,
that is,

—71 0 .. 0 0
tj—tj—m+i
1 —1 .0 0
ti—ti—m+i L1l 1—mi
Mm i,j 1 0 0

— m (24)

0 0 0 titm—i—1—tj—1
We need the following lemmas in the proof of Theorem 3.3.

Lemma 5.3. Let {)x’}}”ll be the set of eigenvalues of M i iMm—ij. There
exist Apmaz > Amin > 0, depending only on m, such that,

Aminh_2 < >\; < )\mamh_27 0<i<m-— (8

foralll1<i<m—-2and1<j<k+m—i.
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Proof of Lemma 5.3. Define

1 1 '
U = (m—i el BN
mThg ( )(tj+1—tj+1—m+i tj+m—i_tj>
and

-1 0 0...00
1-1 0...00
Vi s = 0 1-1...00
0 0 0...01

’

It is easy to verify that My,—;; = Vip—iUn—ij. Let By = (b1,...,bym—i) be
any real unit vector. Then we have

m—i—1

B, V. Vi iBm_ ,-:2(2_317%— > bibiyr) > 2/m.
=1

Hence,
! ! 2 !
Bm—iMm—i:ij—i:ij i > EBm zUm—iij—i,ij—i
2 m—1i)b N2 _ 2h72
S S e
m o= Mg =t —md m

It follows that Al > (2/m)h~2 for any i and I. To show the right side inequality
in Lemma 5.3, note that

0 0 0...—-12
By Gerschgorin’s Theorem (see, e.g., Ortega (1987), p.227), the maximum eigen-
value of Vél_iVm_i is less than 4. Thus we have

m—1 .
/ / (m — )b 2 m 2
B,,_;M, --M_--B_4<4E <4({—) .
m—i*"tm—i,j Mt m—i,j Pm—i > . <tl+j _tl+j—m+i> > (min1§l§k+1 h[)

It follows from (7) that A} < 4(cym)?h=2 for any i and [, which completes the
proof of Lemma 5.3.

Lemma 5.4. For any 1 <1 < m—2, there exist two constants Lyqz > Lpin > 0

such that
Lmin02

~(i Lmaxa2
i < ar (59(@)) <

= T R2iAL

(25)
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Proof of Lemma 5.4. Let Nf;;_i(a:) = (Njym—i(®), -, Njprm—io1m—i(z))
and P, = My—1j, -+ Mpm—i j,. By the definition of M,,_;;, in (24), it follows
from (19) that, for any [ =1,...,m — 2,

/

Tr (DO Ny i(2) Ny i(2)(DDY ) = Tr (PN (NI (#)) PL,) . (26)

In addition, using (15) and Lemma 5.3, we have

. . ’ / jz+m i
Tr(Pa N2 (2) (NG (2)) Pl ) > Onin) B2 3 Nl (@)}
Jx
> Amin)'h™ % /m (27)

and

T (PN NI @) L) < a5 S M)
I=jx
O % (28)

IN

From (9),
Var G0 @) = T (DN 0, (DO ).

It follows from (16) and (15) that

ca0? ) ) » |
;—hTT (D(Z)Nm—i(fL‘)Nm_i(w)(D(”) ) < Var (§9(z))

05_‘7 (@) . , @)y
< =D Nyei (@) Ny, (@) (D)),

for constants c¢5 > ¢4 > 0, and Lemma 5.4 follows from (26), (27), (28) and the
above inequality.

Proof of Theorem 3.3. If k > ¢yn!/™+1)  then by Theorems 3.1 and 3.2,

—1

| gD () - gD (x) = bi(2) Lo, = 0o(n™7), and \/Var (§0)(x)) = O(n¥).
Therefore it is enough to show that

§9(@) —BGO (@) ~bilw) 4 o 1y,
Var (§0) ()

50 (z) — E§® (z) = N;n_i(x)D 1Nx€ ijeﬁ’
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where w;(z) = N, ,_.(x)DWG~N,,(x;)/n. To verify that the Lindeberg-Feller
condition holds, it suffices to show that

s, (v9) =0<§w?> =o(Var (f0). (29)

