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BETA KERNEL SMOOTHERS FOR REGRESSION CURVES

Song Xi Chen

La Trobe University

Abstract: This paper proposes beta kernel smoothers for estimating curves with

compact support by employing a beta family of densities as kernels. These beta

kernel smoothers are free of boundary bias, achieve the optimal convergence rate of

n−4/5 for mean integrated squared error and always allocate non-negative weights.

In the context of regression, a comparison is made between one of the beta smoothers

and the local linear smoother. Its mean integrated squared error is comparable with

that of the local linear smoother. Situations where the beta kernel smoother has a

smaller mean integrated squared error are given. Extensions to probability density

estimation are discussed.

Key words and phrases: Beta kernels, boundary bias, local linear regression, mean

integrated square error, nonparametric regression.

1. Introduction

In the traditional kernel methods for curve estimation, it has been widely
regarded that the performance of the kernel methods depends largely on the
smoothing bandwidth, and depends very little on the form of the kernel. Most
kernels used are symmetric kernels and, once chosen, are fixed. This may be
efficient for estimating curves with unbounded supports, but not for curves which
have compact support and are discontinuous at boundary points. For curves of
this type, a fixed form of kernel leads to boundary bias.

Boundary bias is a well known problem and many authors have suggested
ways for removing it. In the context of nonparametric regression, Gasser and
Müller (1979), Müller (1991) and Müller and Wang (1994) proposed the use of
boundary kernels, while Rice (1984) used Richardson’s extrapolation to combine
two kernel estimates with different bandwidths. In density estimation, Schuster
(1985) proposed data reflection, Marron and Ruppert (1994) considered using
empirical transformations, and Jones (1993) proposed a framework of jackknife
methods for correcting boundary bias. In recent years, it has been shown by
Fan and Gijbels (1992) and Fan (1993), that in nonparametric regression the
local linear smoother is free of boundary bias and achieves the optimal rate of
convergence for mean integrated squared error. It is interesting to note that even
a local linear smoother uses a fixed kernel in its initial form, the local least-squares
regression implicitly employs different kernels at different places.
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This paper investigates kernel smoothers for curves with compact support
based on certain beta density functions. There are two unique features about
the beta kernels. One is that both the shape of the beta kernels and the amount
of smoothing vary according to the position where the curve estimation is made;
the other is that the beta kernels assign no weight outside the data support. The
beta kernel estimators respect the range of the curves as only nonnegative weights
are assigned and are free of boundary bias; that is, the order of magnitude of the
bias is not increased near the boundaries.

The idea of beta kernel smoothing was first considered in Brown and Chen
(1999). This was motivated by the Bernstein theorem in mathematical function
analysis, which says that the Bernstein polynomials associated with a continuous
function on [0, 1] converge uniformly to that function. The same rate of conver-
gence is achieved by the Bernstein polynomials throughout the entire domain and
thus there is no boundary bias. The Bernstein polynomials use a special type of
beta kernel — the binomial probability function. However, they undersmooth as
a bandwidth of order n−1/2 is implicitly used. To overcome the undersmoothing
problem, Brown and Chen (1999) proposed a kernel smoother which smooths
the Bernstein polynomials by a family of beta densities. It turns out that the
estimator does not have an enlarged bias near the boundaries and achieves the
optimal rate of convergence for mean integrated squared error. However, the
estimator applies only for regression curves with equally spaced design points.
The present paper generalizes it to arbitrary designs.

The paper is structured as follows. Section 2 introduces a beta kernel esti-
mator for regression curves. Its bias and variance are studied in Section 3, and its
mean integrated squared error and the optimal bandwidth value are considered
in Section 4. In Section 5 a modified smoother is introduced and a comparison
with the local linear smoother is made in Section 6. Some simulation results are
reported in Section 7. Extensions to probability density estimation are given in
Section 8.

2. A Beta Kernel Estimator

This paper concentrates on the properties of beta kernel smoothers of Gasser-
Müller type for regression curves. Extensions to density estimation are presented
briefly in Section 8, and more details are available in Chen (1999).

Suppose n observations y1, . . . , yn, are the responses at design points x1, . . .,
xn, within [0, 1] from the model

yi = m(xi) + εi, i = 1, . . . , n, (2.1)

where m(x) is an unknown function defined in x ∈ [0, 1] and the residuals εi are
uncorrelated random variables with zero mean and variance σ2(xi). The design
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points are generated by a probability density function f and are ordered such
that 0 ≤ x1 ≤ · · · ≤ xn ≤ 1. See Müller (1984) for details on f .

Let Kα,β denote the density function of a Beta(α,β) random variable. We
propose using

Kx/b+1,(1−x)/b+1(t) =
tx/b(1 − t)(1−x)/b I(0 ≤ t ≤ 1)

B{x/b + 1, (1 − x)/b + 1}
as the kernel to smooth at x, where B is the beta function and b is a smoothing
parameter satisfying b → 0 as n → ∞. As shown in Figure 1, the shape of kernel
Kx/b+1,(1−x)/b+1 varies according to the value of x. It is symmetric at x = 0.5,
and becomes asymmetric as x moves towards the boundary points 0 or 1. One
important feature of the beta kernels is that they assign no weight outside the
interval [0, 1].
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Figure 1. Beta kernels Kx/b+1,(1−x)/b+1(t) with b = 0.2.

