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Abstract: We describe methods for estimating the regression function nonparamet-

rically, and for estimating the variance components in a simple variance component

model which is sometimes used for repeated measures data or data with a simple

clustered structure. We consider a number of different ways of estimating the re-

gression function. The main results are that the simple pooled estimator which

treats the data as independent performs very well asymptotically, but that we can

construct estimators which perform better asymptotically in some circumstances.

The local linear version of the quasi-likelihood estimator is supposed to exploit

the covariance structure of the model but does not in fact do so, asymptotically

performing worse than the simple pooled estimator.
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1. Introduction

In this paper, we consider the semiparametric model

Yij = αi + m(Xij) + εij, i = 1, . . . , n, j = 1, . . . , J, (1)

where αi and εij are independent mean zero random variables with variances
σ2

α > 0 and σ2
ε > 0, respectively, and m(·) is an unknown smooth function. Let

Yi = (Yi1, . . . , YiJ)t, Xi = (Xi1, . . . ,XiJ )t, and m(Xi) = {m(Xi1), . . . ,m(XiJ )}t.
The model implies that the Yi are independent with E(Yi|Xi) = m(Xi) and,
if eJ = (1, . . . , 1)t is the J-vector of ones, cov(Yi|Xi) = Σ = σ2

αeJet
J + σ2

ε I.
We address the general problem of how, when J is fixed and typically small,
to estimate the function m(·) nonparametrically and, at the same time, how to
estimate the variances σ2

α and σ2
ε .

We will show in Section 5 that the variance components (σ2
α, σ2

ε ) can be es-
timated at the parametric rate OP (n−1/2) and thus can effectively be treated as
known for the purpose of developing and analysing estimators of m(·). We there-
fore treat both variances as known for our theoretical investigation in Sections 2
- 4. For definiteness, we focus on the use of local linear kernel smoothing. Where
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local linear kernel smoothing yields surprising results (Section 3), we compare
these results with results obtained using kernel (local average kernel smoothing)
and local quadratic kernel smoothing.

In Section 2, we investigate two simple approaches to the problem of estimat-
ing m(x0) at a fixed point x0. The first, which we call pooled estimation, ignores
the dependence structure in the model (1) and simply fits a single nonparamet-
ric regression model (with a bandwidth depending on x0 but not j) through all
the data. The second approach, which we call component estimation, involves
fitting separate nonparametric regression models relating the jth component of
Y to the jth component of X (allowing different local bandwidths at x0 for each
component, j = 1, . . . , J) and then combining these estimators to produce an
overall estimator of the common regression function m(x0). Note that the ap-
proach of fitting separate nonparametric regression models relating Yi to Xi for
i = 1, . . . , n and then combining these n estimators is not available here because
J is small and fixed.

Pooled estimation has the advantage of simplicity, since only one regression
fit is required. Component estimation requires J regression fits and may be
adversely affected by boundary effects: if the support of the components of X
depends on j, the components estimators may end up combining estimators from
components affected by boundary effects with estimators from components un-
affected by them. However, we show here that for local linear kernel estimation,
pooled estimation is asymptotically equivalent to the optimal linear combination
of the component estimators. The property on which this result depends is that
for local polynomial kernel regression, the estimators of the component functions
are asymptotically independent. The well-known correspondence between local
polynomial kernel regression with local bandwidths and local polynomial near-
est neighbor (loess) regression suggests that the same asymptotic independence
results hold for the latter.

Severini and Staniswalis (1994) introduced quasi-likelihood estimation for
so-called partially linear models, which consist of a linear parametric component,
a nonparametric component, and a general covariance structure. Hence model
(1) is a simple special case of a partially linear model. We discuss quasi-likelihood
estimation in the context of model (1) in Section 3. Severini and Staniswalis focus
their analysis on the problem of estimating and deriving asymptotic results for
estimators of the parameters of the parametric component of a partially linear
model, while we derive asymptotic results for the estimator of the nonparamet-
ric component based on local polynomial estimators restricting, however, our
attention to simpler models like (1). Since the calculations yield a complicated
expression for the asymptotic variance, preventing direct comparisons of esti-
mation methods, we explore in detail the case of independent and identically
distributed explanatory variables X. In this case, the asymptotic variance of the
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locally linear quasi-likelihood estimator is larger than that of the pooled esti-
mator. We found this result surprising and so explored the properties of kernel
and local quadratic kernel smoothing in quasi-likelihood estimation. We found
that (i) the asymptotic variance of the locally linear quasi-likelihood estimator
is even larger than that of a (locally averaged) kernel quasi-likelihood estimator
(without the bias necessarily being smaller) and (ii) the asymptotic variance of
a locally quadratic quasi-likelihood estimator is of a different order than that
of the locally linear quasi-likelihood estimator, namely of order OP

{
(nh5)−1)

}
.

These results show that the quasi-likelihood method does not make proper use
of the covariance structure for estimating the nonparametric component. The
increase in the size of the variance of the locally linear quasi-likelihood estimator
compared to that of the pooled estimator is caused by the off-diagonal elements
of the inverse covariance matrix. In Section 3 we also show that a modified
version of the quasi-likelihood estimator in which the inverse covariance matrix
is replaced by the diagonal matrix with the diagonal of the inverse covariance
matrix on its diagonal, results in an estimator which is asymptotically equivalent
to the pooled estimator.

Although the pooled estimator is the (asymptotically) best estimator we have
considered so far and is easy to apply, it makes no use of the covariance structure
in the components of Y and therefore ought to be capable of being improved
upon. Because of the local nature of nonparametric regression, constructing an
estimator which accounts for the covariance structure and improves upon the
pooled estimator is a surprisingly difficult task (cf. Section 3). In Section 4
we propose a two-step estimator. The intuition for it is very simple: in model
(1), multiply both sides of the model by the square-root of the inverse covariance
matrix and rearrange terms so that we have “expression”= m(Xi)+ξ

i
, where the

ξij are now independent and identically distributed. The “expression” depends
on m(Xij) which we estimate by the pooled estimator. The two-step estimator
has a smaller asymptotic variance than the pooled estimator and an asymptotic
bias which can be smaller than the pooled estimator.