By (15), (16) and Lemma 5.2, we have

!
win? =N

j m—i(@)DYGT Ny ()N, (1) G (DY) Ny ()
= Tr(Np—i(2)N,,_;(z) DD)G Ny ()N, ()G H(DD))
éem-iTr«D(“)’D“)G—lN ()N ()G 1)
<em—i || DY [lsoll DD |loo Tr(G™2N,,(z;)N,, (z;))
k+m
< em_i O(h™272 Z NZ (),

where

Em—i = m[%)i]{)\(x) . Ma) is the maximum eigenvalue of N,_;(z)N/ _.(z)}.
x€|0,

Jand 1 <i<m—1,0 < Ny p_i(z) <1 and

k. This implies that Y Fm N2 o(zj) < 1 and

O(h™2%=2). Hence (29) follows from Lemma 5.4

and the assumption that k/n — 0 (hn — o0), and the proof of Theorem 3.3 is

By definition, for any = € [0,1
S Nym(z) = 1, 1 <1 <
em—i < 1. Therefore w]2-n2 =

complete.

Proof of Theorems 4.1, 4.2, 4.3. By the Glivenko-Cantelli Theorem (see, e.g.,
Gaenssler and Wellner (1981)), we have maxo<,<1 |Qn(z) — Q(x)| = Op(n=1/2).
Using arguments similar to those in the proofs of Theorems 3.1, 3.2 and 3.3, the
desired results follow.

Proof of (12) of Theorem 4.4. Set
Qs ={(x1,...,2p) : mgX‘Qn(x) —Q2)| < k—ln—(l—zé)/4}’

and let 2§ be the complement of Q5. For any z € ()5, using arguments similar to
those in the proof of Theorems 3.1 and 3.2, we have

B3 (2)lz=2) — ¢ () =bi(x) + o(h™) (30)
2
Var (3 (2)a =2) = 2N, i (@) DOGH (@) (D) Nipi () o (72 ).(31)
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It follows from (30) that

1B (x)) = ¢ () = bia)]
< |B{[E( (x)|z) — 9 () — bi(2)]1a, (2)}]
+(1=ps) 199 (2) = bi(2)| + [E{E(3Y (2) ) 1o ()}
< o(h"™ " )ps + (1= ps)lg"? (&) — by(@))| + (1 — ps) max |E(G) ()[2)],

where ps = P(z € Qs). From Gaenssler and Wellner (1981), we know that

—epn(1-28)/2

1—ps < cge " for some positive constants c¢g and c7. Hence, it suffices

to show that 4 4
max |E(gY) (2)|z)] = O(n'*?). (32)

From (11),
max [B(3 (2)|)] = max [N}, _(2)D (G +n~21) " Xg(z)

<max{]| (@ + 1720 ool DY ool X 1} 119 10
<11 g llncfor) Ok +m)nh mgx{l<%§mzzvzm xj)/n}

<Nl gllrwpoyn™?,

where g(z) = (g(z1),...,9(zy))". Hence (32) holds and the proof is complete.
Proof of (13) of Theorem 4.4. Noting that

Var (3 (z)) = E{Var (3" (z)|z)} + E{E@G{" (z)|z) — E§{" ()},
it suffices to show that
0'2 ’ B N/ .
E{Var (§{ (x )Iw)}z;Nm_i(fv)D(”G_l(Q)(D(')) Ny —i(x)+o(h~*"n~1) (33)
E{E@GY) (x)|lz) — Eg{) (x)}* = o(h*™ ) 4+ h=2"1n 1), (34)

Equality (33) follows from (30) and arguments similar to those in the proof of
(12). Now let us turn to (34). By (12), (30) and (32),

E{EGY (w)|z) — Eg) (2)}2 = E{EG (o)) — < o, (@)}
+E{[B( (2)la ) O (@)og ( )}2
< o(h*" s + (1 — ){maXI2 B3 (2)|z)|}?
(h2m z) —i—(l—pa) ( 21+6)’

and (34) follows.
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