The first beta kernel estimator for m at x ∈ [0, 1] is

m̂1(x) =
n∑

i=1

yi

∫ si

si−1

Kx/b+1,(1−x)/b+1(t)dt, (2.2)
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where si = 1
2 (xi +xi+1) for i = 1, . . . , n−1, s0 = 0 and sn = 1. Estimator (2.2) is

a Gasser-Müller type estimator (Gasser and Müller (1979)) but replaces a fixed
symmetric kernel by a beta kernel.

Even though the beta smoother is defined for xi ∈ [0, 1], it can be extended
to situations where the xi are confined in an interval [w1, w2] by linearly trans-
forming the design points to [0, 1].

We have been calling b the smoothing bandwidth. It should be pointed out
that the real smoothing bandwidth used at x is approximately x (1 − x) b, as
that is approximately the variance of a Beta{x/b+ 1, (1−x)/b+ 1} distribution.
So the beta kernel smoothing changes not only the shape of the kernel but also
implicitly changes the amount of smoothing according to the position where the
smoothing is made.

To convey results on the beta smoother, we assume throughout the paper
that

(i) m(2) ∈ C[0, 1], f(·) and σ2(·) obey a first order Lipschitz condition in [0, 1];
(ii) f(x) ≥ fc > 0 and σ2(x) ≤ σ2

c for all x ∈ [0, 1];
(iii) b → 0 and nb2 → ∞ as n → ∞;
(iv) the design points are fixed. (2.3)

3. Local Properties

Here we study the bias and variance of m̂1(x) at any fixed x ∈ [0, 1]. The
bias is

Bias{m̂1(x)} = E{m̂1(x)} − m(x) = In1(x) + In2(x),

where

In1(x) = E{m̂1(x)} −
∫ 1

0
m(t)Kx/b+1,(1−x)/b+1(t)dt

=
n∑

i=1

∫ si

si−1

{m(xi) − m(t)}Kx/b+1,(1−x)/b+1(t)dt,

In2(x) =
∫ 1

0
m(t)Kx/b+1,(1−x)/b+1(t)dt − m(x) = E{m(ξx)} − m(x),

and ξx is a Beta{x/b + 1, (1− x)/b + 1} random variable. It is easy to show that
In1(x) = O(n−1). A derivation, deferred until Appendix 1, shows that under the
assumptions in (2.3),

In2(x) = b(1 − 2x)m(1)(x) + 1
2bx(1 − x)m(2)(x) + o(b) (3.1)

uniformly for all x ∈ [0, 1]. Then

Bias{m̂1(x)} = b(1 − 2x)m(1)(x) + 1
2bx(1 − x)m(2)(x) + o(b) + O(n−1) (3.2)
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uniformly for all x ∈ [0, 1]. Thus, the bias is of the same order of magnitude for
all x ∈ [0, 1]. Notice that b ≈ h2, i.e., b and h2 are of the same order, where h is
a smoothing bandwidth used by other kernel smoothers.

The b(1 − 2x)m(1)(x) term will disappear from (3.2) if Kx/b,(1−x)/b, rather
than Kx/b+1,(1−x)/b+1, is used as the kernel. The reason for using Kx/b+1,(1−x)/b+1

is that it is bounded in [0, 1]. We shall return to this point when we propose a
modified beta kernel smoother in Section 5.

The variance of m̂1(x) is

Var {m̂1(x)} =
n∑

i=1

σ2(xi){
∫ si

si−1

Kx/b+1,(1−x)/b+1(t)dt}2. (3.3)

A derivation, deferred until Appendix 2, shows that under assumptions in (2.3),
n∑

i=1

σ2(xi){
∫ si

si−1

Kx/b+1,(1−x)/b+1(t)dt}2 = n−1Ab(x){σ2(x)f−1(x) + O(b + n−1)}
(3.4)

uniformly for x ∈ [0, 1], where

Ab(x) =
B{2x/b + 1, 2(1 − x)/b + 1}
B2{x/b + 1, (1 − x)/b + 1} .

A derivation, deferred until Appendix 3, shows that for small b,

Ab(x) ≤ b (b−1 + 1)3/2

2
√

π
√

x(1 − x)
for any x ∈ [0, 1] (3.5)

and

Ab(x) ∼




b−1/2

2
√

π
√

x(1−x)
if x/b and (1 − x)/b → ∞

Γ(2κ+1)
22κ+1Γ2(κ+1)b

−1 if x/b or (1 − x)/b → κ,

where κ is a nonnegative constant. Thus,

Var {m̂1(x)} =




σ2(x)n−1 b−1/2

2
√

π
√

x(1−x) f(x)
{1 + O(n−1)} if x/b and (1 − x)/b → ∞

σ2(x)Γ(2κ+1)n−1b−1

22κ+1Γ2(κ+1)f(x)
{1 + O(n−1)} if x/b or (1 − x)/b → κ.

(3.6)
In particular,

Var {m̂1(0)} =
σ2(0)n−1b−1

2f(0)
{1 + O(n−1)}.