We require the following assumptions.
C-1 K(·) is a symmetric, compactly supported, bounded kernel density function

with unit variance and define Kh(v) = h−1K(v/h), with bandwidth h. Let
µ(r) =

∫
zrK(z)dz and γ(r) =

∫
zrK2(z)dz < ∞, r = 1, 2, with γ(0) > 0.

C-2 h → 0 as n → ∞ such that nh → ∞.
C-3 m(·) has continuous second derivatives.
C-4 Xi are independent and identically distributed, x0 is an interior point of the

support of the distribution of Xij , the density of Xij is twice continuously
differentiable, and fj(·), the marginal density of Xij , satisfies fj(x0) > 0.

For local linear quasi-likelihood estimation we require longer expansions (and
hence stronger conditions) than for the other estimation methods. In this case,
we replace conditions C3–C4 by the following stronger conditions.
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C-5 m(·) has continuous fifth derivatives.
C-6 Xi are independent and identically distributed, x0 is an interior point of the

support of the distribution of Xij , the density of Xij is continuously differ-
entiable, the marginal density fj of Xij is twice continuously differentiable
and satisfies fj(x0) > 0, and the bivariate joint density fjk of Xij and Xik

is twice continuously differentiable. Moreover, we require∫
(xj − x0)2fj,k(xj , x0)dxj < ∞,∫

(xj − x0)r
∂�

(∂x0)�
fj,k(xj , x0)dxj < ∞, � = 1, 2, r = 1, 2.

It is sometimes helpful to frame results in the context of an arbitrary co-
variance matrix. When this is the case, the covariance matrix of Y given X is
denoted Σ = (σj,k), the inverse covariance matrix is denoted V = Σ−1 = (vj,k),
and we set vk· =

∑J
j=1 vk,j. Recall that under the variance component model,

the covariance matrix of Y given X is Σ = σ2
ε I + σ2

αeJet
J , so

V = Σ−1 = σ−2
ε

{
I − (dJ/J)eJe

t
J

}
,

V1/2 = σ−1
ε

(
I −
[{

1 − (1 − dJ )1/2
}

/J
]
eJe

t
J

)
,

where dJ = Jσ2
α/(σ2

ε +Jσ2
α). Under the variance component model, the diagonal

and off-diagonal elements of these matrices are constant so it is convenient to
denote the diagonal elements σj,j of Σ by σ2

d, the diagonal elements vj,j and off-
diagonal elements vj,k of V = Σ−1 as vd and vo respectively, and the diagonal
and off-diagonal elements of V 1/2 by ṽd and ṽo respectively. Finally, under the
variance component model, vk· is also constant so we write vk· = v·.

2. Pooled and Component Estimation

The pooled estimator m̂pool(x0, h) of m(x0) is defined as the local linear
kernel regression estimator with kernel function K(·) and bandwidth h when all
the Y ’s and X’s are combined into a single data set of length nJ . That is

m̂pool(x0)=(1, 0)

n−1
n∑

i=1

J∑
j=1

(
1

(Xij − x0)/h

)(
1

(Xij − x0)/h

)t

Kh(Xij−x0)


−1

×
n−1

n∑
i=1

J∑
j=1

(
1

(Xij − x0)/h

)
YijKh(Xij − x0)

 .

The optimal pooled estimator minimizes the mean squared error of m̂pool(x0, h)
at x0 over h.
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To define the components estimator m̂W (x0,h, c), for j = 1, . . . , J , let
m̂j(x0, h) be the local linear kernel regression estimator of the (Yij) on the (Xij),
with bandwidth hj . That is

m̂j(x0, hj)=(1, 0)

{
n−1

n∑
i=1

(
1

(Xij − x0)/hj

)(
1

(Xij − x0)/hj

)t

Khj
(Xij−x0)

}−1

×
{

n−1
n∑

i=1

(
1

(Xij − x0)/hj

)
YijKhj

(Xij − x0)

}
.

Then if h = (h1, . . . , hJ)t and c = (c1, . . . , cJ )t, the components estimator is the
weighted average of the component estimators given by

m̂W (x0,h, c) =
J∑

j=1

cjm̂j(x0, hj),
J∑

j=1

cj = 1.

The optimal components estimator minimizes the mean squared error at x0 over
both h and c.

The following result is proved in Appendix A.1.

Theorem 1. Suppose that conditions C1–C4 hold. Define s(x0)=J−1∑J
j=1fj(x0).

For local linear kernel regression, the optimal pooled estimator and the optimal
components estimator are asymptotically equivalent. The bias, variance, optimal
bandwidth and mean squared error at this optimal bandwidth for the former are
given by

bias{m̂pool(x0, h)} ≈ (1/2)h2m(2)(x0);

var{m̂pool(x0, h)} ≈ γ(0)(σ2
α + σ2

ε ){nhJs(x0)}−1;

h5
opt,pool(local linear) ≈ γ(0)(σ2

α + σ2
ε )
[
nJs(x0){m(2)(x0)}2

]−1
;

mseopt,pool(local linear) ≈ (5/4){m(2)(x0)}2/5
[
γ(0)(σ2

α + σ2
ε ) {nJs(x0)}−1

]4/5
.

