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Abstract: An approach to organizing the calculation of the efficient score for a fi-

nite dimensional parameter of interest in the presence of an infinite dimensional

nuisance parameter is presented. The approach involves choosing a set of submod-

els for the nuisance parameter. The condition that the scores for the submodels

be orthogonal to the efficient score takes the form of an equation whose solution

appears in a representation of the efficient score. The approach is illustrated with

several examples.
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1. Introduction

Computing the efficient score in a semiparametric problem can allow com-
parison of the variance of available estimators to the semi-parametric variance
bound, aid in the development of efficient or improved estimating equations,
and aid in the calculation of standard errors for estimators based on estimating
equations. Bickel, Klaassen, Ritov and Wellner (1993) describe three approaches
to finding the efficient score in the presence of an infinite dimensional nuisance
parameter. They are via guessing a candidate estimator, via solving the orthog-
onality equations, and via inversion of the information operator. See also Newey
(1990), Pfanzagl (1990) or Stein (1956), for example, or the references given
there. When a candidate estimator is not readily guessed, it may not be imme-
diately obvious how to approach the orthogonality equations or the information
operator, and the efficient score is arrived at through a combination of ingenuity
and intuition. The purpose of this paper is to present a systematic approach that
can be helpful in organizing the derivation of the orthogonality equations.

Begin with some notation and definitions. Consider a model described by
a parameter of interest, β, and nuisance parameters, α. Let Y denote observed
data and let f denote its density, so that the parameterization may be expressed
as

(α, β) −→ fα,β(Y ). (1)



266 DANIEL RABINOWITZ

Let Sβ denote the score for the parameter of interest, the derivative of the log-
likelihood with respect to β, Sβ = d

dβ log fα,β(Y ). A submodel for the nuisance
parameter is a mapping of the form η −→ αη. Scores for submodels of the nui-
sance parameters take the form d

dη logfαη ,β(Y )
∣∣∣
αη=α

. The efficient score for β is

the difference between the score for β and the score for a particular submodel
of the nuisance parameters. The particular submodel is the one with the prop-
erty that the difference is uncorrelated with the scores for all submodels of the
nuisance parameters. That is, the efficient score is

Sβ − d

dη
logfαη,β(Y )

∣∣∣∣
αη=α

,

for a submodel with the property that

E
{(
Sβ − d

dη
logfαη ,β(Y )

∣∣∣
αη=α

)
S
}

= 0 (2)

for all scores S for submodels of the nuisance parameters. The equations (2) are
the orthogonality equations.

To motivate the approach developed here, it is helpful to first consider
the orthogonality equations for the case of finite dimensional nuisance param-
eters. Let Sα denote the gradient of the log likelihood with respect to α,
Sα = ∇α log fα,β(Y ). Then, scores for submodels of the nuisance parameters
are linear combinations of the components of Sα, d

dη log fαη ,β(Y )
∣∣∣
αη=α

= ϕTSα,

where the row vector of coefficients, ϕT , is ϕ = dα
dη

∣∣∣
αη=α

. It follows that the

efficient score for β is the difference between Sβ and the particular linear com-
bination of the components of Sα with the the property that the difference is
uncorrelated with Sα. That is, the efficient score is given by

Sβ − ϕ�TSα. (3)

where the coefficients of the linear combination, ϕ�, are defined implicitly by the
orthogonality equations,

E
{(
Sβ − ϕ�TSα

)
ST

α

}
= 0. (4)

These equations take the form of a matrix equation in ϕ� with as many dimen-
sions as there are in the nuisance parameter,(

ESαS
T
α

)
ϕ� = ESαSβ. (5)

With finite dimensional nuisance parameters, using the components of Sα

as a basis for the space of scores for submodels for the nuisance parameters
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leads to the tractable formulation of the orthogonality equations, (4). When
the nuisance parameter is not finite dimensional, a tractable formulation of the
orthogonality equations is not always immediately obvious. Here, an infinite
dimensional analogue to using the components of Sα as a basis is developed
in order to arrive at a tractable approach to organizing the derivation of the
orthogonality equations when α is infinite dimensional.