The results in (3.6) show that the variance is of O(n−1b−1/2) within the
interior of [0, 1], but is of a larger order, O(n−1b−1), in areas near the boundaries.
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However, since b ≈ h2, the size of the areas is of order b and is one order of
magnitude smaller than h, the size of boundary bias areas. This makes the
contribution of the variance in the boundary areas to the mean integrated squared
error negligible, as shown in the next section.

4. Global Properties

From (3.2) the integrated squared bias of m̂1 is

b2
∫ 1

0
{(1 − 2x)m(1)(x) + 1

2x(1 − x)m(2)(x)}2dx + o(b2 + n−1).

Although Var {m̂1(x)} is O(n−1b−1) in areas near the boundaries, the inte-
grated variance is still O(n−1b−1/2). To appreciate why, we note that (3.4) and
the upper bound in (3.5) mean that

∫ 1

0
Var {m̂1(x)}dx ≤ 1

2
√

π
n−1b(b−1 + 1)3/2

∫ 1
0 σ2(x)f−1(x){x(1 − x)}−1/2dx

≤
√

π
2 σ2

cf
−1
c n−1b(b−1 + 1)3/2,

where σ2
c and fc are the upper and lower bound of σ2(x) and f(x) respectively,

as assumed in (2.3).
In fact (3.6) means that for any δ = b1−ε where 0 < ε < 1/2,

∫ 1

0
Var {m̂1(x)}dx =

∫ δ

0
+

∫ 1−δ

δ
+

∫ 1

1−δ
Var {m̂1(x)}dx

=
∫ 1−δ

δ
Var {m̂1(x)}dx + O(n−1b−ε)

= 1
2
√

π
n−1b−1/2

∫ 1
0

σ2(x)

f(x)
√

x(1−x)
dx + o(n−1b−1/2).

So the mean integrated squared error is

MISE{m̂1(x)} = b2
∫ 1

0
{(1 − 2x)m(1)(x) + 1

2x(1 − x)m(2)(x)}2dx

+ 1
2
√

π
n−1b−1/2

∫ 1
0

σ2(x)

f(x)
√

x(1−x)
dx + o(b2 + n−1b−1/2). (4.1)

The bandwidth which minimises the leading terms in (4.1) is

b�
1 =

[∫ 1

0

2−3π−1/2σ2(x)
f(x)

√
x(1 − x)

dx

]2/5[∫ 1

0
{(1 − 2x)m(1)(x)

+1
2x(1 − x)m(2)(x)}2dx

]−2/5

n−2/5, (4.2)
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which is of order n−2/5. Thus, b�
1 ≈ h2 where h is the optimal bandwidth used

by other kernel smoothers.
When the variance is a constant function and the design points are uniformly

distributed (that is, σ2(x) = σ2 and f(x) = 1),

MISE{m̂1(x)} = b2
∫ 1

0
{(1 − 2x)m(1)(x) + 1

2x(1 − x)m(2)(x)}2dx

+
√

π
2 n−1b−1/2 + o(b2 + n−1b−1/2)

and

b�
1 = 2−6/5π1/5 σ4/5

[∫ 1

0
{(1 − 2x)m(1)(x) + 1

2x(1 − x)m(2)(x)}2dx

]−2/5

n−2/5.

5. A Modified Estimator

Equations (4.1) and (4.2) imply that the beta smoother m̂1 achieves the
O(n−4/5) optimal rate of convergence for mean integrated squared error. It also
has a simple form. However, we see from (3.2) and (4.1) that m(1) appears in
the bias and ultimately in the mean integrated squared error. This makes the
mean integrated squared error complicated and a comparison with other kernel
smoothers, especially the local linear smoother, difficult.

One way to remove m(1) is to modify the beta kernels. The appearance of
m(1) in the bias of m̂1 arises because x is the mode and not the mean of the beta
kernel Kx/b+1,(1−x)/b+1. However, x is the mean of Kx/b,(1−x)/b. This leads us to
propose the following modified beta kernels

K�
x,b(t) =




Kx/b,(1−x)/b, if x ∈ (2b, 1 − 2b) ,

Kρ(x,b),(1−x)/b(t), if x ∈ [0, 2b],
Kx/b,ρ(1−x,b)(t), if x ∈ [1 − 2b, 1],

(5.1)

where ρ(x, b) = 2b2 + 2.5 − √
4b4 + 6b2 + 2.25 − x2 − x/b. Note that ρ(x, b) is

monotonic increasing in [0, 2b], ρ(0, b) = 1, and y = x/b serves as a tangent line
at x = 2b. The arrangement for x in the boundary areas is to keep the kernels
bounded.

The modified beta kernel estimator is

m̂2(x) =
n∑

i=1

yi

∫ si

si−1

K�
x,b(t)dt.

By slightly modifying the derivation in Appendix 1, it can be shown that

Bias{m̂2(x)} =




1
2x(1 − x)m(2)(x)b + O(b2), if x ∈ (b, 1 − b) ,

ξ(x, b)m(1)(x)b + O(b2), if x ∈ [0, 2b],
−ξ(1 − x, b)m(1)(x)b + O(b2), if x ∈ [1 − 2b, 1],
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where ξ(x, b) = {(1 − x){ρ(x, b) − x/b}/{1 + bρ(x, b) − x} is a bounded function
for x ∈ [0, 2b]. The integrated square bias is

1
4b2

∫ 1
0 {x(1 − x)m(2)(x)}2dx + o(b2 + n−1).