Theorem 1 shows that the pooled estimator has the same asymptotic prop-
erties under the model (1) as it has under the nonparametric regression model
in which the errors are independent and identically distributed with variance
σ2

α +σ2
ε . Moreover, working componentwise as in the components estimator does

not enable us to make use of the known dependence structure in the model (1)
in the sense that we can do no better than using the pooled estimator.

3. Quasi-Likelihood Estimation

The fact that the pooled and component estimators do not make use of the
known variance structure of the model does not mean that no nonparametric
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estimator makes use of this information. The quasi-likelihood estimator of Sev-
erini and Staniswalis (1994) is intended to make use of the variance structure
in general and hence is a candidate estimator for doing so in the special case of
model (1).

The bias and variance of the kernel estimator (p = 0) considered by Severini
and Staniswalis (1994) can be shown to reduce to that of the pooled estimator
for a variance component model (1), where the Xk’s are independent and iden-
tically distributed (Ruckstuhl, Welsh and Carroll (1997)). The bias depends on
the design in a way which, in general, is different from the bias of the pooled
estimator. In this section we apply Severini and Staniswalis’ (1994) proposal to
model (1) using local linear smoothing (p = 1). We show that it has undesirable
asymptotic properties and does not take the variance structure properly into ac-
count. Consequently, we modify the quasi-likelihood estimator in the second part
of this section. The modification yields an estimator asymptotically equivalent
to the pooled estimator.

3.1. Ordinary quasi-likelihood estimator

Recall that V = Σ−1. Then m̂p,qle(x0, h), the intercept in the solution of

n∑
i=1


1 · · · 1
. · · · .

. · · · .

(Xi1−x0)p · · · (XiJ−x0)p

V


Kh(Xi1−x0){Yi1−
p∑

k=0
β̂k(Xi1−x0)k}

.

.

Kh(XiJ−x0){YiJ−
p∑

k=0
β̂k(XiJ−x0)k}

=0,

(2)

is the local polynomial version of the quasi-likelihood estimator in Severini and
Staniswalis (1994, Equation (18)) for model (1). The local linear quasi-likelihood
estimator which we consider first has p = 1.

In Appendix A.2, we prove the following asymptotic result.

Theroem 2. Suppose that conditions C1−C2 and C5−C6 hold. Let m̂p,qle(x0, h)
be the solution of (2). Then

bias{m̂1,qle(x0, h)} ≈ h2m(2)(x0)/2,

var{m̂1,qle(x0, h)} = OP

{
(nh)−1)

}
.

For the variance component model (1), where the Xk’s are independent and iden-
tically distributed with marginal distribution f(·) and variance σ2

X , the asymptotic
variance reduces to

var{m̂1,qle(x0, h)} ≈ γ(0) (σ2
α + σ2

ε )
nhJf(x0)

1 +

(
dJ

J − dJ

f (1)(x0)
f(x0)

)2

(J − 1)σ2
X

 ,
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where dJ = Jσ2
α/(Jσ2

α + σ2
ε ).

Note that the local linear quasi-likelihood estimator has the same asymptotic
bias but a larger asymptotic variance than the pooled estimator in the variance
component model with independent and identically distributed Xk’s. A crucial
point here is that this feature can be observed only in the simplest possible
version of the (already) simple model (1), and cannot be observed in general. This
underlines the importance of studying the performance of general procedures in
simple cases where the constants and not just the rates can be examined. In
view of the surprising nature of the result of Theorem 2, we also obtained results
for local quadratic quasi-likelihood estimators (p = 2) of the regression function.
The bias is of order h2 and, for the variance component model (1) where the Xk’s
are independent and identically distributed, the asymptotic variance is of higher
order OP (n−1h−5) than OP (n−1h−1) obtained by the pooled estimator. That
is, the difference is apparent in the rates, even without examining the associated
constants. See Ruckstuhl, Welsh and Carroll (1997) for details.

3.2. Modified quasi-likelihood estimator

Analysing the proof of the asymptotic results for the ordinary quasi-
likelihood estimator, the slow rate of convergence of the asymptotic variance is
caused by the off-diagonal elements of V = Σ−1. This suggests that we modify
the quasi-likelihood estimator by replacing V = Σ−1 by V = diag(Σ−1).

Theorem 3. Suppose the conditions of Theorem 2 hold. Let m̂1,mqle(x0, h) be the
solution of (2) for p = 1, where V = Σ−1 = (vj,k) is replaced by V = diag(Σ−1).
Then

bias{m̂1,mqle(x0, h)} ≈ h2m(2)(x0)/2,

var{m̂1,mqle(x0, h)} ≈ γ(0)
J∑

j=1

v2
j,jσj,jfj(x0)

nh


J∑

j=1

vj,jfj(x0)


2
 .

where Σ = (σj,k). For the variance component model (1), the asymptotic vari-
ances reduce to

var{m̂1,mqle(x0, h)} ≈ γ(0)(σ2
α + σ2

ε )

n h
J∑

j=1

fj(x0)


−1

and hence the local linear modified quasi-likelihood estimator is asymptotically
equivalent to the pooled estimator.

For the kernel and local quadratic modified quasi-likelihood estimators, we
find that the asymptotic biases are of order O(h2) and O(h4) respectively, and
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that the asymptotic variances are of order O{(nh)−1}. Thus for p = 2, the
modified quasi-likelihood estimator is asymptotically better than the ordinary
quasi-likelihood estimator because its variance converges at a faster rate. For p =
0 a sufficient condition for asymptotic equivalence is vj·/vj,j = constant which
is, for example, satisfied by the variance component model (1). See Ruckstuhl,
Welsh and Carroll (1997) for details.

Note that both the asymptotic bias and the asymptotic variance are invariant
to multiplying V by a constant; i.e., the matrix V has to be determined only up
to a multiplicative factor.