In the next section, the approach to formulating the orthogonality equations
when the nuisance parameter is infinite dimensional is presented. The presenta-
tion is introduced through a simple example. In the third section, the approach
is applied to some examples. Efficiency calculations for some of the examples are
well known, and so allow comparisons between the heuristic presented here and
other approaches to computing the efficient score.

2. The Orthogonality Equations

The approach presented here is to start with parameterization in the same
form as (1) and then form an analogue of the tractable representation of the
orthogonality equations, (4). To form the analogue, the components of Sα in (4)
are replaced by scores for a subset of submodels of the nuisance parameter. The
submodels in the set are chosen so that their scores span the space of all scores for
the nuisance parameter. The resulting formulation of the orthogonality equations
leads to an integral equation analogue of (5). Correspondingly, the efficient score
is not expressed as the difference between Sβ and a finite dimensional linear
combination of the components of Sα. Instead, the finite dimensional linear
combination is replaced by an infinite dimensional linear combination of the
scores for the set of submodels.

To motivate the approach to forming the analogue to (4), it is useful to
consider a simple example of a semi-parametric regression problem. Suppose
that the data are a sample of triplets, (Xi, Ti,Wi), i = 1, . . . , n, where the Wi

are outcomes and the (Xi, Ti) are covariates. Suppose that the outcomes may be
expressed in terms of the covariates and independent and identically distributed
error terms εi by Wi = α(Ti)+Xiβ+εi. Suppose that the joint distribution of the
(Xi, Ti) pairs are unspecified, and suppose that the error terms are independent
of the (Xi, Ti) pairs. For convenience, suppose that the distribution of the εi are
specified as standard normal. The score for β is

Sβ =
d

dβ
log

n∏
i=1

(2π)−1/2 exp(−(Wi −Xiβ − α(Ti))2/2)

=
n∑

i=1

(Wi −Xiβ − α(Ti))Xi.
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(Here, the joint distribution of the (Xi, Ti) pairs is conditioned out of the likeli-
hood, as they are ancillary for α and β.) Similarly, scores for submodels of the
nuisance parameter α take the form

d

dη
log

n∏
i=1

(2π)−1/2 exp(−1
2
(Wi −Xiβ − αη(Ti))2/2)

=
n∑

i=1

(Wi −Xiβ − α(Ti))ϕ(Ti),

where ϕ corresponds to the derivative of αη with respect to η, ϕ(t)= d
dηαη(t)

∣∣∣
αη=α

.

The efficient score is therefore given by Sβ − ∑n
i=1 [Wi −Xiβ − α(Ti)]ϕ�(Ti),

where ϕ� solves the orthogonality equations:

for all ϕ, E
{(
Sβ−

n∑
i=1

[Wi−Xiβ−α(Ti)]ϕ�(Ti)
) n∑

i=1

[Wi−Xiβ−α(Ti)]ϕ(Ti)
}
=0.

These equations are similar to the equations (4) derived for finite dimensional
nuisance parameters: the function ϕ� and the functions ϕ in these equations play
the role of the vectors ϕ�T and ϕ in equation (4). In these equations, however,
ϕ� and ϕ are indexed by the range of the nuisance function α, while in (4), φ�

and ϕ are indexed by the dimensions of the finite dimensional vector of nuisance
parameters α. In the infinite dimensional case, as in the finite dimensional case,
to compute the efficient score it suffices to find ϕ�.