As promised, m(1) has disappeared. As x is still not the mean of the boundary
beta kernels, m(1) still appears but m(2) disappears in the point-wise bias when
x is close to 0 or 1.

A derivation like that at (3.6) shows that, for any finite κ, when b → 0,

Var {m̂2(x)}=




σ(x)2n−1 b−1/2

2
√

π
√

x(1−x) f(x)
{1+O(n−1)}, if x/band (1−x)/b→∞,

1
2σ2(x)(1−x)n−1b−1f−1(x)+O(n−1), if x/b → κ ,
1
2σ2(x)xn−1b−1f−1(x) + O(n−1), if (1 − x)/b → κ.

The mean integrated squared error is

MISE{m̂2(x)} = b2
∫ 1

0
{1

2x(1 − x)m(2)(x)}2dx + 1
2
√

π
n−1b−1/2

∫ 1
0

σ2(x)

f(x)
√

x(1−x)
dx

+ o(b2 + b−1/2n−1). (5.2)

The optimal bandwidth is

b�
2 = 2−2/5 π−1/5

[∫ 1

0

σ2(x)
f(x)

√
x(1 − x)

dx

]2/5 [∫ 1

0
{x(1−x)m(2)(x)}2dx

]−2/5

n−2/5.

(5.3)
Substituting the optimal bandwidth in (5.3) into (5.2), we have the optimal mean
integrated squared error

MISE�=5
4

(
1

2
√

π

)4/5[∫ 1
0

σ2(x)

f(x)
√

x(1−x)
dx

]4/5[∫ 1
0 x2(1−x)2{m(2)(x)}2dx

]1/5

n−4/5

+o(n−4/5). (5.4)

We cannot use (5.3) to choose b in practice because of the unknown derivative
of m. Cross validation, the details of which are available in Müller (1988) and
Härdle (1990), can be used to choose the bandwidth.

Comparing the two beta estimators, we find m̂2 has simpler forms for its bias
and mean integrated squared error while the definition of m̂1 is simpler. Both
estimators have the same optimal mean integrated squared error of O(n−4/5).
However, for any function m, if both

∫ 1
0 {m(1)(x)}2dx and

∫ 1
0 {m(2)(x)}2dx are

finite it may be shown, using integration by parts, that
∫ 1

0

{
(1−2x)m(1)(x)+ 1

2x(1−x)m(2)(x)
}2

dx ≥ ∫ 1
0 {1

2x(1−x)m(2)(x)}2dx. (5.5)
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This means that m̂2 has smaller integrated bias and mean integrated error than
m̂1, and is thus recommeded.

6. Comparison with the Local Linear Smoother

In this section we compare the performance of the beta kernel smoother m̂2

with the local linear smoother in terms of mean squared error and mean inte-
grated squared error respectively. The local linear smoother denoted as m̂ll is the
one considered in Fan (1993), with a kernel K which is a density function itself.
To make the two estimators comparable we transform b to h, the bandwidth of
the local linear smoother, using b = h2.

We first compare at x in the interior of [0, 1], where both x/b and (1−x)/b →
∞. In this case the optimal mean squared errors are, respectively,

MSE�{m̂2(x)} = 5
4{ σ2(x)√

4πf(x)
}4/5{m(2)(x)}2/5n−4/5 and

MSE�{m̂ll(x)} = 5
4{σ2(x)R(K)

f(x) }4/5{σ2
Km(2)(x)}2/5n−4/5,

where σ2
K =

∫
u2K(u)du and R(K) =

∫
K2(u)du.

The relative efficiency of m̂2 to m̂ll is

MSE�{m̂ll(x)}
MSE�{m̂2(x)} = {

√
4πR(K)σK}4/5.

This ratio is 1 if K is the Gaussian kernel and 0.951 if K is the optimal Epanech-
nikov kernel. Thus, both smoothers have almost the same performance in the
interior.

In the boundary area, the variance of m̂2(x) is of order n−1h−2 whereas
the variance of m̂ll has an increased coefficient while maintaining its order of
n−1h−1, as reported by Fan and Gijbels (1992). We plot in Figure 2 the variance
coefficient functions for both the beta and the local linear smoothers for four
levels of bandwidths. The variance coefficient function for the beta smoother is
Vb(x) =

√
bAb(x), whereas that for the local linear smoother is Vll(x) = v(x),

defined in Fan and Gijbels (1992, p.2015) using the Epanechnikov kernel. The
reason for using Vb(x) and Vll(x) is that they are the different coefficients of the
dominant variance terms, apart from common factors σ2(x)f−1(x)n−1. To make
the amount of smoothing used by the two smoothers of the same scale we let
h = b1/2. We see that, when the bandwidth is at a higher level in plots (1), (2)
and (3), the beta smoother has smaller variance coefficients. It is only when b

is less than 0.00613 that the beta smoother starts to have larger variance at the
boundaries. The sample size corresponding to a b of 0.00613 depends on m(·),
σ2(·) and f(·). If m(x) = exp(−ax2), σ(x) ≡ 0.05 and f(x) = 1, the sample size
is n = 140 for a = 4, and n = 400 for a = 1. If the level of noise is increased
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from σ = 0.05 to σ = 0.1, the sample sizes will be approximately 1140 and 1600
respectively. Therefore, in general terms, the beta smoother has a worse variance
near the boundaries only when the sample size is very large.
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Figure 2. Variance coefficient functions for the beta kernel (solid lines) and
the local linear (dashed lines) smoothers.