Other modifications to the quasi-likelihood estimator may be possible. For
example, a referee suggested replacing VK, where K is the diagonal matrix of
kernel weights (cf. proof of Theorem 2), by V1/2 KV1/2. This proposal does not
overcome the difficulty with the quasi-likelihood estimator because it does not
make the terms An,j,k(r, s) in the matrix B∗

n of small enough order.

4. Two-Step Estimation

In this section, we propose a two-step estimator which tries to make use of
the known variance structure to achieve some asymptotic improvement over the
pooled and modified quasi-likelihood estimators.

Again let V = Σ−1 and let V1/2 be its symmetric square root. Let m̂1,pool(·)
be the pooled estimator of Section 2. Write

Z = τV1/2Y − (τV1/2 − I)m̂1,pool(X).

We propose to estimate m(x0) by m̂C(x0), the local linear kernel regression esti-
mator of the regression of the Z’s on the X’s, that is, by solving

m̂C(x0)=(1, 0)

n−1
n∑

i=1

J∑
j=1

(
1

(Xij − x0)/h

)(
1

(Xij − x0)/h

)t

Kh(Xij−x0)


−1

×
n−1

n∑
i=1

J∑
j=1

(
1

(Xij − x0)/h

)
ZijKh(Xij − x0)

 .

The intuition for this estimator is very simple: write Yi = m(Xi) + εi, mul-
tiply both sides by Σ−1/2 and rearrange terms so that we have “expression”=
m(Xi) + ξ

i
, where the ξij are now independent and identically distributed. The

“expression” we obtain equals Z.
In the Appendix, we prove the following result.

Theorem 4. Suppose the conditions of Theorem 1 hold. Then, for τ > 0,

bias{m̂c(x0, h)} ≈ −1/2h2m(2)(x0)τ ṽd
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−(1/2)h2τ ṽo

∑J
j=1 fj(x0)

∑
k �=j E{m(2)(X1k)|X1j = x0}∑J

j=1 fj(x0)
,

var{m̂c(x0, h)} ≈ γ(0)τ2

nh
J∑

j=1

fj(x0)


−1

,

where ṽd and ṽo are the diagonal and the off-diagonal elements of V 1/2, respec-
tively.

An optimal τ can be determined by minimizing the asymptotic mean squared
error. The minimization problem results in a cubic equation in τ . Note that since
the bias is design dependent (because of the structure of Z), so also is the optimal
τ .

If we choose τ equal to σ−1
ε then the asymptotic variance of the two-step

estimator is smaller than that of the pooled estimator. If we wish to treat Z =
m(X) + ξ in the same scale as the original data (1), we should set τ equal to
ṽ−1
d . In this case,

τ2 = σ2
ε

[
1 −
{
1 − (1 − dJ)1/2

}
/J
]−2

,

where dJ = Jσ2
α/(σ2

ε + Jσ2
α). Thus the asymptotic variance is

var{m̂c(x0, h)} ≈ γ(0)σ2
ε

nh
J∑

j=1

fj(x0)
[
1 −
{
1 − (1 − dJ)1/2

}
/J
]2−1

.

Now

σ2
ε ≤ σ2

ε [1 − {1 − (1 − dJ )1/2}/J ]−2 ≤ σ2
ε + σ2

α

so the two-step estimator with τ = ṽ−1
o has larger asymptotic variance than

the two-step estimator with τ = σ−1
ε but still has smaller asymptotic variance

than the pooled estimator. In either case, the asymptotic biases of the two
estimators are difficult to compare, but note that the asymptotic bias of the two-
step estimator can be smaller than that of the pooled estimator because ṽo is
negative, allowing the possibility of cancellation to occur. This is the case, for
example, when m is the quadratic function and τ = ṽ−1

d . Then the bias decreases
monotonically to zero as the ratio σ2

α/σ2
ε increases.

5. Estimation of the Variance Components

Our purpose in writing this paper has been to consider the problem of esti-
mating the nonparametric regression function in model (1) rather than the prob-
lem of estimating the variance components. Nonetheless, the quasi-likelihood and
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two-step estimators and the asymptotic variances of all the estimators depend
on the variance components, so we need to exhibit consistent estimators of the
variance components.

Let Y = (Yt
1, . . . ,Y

t
n)t be the vector of pooled responses and let E be

the deviations of Y from the regression line {mt(X1), . . . ,mt(Xn)}t. For all
estimators used in this paper, there is an (nJ)×(nJ) matrix S with the property
that the vector of predicted values equals SY, and hence the vector of residuals
is (I − S)Y = D∗; explicit formulae in special cases are given in the appendix.

The simplest approach to estimating the variance components is to pretend
that the residuals have mean zero and covariance matrix the same as if m(·) were
known. For example, the Gaussian “likelihood” for τε = σ2

ε and τα = σ2
ε + Jσ2

α

can be written as

−n(J − 1) log(τε) − n log(τα)

−τ−1
ε

n∑
i=1

J∑
j=1

{
Yij − m(Xij) − (Y i − mi)

}2 − J/τα

n∑
i=1

(Y i − mi)2,

where Y i = n−1∑J
j=1 Yij and mi = n−1∑J

j=1 m(Xij). This “likelihood” is max-
imized at

τ̂α = J/n
n∑

i=1

(Y i − mi)2,

τ̂ε = {n(J − 1)}−1
n∑

i=1

J∑
j=1

{
Yij − m(Xij) − (Y i − mi)

}2
,

when τ̂α > τ̂ε, and at

τ̂α = τ̂ε = (nJ)−1
n∑

i=1

J∑
j=1

{Yij − m(Xij)}2 ,

otherwise. Substituting a consistent estimator of m(·) yields consistent estimates
of (σ2