The correspondence between the dimensions of the vector α in the finite di-
mensional case and the range of the function α in this semi-parametric regression
example suggests an approach to organizing the calculation of ϕ�. In the finite
dimensional case, the components of Sα were used as a basis for the space of
scores for the nuisance parameters. The components of Sα are the scores for
the submodels in which all but one component of the nuisance parameters are
fixed. Analogues to these submodels in the semi-parametric regression example
are submodels in which α is fixed except at one value of its range. That is, the
analogues are submodels of the form

η −→ α+ ηδt�(t), (6)

where δt�(t) = 1{t∈(t� ,t�+dt)}/dt is the Dirac δ function at t�. The score for such
a submodel is

∑n
i=1 [Wi −Xiβ − α(Ti)] δt�(t). Substituting these scores into the

orthogonality equations results in an analogue to (4),

E
{(
Sβ−

n∑
i=1

[Wi −Xiβ − α(Ti)]ϕ�(Ti)
) n∑

i=1

[Wi −Xiβ − α(Ti)] δt�(t).
}

= 0. (7)
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Formally evaluating the left hand side of (7) results in

n∑
i=1

∫
fT (t)dtE

{
[Wi −Xiβ − α(Ti)]

2 (Xi − ϕ�(t))δt�(t).
∣∣∣ Ti = t

}

=
n∑

i=1

∫
fT (t)dtδt�(t). (E {Xi|Ti = t�} − ϕ�(t�))

= nfT (t�) (E {Xi|Ti = t�} − ϕ�(t�)) ,

where fT is the marginal density of the Ti. Setting the left hand side to zero
reveals that ϕ�(t) = E {Xi|Ti = t} . Strategies for achieving this bound, and
discussions of smoothness conditions may be found, for example, in Chen (1988),
Chen (1995) and Schick (1993).

Finding the efficient score in the example was made tractable by using the
scores for the subset of submodels, (6), when formulating the orthogonality equa-
tions. A generalization of the approach is now described.

Suppose that the possible values of the nuisance parameter may be identified
with a space of functions. Let X denote the range of the functions and let Ψ
denote the mapping that takes functions to values of the nuisance parameter.
The mapping Ψ need not be one-to-one. It is convenient, and there is no loss of
generality, to suppose that the function that is identically zero is mapped to the
true value of α. For each element, ξ, in the range of the function, X , denote the
Dirac function at ξ by δξ(x) = 1{x∈(ξ,ξ+dx)}/dx. Let Sξ denote the score for the
submodel traced by the image under Ψ of ηδξ , as η varies,

Sξ =
d

dη
log fΨ(ηδξ),β(Y )

∣∣∣∣
η=0

.

In a variety of settings, the Sξ span the space of scores for submodels of the
nuisance parameters in the sense that for any submodel, η −→ Ψ(gη), the score
for the submodel can be expressed as a linear combination of the Sξ,

d

dη
log fΨ(gη),β(Y ) =

∫
X
d

dη
gη(ξ)Sξdξ

∣∣∣∣
gη=0

.

In such settings, the efficient score for β is

Sβ −
∫
X
ϕ�(x)Sxdx, (8)

where ϕ� is defined by the orthogonality equations,

for all ξ, E

{(
Sβ −

∫
X
ϕ�(x)Sxdx

)
Sξ
}

= 0. (9)
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The orthogonality equations, (9), will generally take the form of an integral
equation for ϕ�.

In some situations, natural choices for Ψ and X will not be evident. This
may especially be the case for models involving constraints. In such cases, the
complexities in the structure of the tangent space induced by the constraints
are faced through the choice of the parameterization. In some settings, natural
choices for Ψ and X will lead to over-parameterization of the nuisances. In these
situations, the integral equation will not have a unique solution. Nevertheless,
all the solutions to the integral equation when substituted into (8) will result in
the same efficient score. In many situations, different choices of Ψ and X , corre-
sponding to different parameterizations for the nuisance parameter, are available.
A particular choice of parameterization may lead to simpler computations.