Next we compare mean integrated squared errors of the two smoothers. From
(5.4) and the similar expression for m̂ll in Fan (1993), we have

r(m̂2, m̂ll) =
MISE�{m̂2(x)}
MISE�{m̂ll(x)}

=
[(
√

4π)−1
∫ 1
0

σ2(x)

f(x)
√

x(1−x)
dx

R(K)σK
∫ 1
0

σ2(x)
f(x) dx

]4/5[∫ 1
0 x2(1 − x)2{m(2)(x)}2dx∫ 1

0 {m(2)(x)}2dx

]1/5

.

The value of this ratio is quite difficult to assess. It is easier to assume f(t) = 1
and σ2(x) is a constant function, which means equally spaced design points. In
this case,

r(m̂2, m̂ll) = {
√

π

2R(K)σK
}4/5

[∫ 1
0 x2(1 − x)2{m(2)(x)}2dx∫ 1

0 {m(2)(x)}2dx

]1/5

. (6.1)

The first factor on the right is π4/5 for the the Epanechnikov kernel and is close to
π4/5 for other standard kernels, including the biweight and the Gaussian kernels.
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The second factor is less than 1 depending on m(2). There are situations when
r(m̂2, m̂ll) < 1, which means that m̂2 has a smaller mean integrated squared
error than m̂ll. Convenient examples are m(x) = Cxp or m(x) = C(1 − x)p for
p ≥ 7, where C is any constant.

7. Empirical Results

The beta kernel smoothers use only non-negative weights. A good feature of
using non-negative weights is that the curve estimates respect the range of the
data. Let m(x) be an unknown probability function and Yi be binary 0 and 1
response variables. The beta kernel estimates for m(x) then always lie in [0, 1]
whereas the local linear smoother may give values outside the range, so that the
logistic transform is needed to make it range respecting. In Figure 3, we display
five estimated curves by applying m̂1 and local linear smoothers to five simulated
binary samples of size 40 generated from Bin{1,m(xi)} for equally spaced design
points in [0,1] and m(x) = exp(−4x2). The bandwidths used were b = 0.089 and
h = 0.254; both were global optimum. We see two of the local linear estimates
were outside [0, 1] near x = 0 and x = 1 respectively. The beta estimates were
all within [0, 1]. Apart from that, the two sets of estimates were quite similar.
We notice that the variation among the estimates was small near the boundaries
and large in the middle.
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Figure 3. Five estimated curves for simulated Yi ∼ Bin{1, m(xi)} where
m(x) = exp(−4x2).

Next we present results from simulation studies designed to investigate the
performance of the proposed beta kernel estimators and compare them with the
local linear smoother. The regression curves considered are

m(x) = xp, (7.1)

where p = 4 and p = 10 respectively. It can easily be shown from the comparison
made in Section 7 that the local linear smoother has a smaller optimal mean



84 SONG XI CHEN

integrated squared error than m̂2 when p = 4, while the reverse holds when
p = 10. The aim of the simulation study is to verify these things. We would also
like to observe the performance of m̂1.

The fixed design points, xi, are taken at equally spaced points in [0, 1] and
the εi are uncorrelated normal random variables with zero mean and standard
deviation σ = 0.05. The biweight kernel

K(u) =
15
16

(1 − u2)2I(|u| < 1)

is used by the local linear smoother.
Table 1 contains the optimal average integrated squared errors and their stan-

dard errors for the estimators based on 1000 simulations. For each simulation,
optimal smoothing bandwidths, which minimize the integrated squared errors
by the golden section search algorithm described in Press, Flannery, Teukol-
sky and Vetterling (1992), are used. The optimal integrated squared errors are
determined by using the optimal bandwidths. To confirm the theoretical expan-
sions for the mean integrated squared errors, theoretical optimal mean integrated
squared errors derived from (4.1) and (4.2), (5.4) and from Fan (1993) are also
given for the three smoothers.

Table 1. Simulated optimal average integrated squared errors and their stan-
dard errors for beta and local linear smoothers with σ = 0.05. The columns
headed “predic.” and “real” give 103 times the optimal mean square errors
based on the theoretical expansion and the direct mean square error cal-
culation respectively. The standard errors, multiplied by 103, are given in
parentheses.