α, σ2
ε ), and, as in Hall and Carroll (1989), it can be shown that the resulting

estimators have the same limit distribution as if m(·) actually were known.
However, as described below the covariance matrix of the residuals is not the

same as if m(·) were known, and following the procedure used in many venues
(e.g., Chambers and Hastie (1992), pp.368-369), we can adjust for the loss of
degrees of freedom due to estimating m(·). In practice, we center the residuals
at their mean, using D = D∗−et

nJD∗/(nJ), which has approximately mean zero
and the covariance matrix C(σ2

α, σ2
ε ) = σ2

αC1 + σ2
εC2, where C1 and C2 are the

known (nJ) × (nJ) matrices

C1 = (I − S)diag(eJ et
J)(I − S)t,

C2 = (I − S)(I − S)t.
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In principle, we can still use normal-theory maximum likelihood (with covari-
ance C(σ2

α, σ2
ε ) = σ2

αC1 + σ2
εC2) to estimate (σ2

α, σ2
ε ). However, the difficulty

with maximum likelihood in this context is that the (nJ) × (nJ) matrix C(·) is
impractical to invert. We consider two alternative methods of adjustment.

One approach is to make a restricted maximum likelihood (REML) style
adjustment by substituting the estimate of m(·) into the estimating equations,
taking their (approximate) expectations, subtracting these expectations from
the original estimating equations and then solving the resulting (approximately)
unbiased estimating equations. For the case τ̂α > τ̂ε, after some considerable
algebra, we obtain the approximately unbiased estimating equations

0 = DtUUtD− τεw1 − (τα/J)u1,

0 = DtD− τεw2 − (τα/J)u2,

where

wr = trace(Wr − J−1UUtWr),
ur = trace(UUtWr),

U =


eJ 0 . . . 0
0 eJ . . . 0
. · · · . .

0 · · · 0 eJ

 ,

W1 = (I − S)tUUt(I − S),
W2 = (I − S)t(I − S).

Solving these two equations, we obtain

τ̂ε =
(
u2DtUUtD− u1DtD

)
(w1u2 − w2u1)

−1 ,

τ̂α = J
(
w1DtD− w2DtUUtD

)
(w1u2 − w2u1)

−1 .

Alternatively, we can abandon the “likelihood” and employ a method of
moments device. Let otrace(·) be the sum of the off-diagonal elements of a
matrix. Then we can solve the two equations

trace(DDt) = σ2
α trace(C1) + σ2

ε trace(C2),
otrace(DDt) = σ2

α otrace(C1) + σ2
ε otrace(C2),

so that

σ̂2
α =

otrace(C1) trace(D Dt) − trace(C1) otrace(D Dt)
otrace(C1) trace(C2) − trace(C1) otrace(C2)

,

σ̂2
ε =

otrace(C2) trace(D Dt) − trace(C2) otrace(D Dt)
otrace(C2) trace(C1) − trace(C2) otrace(C1)

.
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These estimators have the same limiting distribution as the method of moments
estimators for known m(·), namely

σ̂2
α{m(·) known} = otrace(E Et){nJ(nJ − 1)}−1,

σ̂2
ε {m(·) known} = trace(E Et)/(nJ) − σ̂2

α.

6. Discussion

We have considered a number of different approaches (more than we have
reported on here) to estimating the regression function when we have a simple
dependence structure between observations. The simple pooled estimator which
ignores the dependence structure performs very well asymptotically. Intuitively,
this is because dependence is a global property of the error structure which (at
least in the form we have examined) is not important to methods which act
locally in the covariate space. Specifically, in the limit, local estimation methods
are effectively dealing only with independent observations.

The performance of the pooled estimator raises the question of whether there
is some method of local estimation which nonetheless exploits the dependence
structure in such a way that it performs better than the pooled estimator. The
quasi-likelihood estimator is very appealing for estimating the parametric com-
ponent in a partially linear model and the general approach for estimating non-
parametric components described by Carroll, Ruppert and Welsh (1998) suggests
that the extension we have considered in this paper is well worth considering.
We were surprised to find that quasi-likelihood estimation is asymptotically no
better than pooled estimation. After trying a number of alternative approaches,
we discovered that the two-step method has smaller asymptotic variance than
the pooled estimator but does not necessarily have a lower asymptotic bias. The
question of whether it is possible to construct an estimator with uniformly smaller
asymptotic mean squared error than the pooled estimator remains open.

It is interesting to note that, even if we were to assume a parametric form for
the regression function, we would gain conflicting intuition into the problem of
estimating the regression function in our problem. First notice that if we were to
assume a constant regression function, the maximum likelihood estimator (under
Gaussianity) of the constant regression function is the sample mean which is,
in this context, the pooled estimator. On the other hand, if we assume a linear
regression function, the maximum likelihood estimator (under Gaussianity) of the
linear regression function is the weighted least squares estimator and it performs
better than the least squares estimator which is, in this context, the pooled
estimator. Thus the intuition we gain depends on which parametric model we
consider.
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Appendix

A.1. Proof of Theorem 1

We first derive the results for the component estimator. From Fan (1992),
Ruppert and Wand (1994) and Carroll, Ruppert and Welsh (1996), we have the
results:

bias{m̂p,j(x0, h)} ≈ (1/2)h2m(2)(x0),
var{m̂p,j(x0, h)} ≈ γ(0)(σ2

α + σ2
ε ) {nhfj(x0)}−1 ,

m̂p,j(x0, h) − m(x0, h) − (h2/2)m(2)(x0) ≈

{nfj(x0)}−1
n∑

i=1

{Yij − m(Xij)}Kh(Xij − x0). (3)

The last step is implicit in the first two papers and explicit in the third. It
is easily seen from (3) that for j �= k, cov{m̂p,j(x0, h), m̂p,k(x0, h)} = O(n−1),
and hence for asymptotic arguments, the component estimators m̂p,j(x0, h) are
independent.

It thus follows that

bias{m̂W (x0,h, c)} ≈ (1/2)m(2)(x0)
J∑

j=1

cjh
2
j =

J∑
j=1

cjbj(x0, hj),

var{m̂W (x0,h, c)} ≈ γ(0)(σ2
α + σ2

ε )n
−1

J∑
j=1

c2
j {hjfj(x0)}−1 =

J∑
j=1

c2
jvj(x0, hj).

The individual component bias functions are bj(x0, hj) and the individual com-
ponent variance functions are vj(x0, hj). The problem is to minimize (in h and
c) the function

mseW (x0,h, c) ≈


J∑
j=1

cjbj(x0, hj)


2

+
J∑

j=1

c2
jvj(x0, hj)

subject to et
Jc = 1. The minimization problem is solved by choosing a common

bandwidth

hopt =

γ(0)(σ2
α + σ2

ε )

{m(2)(x0)}2n
J∑

j=1

fj(x0)

−1


1/5

,
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and weights

copt,j = fj(x0)

{
J∑

k=1

fk(x0)

}−1

for j = 1, . . . , J.

See Ruckstuhl, Welsh and Carroll (1997) for details. The asymptotic mean
squared error at this optimal solution is

mseopt,W = 5/4
{
m(2)(x0)

}2/5

γ(0)(σ2
α + σ2

ε )

n
J∑

j=1

fj(x0)


−1


4/5

,

as claimed.
We now turn to the pooled estimator. We proceed more generally than

for local linear regression, obtaining results for local polynomial regression of
order p with p odd. Let βj = hjm(j)(x0)/j!, and define B = (β0, . . . , βp)t. Let
Gp(v) = (1, v, v2, . . . , vp)t. Then,

B̂ − B = A−1(n, J, h, x0)B(n, J, h, x0),

where

A(n, J, h, x0)=(nJ)−1
n∑

i=1

J∑
j=1

Kh(Xij − x0)Gp{(Xij − x0)/h}Gt
p{(Xij − x0)/h},

B(n, J, h, x0)=(nJ)−1
n∑

i=1

J∑
j=1

Kh(Xij − x0)Gp{(Xij − x0)/h}

×
{

Yij −
p∑

k=1

m(k)(x0)(Xij − x0)k/k!

}
.

Let µ(�) =
∫

z�K(z)dz and Dp(µ) be the (p + 1) × (p + 1) matrix with (j, k)th
element µ(j+k−2). Let γ(�) =

∫
z�K2(z)dz, and let Dp(γ) be the (p+1)×(p+1)

matrix with (j, k)th element γ(j + k − 2). Direct calculations (keeping in mind
that p is odd) show that

A(n, J, h, x0) = {1 + op(1)}s(x0)Dp(µ),
cov{B(n, J, h, x0)} ≈ (nhJ)−1s(x0)(σ2

α + σ2
ε )Dp(γ),

E{B(n, J, h, x0)} ≈ {s(x0)m(p+1)(x0)hp+1/(p + 1)!} {µ(p + 1), . . . , µ(2p + 1)}t .

Thus, for p odd we have

bias {m̂p,pool(x0, h)} ≈
{
m(p+1)(x0)hp+1/(p + 1)!

}
(1, 0, . . . , 0)D−1

p (µ)

×{µ(p + 1), . . . , µ(2p + 1)}t ,

var {m̂p,pool(x0, h)} ≈ {nhJs(x0)} (σ2
α + σ2

ε )(1, 0, . . . , 0)Dp(γ)D−1
p (µ)

×D−1
p (µ)(1, 0, . . . , 0)t.
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In the special case p = 1, these results reduce to those claimed in Theorem 1,
thus completing the proof.

A.2. Proof of Theorem 2

Here we give a brief derivation of the asymptotic bias and variance formulae
for the quasi-likelihood estimator. We start by obtaining some general results
for the local polynomial estimator. Then we obtain results for the kernel (local
average), local linear, and local quadratic estimator.

A useful simplification is to let the unknown parameters be βq+1 =
hqm(q)(x0)/q!. Thus, m(X) is approximated by {Gp,h(X − x0eJ)}t β, where
Gp,h(X−x0eJ) is the (p+1)×J matrix with (k+1)th row [{(X1−x0)/h}k, {(X2−
x0)/h}k, . . . , {(XJ − x0)/h}k]. Define

Ln(α)=n−1
n∑

i=1

Gp,h(Xi−x0eJ)VKh(Xi−x0eJ)
[
Yi−

{
Gp,h(Xi−x0eJ)

}t
α

]
,

where Kh(Xi −x0eJ) = diag{Kh(Xi1 −x0), . . . ,Kh(XiJ −x0)}. Then the quasi-
likelihood estimator (at x0) solves 0 = Ln(β̂) and hence

β̂ − β = (B∗
n)−1 Ln(β),

where B∗
n is the (p + 1) × (p + 1) matrix

B∗
n = n−1

n∑
i=1

Gp,h(Xi − x0eJ)VKh(Xi − x0eJ) {Gp,h(Xi − x0eJ)}t.

Let vj,k be the elements of V. Then the elements of the matrix B∗
n are

(B∗
n)r,s =

J∑
k=1

J∑
j=1

vj,kAn,j,k(r − 1, s − 1),

where

An,j,k(r, s) = n−1
n∑

i=1

{(Xij − x0)/h}r Kh(Xik − x0) {(Xik − x0)/h}s .

It is easily seen that

An,k,k(r, s) ∼
∫

zr+sK(z)fk(x0 + z h)dz

and

An,j,k(r, s) ∼ h−r
∫ ∫

(xj − x0)rzsK(z)fj,k(xj , x0 + zh)dxjdz
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for j �= k. Thus, the elements of B∗, the limit of B∗
n as n → ∞, are

(B∗)r,s =
p∑

�=0

{
h�+1−rµ(� + s − 1)B(r − 1, �)

}
+ µ(p + s)OP (hp+2−r),

where

B(0, �)=
J∑

k=1

f
(�)
k (x0)

�!