(a) m(x) = x10

n m̂1 m̂2 m̂ll

predic. real predic. real predic. real
20 1.692 0.953 (0.45) 0.986 0.934 (0.45) 1.166 1.027 (0.48)
40 0.972 0.668 (0.29) 0.566 0.564 (0.24) 0.670 0.603 (0.26)
60 0.703 0.500 (0.19) 0.410 0.414 (0.17) 0.484 0.435 (0.18)
100 0.467 0.343 (0.13) 0.272 0.278 (0.11) 0.322 0.292(0.17)
140 0.357 0.261 (0.09) 0.208 0.209 (0.08) 0.246 0.222 (0.09)
180 0.292 0.222 (0.08) 0.170 0.175 (0.06) 0.201 0.185 (0.07)

(b) m(x) = x4

n m̂1 m̂2 m̂ll

predic. real predic. real predic. real
20 1.143 0.904 (0.46) 0.912 0.725 (0.39) 0.737 0.665 (0.39)
40 0.657 0.539 (0.25) 0.524 0.452 (0.20) 0.423 0.373 (0.21)
60 0.475 0.409 (0.18) 0.379 0.329 (0.15) 0.306 0.281 (0.15)
100 0.316 0.287 (0.11) 0.252 0.219 (0.10) 0.203 0.187 (0.09)
140 0.241 0.218 (0.09) 0.192 0.169 (0.07) 0.155 0.143 (0.07)
180 0.197 0.165 (0.06) 0.157 0.136 (0.06) 0.127 0.116 (0.06)
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The results in Table 1 show that m̂2 had smaller simulated average squared
errors than m̂ll when m(x) = x10 for all the sample sizes considered, while the
reverse holds when m(x) = x4. This confirms the theoretical comparison given in
Section 6. The simulated average squared errors of the three smoothers appeared
to converge to the theoretical mean integrated squared errors as n increased,
which confirmed the expansions developed in Sections 4 and 5. The first beta
kernel smoother m̂1 had larger simulated squared errors than m̂2 in both tables.
However, this was not surprising in view of (5.5).

8. Extensions to Density Estimation

Estimators for density functions using the beta kernels are given in this
section. Let X1, . . . ,Xn be a random sample from a distribution with an unknown
probability density function f having compact support [0, 1]. We assume f (2) ∈
C[0, 1] and the conditions (ii) and (iii) in (2.3).

The analogues of m̂1 and m̂2 in density estimation are

f̂1(x) = n−1
n∑

i=1

Kx/b+1,(1−x)/b+1(Xi) and f̂2(x) = n−1
n∑

I=1

K�
x,b(Xi).

Similar to (3.2) and the bias of m̂2 given in Section 5, we have

Bias{f̂1(x)} = {(1 − 2x)f (1)(x) + 1
2x(1 − x)f (2)(x)}b + O(b2) and

Bias{f̂2(x)} =




1
2x(1 − x)f (2)(x)b + O(b2), if x ∈ [b, 1 − 2b],
ξ(x)bf (1)(x) + O(b2), if x ∈ [0, 2b),
−ξ(1 − x)bf (1)(x) + O(b2), if x ∈ (1 − 2b, 1],

where the remainder terms are uniformly O(b2) for x ∈ [0, 1]. The biases are of
O(b) throughout [0, 1], indicating that the estimators are free of boundary bias.

Using a method similar to, but slightly easier than, that for deriving (3.6)
we have

Var {f̂1(x)}=




1
2
√

π
n−1b−1/2

{x(1−x)}1/2 {f(x) + O(n−1)} if x/b and (1 − x)/b → ∞;
Γ(2κ+1)

22κ+1Γ2(κ+1)n
−1b−1{f(x) + O(n−1)} if x/b or (1 − x)/b → κ.

(8.1)
The variance of f̂2 can be worked out in a similar fashion. The only difference
is that the multiplier in front of n−1b−1 in the case that x/b or (1 − x)/b → κ

has a slightly different form. The mean integrated square errors and the optimal
bandwidths for both estimators can be obtained in a similar fashion to those of
the regression estimators. Simulation studies which compare the performance of
the beta density estimators with some of the local linear density estimators are
reported in Chen (1999).
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Appendix

Derivation of (3.1).

Let µξx and σ2
ξx

be the mean and the variance of ξx respectively. From
Johnson, Kotz and Balakrishnan (1994) it may be shown that there exists a
constant M such that

µξx = x + b(1 − 2x) + ∆1(x) and (A.1)

σ2
ξx

= bx(1 − x) + ∆2(x), (A.2)

where ∆j(x) ≤ Mb2 for j = 1 and 2. Hence, the remainder terms in the above
expansions for µξx and σ2

ξx
are uniformly O(b2).

A Taylor expansion gives

m(ξx) = m(x) + m(1)(x)(ξx − x) + 1
2m(2)(x)(ξx − x)2 + r(ξx − x), (A.3)

where the remainder term

r(ξx − x) =
∫ ξx−x

0
(ξx − x − t){m(2)(x + t) − m(2)(x)}dt.

Let g be the density of (ξx − x)/
√

b. Then

E{r(ξx − x)} =
∫

g(y)dy

∫ √
by

0
(
√

by − t){m(2)(x + t) − m(2)(x)}dt

= b

∫
g(y)dy

∫ y

0
(y − t){m(2)(x +

√
bt) − m(2)(x)}dt.

As m(2) is uniformly continuous in [0, 1], by the Dominated Convergence Theorem
the integral on the right hand side converges uniformly to zero.

Then taking the expectation of both sides of (A.3), and from (A.1) and (A.2),
we have

sup
x∈[0,1]

∣∣∣E{m(ξx)} − b(1 − 2x)m(1)(x) − 1
2bx(1 − x)m(2)(x)

∣∣∣ ≤ ε1b,

where ε1 → 0 uniformly for all x ∈ [0, 1] as n → ∞. Thus, we obtain (3.1).

Derivation of (3.5).

Let R(z) =
√

2πe−zzz+1/2/Γ(z + 1) for z ≥ 0. According to Lemma 3 of
Brown and Chen (1998), R(z) converges to 1 as z → ∞ and R(z) < 1 for any
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z > 0. Taking the derivative on R(z) and using a well known expansion of
Γ(1)(z + 1)/Γ(z + 1), we can prove that R(z) is monotonic increasing.

Write Ab(x) in terms of Gamma functions,

Ab(x) =
Γ(2x/b + 1)Γ{2(1 − x)/b + 1}Γ2(1/b + 2)
Γ2(x/b + 1)Γ2{(1 − x)/b + 1}Γ(2/b + 2)

. (A.4)

Expressing the gamma functions in terms of their Stirling’s formulae and R-
functions, we have

Ab(x) =
e−1

√
4π

b(b−1 + 1)3/2{1 + (2b−1 + 5/2)−1}2/b+3

√
x(1 − x)

S(b, x), (A.5)

where

S(b, x) =
R2(x/b)R2{(1 − x)/b}R(2/b + 1)
R(2x/b)R{2(1 − x)/b}R2(1/b + 1)

. (A.6)

As R is monotonic increasing and R(z) < 1 for all z ≥ 0,

S(b, x) ≤ R(2/b + 1)/R2(1/b + 1) → 1 as b → 0. (A.7)

The upper bound for Ab(x) can be obtained from (A.5), (A.7) and the fact that
{1 + (2b−1 + 5/2)−1}2/b+3 → e as b → 0.

Next we establish the convergence results. If x/b and (1 − x)/b → ∞,
S(b, x) → 1 because each R-function in (A.6) converges to 1 as b → 0. Thus,
Ab(x) converges to its upper bound.

To prove the case when x/b → κ, where κ is a nonnegative constant, we
notice from (A.4) that

Ab(x) ∼ Γ(2κ + 1)R2{(1 − x)/b}R(2/b + 1)b−1/2(b−1 + 1)1/2(1 + b)2/b+3/2

Γ2(κ + 1)R{2(1 − x)/b}R2(1/b + 1)21+2κe (1 − x)1/2(1 + b/2)2/b+3/2

∼ Γ(2κ + 1)
21+2κΓ2(κ + 1)

b−1

as x → 0 when x/b → κ. The proof for the case (1 − x)/b → 0 is similar.

Derivation of (3.4).

Define Jn =
∑n

i=1 σ2(xi)w2
i (x) where wi(x) =

∫ si
si−1

Kx/b+1,(1−x)/b+1(t)dt.

According to the Mean Value Theorem, there exist ti and θi in [si−1, si] such
that

Jn =
n∑

i=1

σ2(xi)(si − si−1)2K2
x/b+1,(1−x)/b+1(ti).

From Müller (1988, p.27f) or Jennen-Steinmetz and Gasser (1988), si − si−1 =
{nf(ξi)}−1 + O(n−2) for some ξi ∈ [xi−1, xi] and σ2(xi) = σ2(ti)+ O(n−1) under
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the assumptions (i) and (ii) in (2.3). As f obeys the Lipschitz condition and
si − si−1 = O(n−1), we have f−1(ξi) = f−1(ti) + O(n−1). Thus,

Jn =
n∑

i=1

[σ2(ti){nf(ti)}−1 + O(n−2)](si − si−1)K2
x/b+1,(1−x)/b+1(ti)

= n−1Pn1 + O(n−2Pn2), (A.8)

where Pn1 =
∑n

i=1(si−si−1)σ2(ti)f−1(ti)K2
x/b+1,(1−x)/b+1(ti) and Pn2 =

∑n
i=1(si−

si−1)K2
x/b+1,(1−x)/b+1(ti) are the Riemann sums of

∫ 1
0 σ2(t)f−1(t)K2

x/b+1,(1−x)/b+1

(t)dt and
∫ 1
0 f−1(t)K2

x/b+1,(1−x)/b+1(t)dt = Ab(x), respectively.
We want to prove that uniformly, as n → ∞,

n−1Pn1 = n−1
∫ 1

0
σ2(t)f−1(t)K2

x/b+1,(1−x)/b+1(t)dt{1 + o(1)} and (A.9)

n−1Pn2 = n−1Ab(x){1 + o(1)}. (A.10)

We give a proof only for (A.10) as that for (A.9) is similar. Note that Ab(x) =
n−1

∫ 1
0 K2

x/b+1,(1−x)/b+1(t)dt. From the Mean Value Theorem, there exist θi ∈
[si−1, si] such that

|n−1Pn2 − n−1
∫ 1

0
K2

x/b+1,(1−x)/b+1(t)dt| = n−1|
n∑

i=1

(si − si−1)∆i(x, b)|,

where ∆i(x, b) = K2
x/b+1,(1−x)/b+1(ti) − K2

x/b+1,(1−x)/b+1(θi). Only the proof of
(A.10) for x ≤ 1/2 is given as x > 1/2 is covered due to the symmetry of the
beta kernels with respect to x.