J∑
j=1

vj,k

 ,

B(r, �)=
J∑

k=1

J∑
j �=k

vj,k

�!

∫
(xj−x0)r

∂�

(∂x0)�
fj,k(xj , x0)dxj +1[�≥r]

J∑
k=1

vk,kf
(�−r)
k (x0)

(� − r)!
,

for r > 0 and for � ≥ 0.
Furthermore, note that since E{Y − m(X)|X} = 0,

E{Ln(β)}=EX

(
Gp,h(X−x0eJ)VKh(X−x0eJ)

[
m(X)−

{
Gp,h(X−x0eJ)

}t
β

])
.

But Taylor’s theorem implies

m(X)−
{
Gp,h(X−x0eJ)

}t
β=βp+1{(X−x0eJ)/h}p+1+βp+2{(X−x0eJ)/h}p+2

+
[
O(hp+3{(X1−x0)/h}p+3), . . . ,O(hp+3{(XJ−x0)/h}p+3)

]t
,

and thus[
E{Ln(β)}

]
r
≈ hp+1m(p+1)(x0)

(p + 1)!
(B∗)r,p+2 +

hp+2m(p+2)(x0)
(p + 2)!

(B∗)r,p+3

≈ hp+1m(p+1)(x0)
(p+1)!

{
h1−rµ(p+1)B(r−1, 0)+h2−rµ(p+2)B(r−1, 1)

}
+

hp+2m(p+2)(x0)
(p + 2)!

h1−rµ(p + 2)B(r − 1, 0), (4)

for r = 1, . . . , p + 1. The asymptotic bias is then

bias (m̂1,qle(x0, h)) ≈ (1, 0, 0, . . .) (B∗)−1 E{Ln(β)}. (5)

The covariance matrix of Y given X is Σ=(σj,k). Thus the covariance of
Ln(β) is CLn

, with elements given by

(CLn
)r,s=

1
n

EX


J∑

j=1

J∑
k=1

J∑
�=1

J∑
m=1

v�,jσj,kvk,m

× Kh(X1j−x0)Kh(X1k−x0) {(X1�−x0)/h}r−1 {(X1m−x0)/h}s−1
}

.
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Let vk· =
∑J

j=1 vk,j. Then direct, but lengthy, calculations show that

(CLn
)1,1 ≈ γ(0)n−1h−1

J∑
k=1

(vk·)2σk,kfk(x0),

(CLn
)1,s ≈ γ(0)n−1h−s

J∑
k=1

vk·σk,k

J∑
m�=k

vk,m

∫
(xm − x0)s−1fk,m(x0, xm)dxm

 ,

(CLn
)r,s ≈ γ(0)n−1h−r−s+1

J∑
k=1

σk,k

J∑
� �=k

J∑
m�=k

v�,kvk,m

×
∫

(x� − x0)r−1(xm − x0)s−1fk,�,m(x0, x�, xm)dx�dxm

}
,

for r ≥ s and for s > 1 and thus, because the covariance matrix is symmetric,
we have a first order approximation of the asymptotic covariance matrix. The
variance of the quasi-likelihood estimator is then

var{m̂2,qle(x0, h)} ≈ (1, 0, 0, . . .)(B∗)−1CLn

{
(B∗)−1

}t
(1, 0, 0, . . .)t.

For the local linear estimator (p = 1), the calculation of B∗ results in

B∗ ≈
[

B(0, 0) hB(0, 1)
h−1B(1, 0) B(1, 1)

]
,

since K(·) is symmetric (µ(r) = 0 if r is odd) and µ(r) = 1 for r = 0, 2. Note
that (B∗)2,1 tends to infinity as h goes to zero. Therefore the limit, h → 0, is
taken after (B∗)−1Y∗ has been calculated. The determinant of B∗ is

det(B∗) ≈ B(0, 0)B(1, 1) − B(0, 1)B(1, 0).

A direct calculation of E{Ln(β)} for p = 1 yields

E{Ln(β)} ≈ h2 m(2)(x0)/2
[

B(0, 0)
h−1B(1, 0)

]
,

using (4). Thus, the bias (5) is

bias{m̂1,qle(x0, h)} ≈ (1/2)h2m(2)(x0)

as claimed.
The variance is

var{m̂1,qle(x0, h)} = (1, 0) (B∗)−1CLn

{
(B∗)−1

}t
(1, 0)t

≈ B(1, 1)2(CLn
)1,1 − 2hB(0, 1)B(1, 1)(CLn

)1,2 + h2B(0, 1)2(CLn
)2,2

{B(0, 0)B(1, 1) − B(0, 1)B(1, 0)}2
.
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This expression is of order γ(0)/(nh) times a quantity which is nonzero in general.
For the variance component model the off-diagonal elements of V = Σ−1,

the diagonal elements of V and of Σ, and vk· are constant called vo, vd, σ2
d,

and v·, respectively. To simplify the calculation further, we assume the Xj ’s
are independent with a common marginal density function f . Then the key
quantities reduce to

B(0, �)=v·J f (�)(x0)/(�!),
B(r, �)=voJ(J−1)f (�)(x0)/(�!)E {(X−x0)r}+1[�≥r]vdJf (�−r)(x0)/{(� − r)!},

(CLn
)1,1≈γ(0)n−1h−1v2

· σ
2
dJ f(x0),

(CLn
)1,s≈γ(0)n−1h−sv·voσ

2
dJ(J − 1) f(x0)E {(X − x0)s} ,

(CLn
)r,s≈γ(0)n−1h−r−s+1v2

oσ
2
dJ(J − 1) f(x0)

[
E
{
(X − x0)r+s−2

}
+ (J − 2)E

{
(X − x0)r−1

}
E
{
(X − x0)s−1

}]
.

Thus the determinant of B∗ is det(B∗) ≈ v·vd{J f(x0)}2 and the above expression
of the variance results in

var{m̂1,qle(x0, h)} ≈ γ(0)
nh

σ2
d

Jf(x0)

1 +

(
vo

vd

f (1)(x0)
f(x0)

)2

(J − 1)σ2
X

 ,

where σ2
X is the variance of X. Remembering that σ2

d = σ2
α + σ2

ε , vd = (1 −
dJ/J)/σ2

ε and vo = −dJ/(Jσ2
ε ) yields vo/vd = −dJ/(J − dJ). This completes the

proof.
Similar arguments can be applied to obtain the results for local average and

local quadratic estimations. See Ruckstuhl, Welsh and Carroll (1997) for details.

A.3. Proof of Theorem 3

If we set the off-diagonal elements of V to zero (vj,k = 0 for j �= k), then the
key quantities reduce to

(B∗)r,s=
p∑

�=0

µ(r+s+�−2)h�
J∑

j=1

vj,jf
(�)
j (x0)

≈µ(r+s−2)
J∑

j=1

vj,jfj(x0),

[
E{Ln(β)}

]
r
≈µ(r+p)hp+1 m(p+1)(x0)

(p + 1)!

J∑
j=1

vj,jfj(x0)

+µ(r+p+1)hp+2
J∑

j=1

vj,j

{
m(p+1)(x0)

(p+1)!
f

(1)
j (x0)+

m(p+2)(x0)
(p + 2)!

fj(x0)

}
,

(CLn
)r,s≈γ(r + s − 2)n−1h−1

J∑
j=1

v2
j,jσj,jfj(x0).
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Direct calculations then yield the results given in Theorem 3.

A.4. Proof of Theorem 4

The two-step estimator is just

m̂C(x0)=(1, 0)

n−1
n∑

i=1

J∑
j=1

(
1

(Xij−x0)/h

)(
1

(Xij−x0)/h

)t

Kh(Xij−x0)


−1

×
n−1

n∑
i=1

J∑
j=1

(
1

(Xij − x0)/h

)
ZijKh(Xij − x0)

 . (6)

Now K(·) is a symmetric density function with unit variance, and it is easily
shown that the term inside the inverse in (6) converges to

∑
j fj(x0) times the

identity matrix. So

m̂C(x0) ≈ n−1
n∑

i=1

J∑
j=1

ZijKh(Xij − x0)


J∑

j=1

fj(x0)


−1

. (7)

Let ηij = Yij − m(Xij), η
i
= (ηi1, . . . , ηiJ )t, and define the nJ × 1 vectors

Th(x) =
[
{Kh(Xij − x)}J

j=1

]n
i=1


J∑

j=1

fj(x)


−1

,

η =
[
{ηij}J

j=1

]n
i=1

.

From the the proof of Theorem 1 (cf. Appendix A.1), we have the expansion

m̂C(x0, h) ≈ m(x0) + (1/2)h2m(2)(x0)

+(nJ)−1


J∑

j=1

fj(x)


−1

n∑
i=1

J∑
j=1

{Yij − m(Xij)}Kh(Xij − x0).

It then follows that

m̂C(x0, h) ≈ m(x0) + (1/2)h2m(2)(x0) + (nJ)−1Tt
h(x0)η,

and hence that

Zi = τV1/2Yi − (τV1/2 − I)m̂1,pool(Xi)

= τV1/2η
i
+ τV1/2m(Xi) − (τV1/2 − I)m̂W (Xi)
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= τV1/2η
i
− (nJ)−1(τV1/2 − I)


Tt

h(Xi1)η
.

.

.

Tt
h(XiJ)η

+ m(Xi)

−(1/2)h2(τV1/2 − I)m(2)(Xi). (8)

It is easily seen that the first two terms in (8) contribute only to the variance,
while the last two terms contribute only to the bias.

If the common diagonal elements of V 1/2 are ṽd and the common off-diagonal
elements are ṽo, then we find that the components of the last two terms in (8)
are

Zij∗ = m(Xij) − (1/2)h2(τ ṽd − 1)m(2)(Xij) − (1/2)h2τ ṽo

∑
k �=j

m(2)(Xik).

Apply the Zij∗ to (7) and take expectations to obtain the asymptotic bias.
We now turn to asymptotic variance. Split the first two terms in (8) into

two parts, say Zij1∗ and Zij2∗. We first note that (7) when applied to Zij1∗
algebraically equalsn

J∑
j=1

fj(x0)


−1

n∑
i=1

{Kh(Xi1 − x0), . . . ,Kh(XiJ − x0)} τV1/2η
i
. (9)

Since V1/2 cov(η
i
) (V1/2)t = I, we easily find that (9) has mean zero and approx-

imate variance

τγ(0)

nh
J∑

j=1

fj(x0)


−1

,

as claimed.
To complete the argument we must show that (7) when applied to Zij2∗ is

of order op{(nh)−1/2}. The individual terms are

Zij2∗ = −(nJ)−1(τ ṽd − 1)Th(Xij)η − (nJ)−1τ ṽo

∑
k �=j

Tt
h(Xik)η.

In fact, terms such as (nJ)−1Tt
h(x)η are very nearly kernel regressions of the

η’s on the X’s evaluated at x, and in (7) these “nearly zero” functions are then
averaged via a second kernel operation. By direct calculation one can show that
indeed (7), when applied to Zij2∗, is of order op{(nh)−1/2}. This completes the
proof.
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