Let w(x) = Kx/b+1,(1−x)/b+1(x). As x is the mode of the beta kernel,

Kx/b+1,(1−x)/b+1(t) ≤ w(x) for any t ∈ [0, 1].

As w(x) is symmetric about 1/2 and is monotonic decreasing for x ∈ [0, 1/2],

Kx/b+1,(1−x)/b+1(t) ≤ w(0) = b−1(1 + b) for any t, x ∈ [0, 1]. (A.11)

A tighter upper bound is

Kx/b+1,(1−x)/b+1(t) ≤ C1b
−1/2{x(1 − x)}−1/2 (A.12)

which can be derived using Stirling’s formula and properties of the R-function.
Throughout the proof Cj denotes some positive constant.

The first case considered is x ≤ b1−ε for some 0 < ε < 1/2. Notice that Tx,b =
n−1 ∑n

i=1(si − si−1)∆i(x, b) can be partitioned into three sums, say I1,x,b, I2,x,b
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and I3,x,b, where for δ = 1/2 + ε,

I1,x,b = n−1
∑

si<bδ

(si − si−1)∆i(x, b),

I2,x,b = n−1
∑

bδ≤si−1si≤1−bδ

(si − si−1)∆i(x, b) and

I3,x,b = n−1
∑

si−1>1−bδ

(si − si−1)∆i(x, b).

From (A.11) and the upper bound of Ab(x) given in (3.5), we have for j = 1
and j = 3,

|Ij,x,b| ≤ O(1)n−1bδ−2 ≤ O(1)n−1b−1/2{x(1 − x)}−1/2bδ−1/2−ε/2 = o{n−1Ab(x)}
(A.13)

uniformly for any x ≤ b1−ε as δ = 1/2+ε. Let vx(t) = (t/x)x{(1− t)/(1−x)}1−x.
Using a derivation similar to that in (A.12) and the fact that

|v1/b
x (ti) − v1/b

x (θi)| ≤ C2b
−1|vx(ti) − vx(θi)|

as vx(t) ≤ 1, we have

|Kx/b+1,(1−x)/b+1(ti)−Kx/b+1,(1−x)/b+1(θi)|≤C3b
−3/2{x(1−x)}−1/2|vx(ti)−vx(θi)|.

The derivative of vx(t) with respect to t is

v(1)
x (t) = {t/(1 − t)}x{(1 − x)/x}x(x − t)/{t(1 − x)}.

Note that {(1−x)/x}x ≤ 1.5 and t/(1−t) is monotonic increasing in [0, 1]. Thus,
for t ∈ [bδ, 1 − bδ] and x ≤ b1−ε,

|v(1)
x (t)| ≤ 3b−δx(x/t + 1) ≤ 3b−δx+1−ε−δ + 3 ≤ 4

as limb→0 b−δb1−ε+1/2 = 0. This means that vx(t) has bounded first derivative for
t ∈ [bδ, 1 − bδ] . Hence,

|Kx/b+1,(1−x)/b+1(ti) − Kx/b+1,(1−x)/b+1(θi)| ≤ C4b
−3/2{x(1 − x)}−1/2|si − si−1|.

(A.14)
Using (A.11) and (A.14),

|I2,x,b| ≤ C5n
−2b−5/2{x(1 − x)}−1/2 = o{n−1Ab(x)}

uniformly since nb2 → ∞, as assumed in (2.3). This completes the proof for the
case x ≤ b1−ε.
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The second case is b1−ε < x ≤ 1/2. The derivative of the beta kernel with
respect to t is

K
(1)
x/b+1,(1−x)/b+1(t) = b−1(1 + b){Kx/b,(1−x)/b+1(t) − Kx/b+1,(1−x)/b(t)}.

As x/b → ∞ and (1 − x)/b → ∞ in this case, we have a situation similar to
(A.11):

|K(1)
x/b+1,(1−x)/b+1(t)| ≤ C6b

−2. (A.15)

From the Mean Value Theorem,

|Tx,b| = 2n−1|
∑

(si − si−1)Kx/b+1,(1−x)/b+1(t
′
i)K

(1)
x/b+1,(1−x)/b+1(t

′
i)(θi − ti)|

where t
′
i ∈ (ti, θi). From (A.12) and (A.15),

|Tx,b| ≤ C7n
−2b−5/2{x(1 − x)}−1/2 = o{n−1Ab(x)}

uniformly for b1−ε < x ≤ 1/2. Thus, the proof of (A.10) is complete.
Some algebra shows that

∫ 1

0
σ2(t)f−1(t)K2

x/b+1,(1−x)/b+1(t)dt = Ab(x)E{σ2(γx)f−1(γx)},

where γx is the Beta random variable up to the constant Ab(x). Using the same
method as in Section 9.1, it may be shown that

∫ 1

0
f−1(t)K2

x/b+1,(1−x)/b+1(t)dt = Ab(x){σ2(x)f−1(x) + O(b)}. (A.16)

Then, (3.4) can be established by combining (A.9), (A.10) and (A.16).
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