The general approach presented here parallels the calculations in settings
where the nuisance is finite dimensional in the same way as in the case of the ex-
ample. The set X is an infinite dimensional analogue of the indices of components
of a finite dimensional vector of parameters, α. The submodels η −→ fΨ(ηδx),β

correspond to the submodels in finite dimensional settings that vary one compo-
nent of α, while holding the other components fixed, and the scores Sξ correspond
to the components of the gradient of the log likelihood with respect to α. The
function x −→ ϕ�(x) in (8) is an analogue of the finite dimensional vector ϕ� in
(3). Solving the integral equation that results from evaluating (9) corresponds
to inverting the matrix in ESαS

T
α that results from evaluating (4).

This section concludes with a brief description of parallels between the ap-
proach developed here and the approach based on information operators. The
mapping

l̇ :
d

dη
gη −→

∫
X
d

dη
gη(ξ)Sξdξ

is a score operator. The equation (9) is a representation of the normal equations
in terms of the basis for the nuisance tangent space formed by the images of the
Dirac functions. That is, the normal equations are that for ξ ∈ X , 〈Sβ−l̇ϕ�, l̇δξ〉 =

0, instead of the more familiar form, l̇
T
Sβ = l̇

T
l̇ϕ�. Solving the integral equation

that results from evaluating (9) corresponds to inverting the information operator
l̇
T
l̇. See, for example, Begun, Hall, Huang and Wellner (1983), Van der Vaart

(1991), Groeneboom and Wellner (1992, p.27), or Bickel, Klaassen, Ritov and
Wellner (1993, p.79).

3. Examples

In this section, several examples are outlined. In each example, a representa-
tion of the parameter space in the form of (1) is proposed, and a choice of X and
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Φ is presented. In many cases, the parameter space is represented in terms of an
exponential tilt of the true distribution (or a tilt modified to respect constraints).
Then, efficient score in the form of (8) and the orthogonality equations in the
form (9) are found.

3.1. Median of a symmetric distribution

Suppose that Ti, i = 1, . . . , n, are independent and identically distributed
random variables with symmetric density g. Let β denote the parameter of
interest, the median of g, and let α(t) denote the nuisance, g(t−β). The likelihood
is
∏n

i=1 α(Ti − β).
Let X be [0,∞) and define Ψ by

Ψ(ζ)(t) = α(t)exp{ζ(|t|)}
/

2
∫ ∞

0
α(u)exp{ζ(|u|)}du .

Then,

Sx =
n∑

i=1

[1{|Ti−β|∈(x,x+dx)}
dx

− 2α(x)
]
,

so that the efficient score, (8), is

n∑
i=1

[
α′(Ti − β)
α(Ti − β)

−
(
ϕ�(|Ti − β|) − 2

∫ ∞

0
ϕ�(u)α(u)du

)]
;

the orthogonality equations, (9), are

for all x, n2α(x)
{
ϕ�(x) − 2

∫ ∞

0
ϕ�(u)α(u)du

}
= 0,

from which it follows that ϕ� is constant so that the efficient score for β is
n∑

i=1

α′(Ti − β)
α(Ti − β)

.

This example is also treated in, for example, Stein (1956), Ibragimov and
Has’minskii (1981) and Bickel, Klaassen, Ritov and Wellner (1993).

3.2. Mean of an arbitrary distribution

Suppose that Ti, i = 1, . . . , n, are independent and identically distributed
random variables with density g. Let β denote the parameter of interest, the
expectation of the Ti, and let α(t) denote the nuisance, g(t+ β). The likelihood
is
∏n

i=1 α(Ti − β).
Let X be the reals and define Ψ by Ψ(h)(t) = α(t+ µ(h))exp{h(t+ µ(h)) −

ψ(h)}, where ψ is defined by exp (ψ(h))=log
∫
α(s)exp {h(s)} ds and µ is defined
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by µ(h) =
∫
α(s)exp {h(s) − ψ(h)} sds. The term µ(h) is necessary so that the

expectation of T under fβ,Ψ(h) is β. Then

Sx =
n∑

i=1

{
α′(Ti − β)
α(Ti − β)

α(x)x+
1{Ti−β∈(x,x+dx)}

dx
− α(x)

}
,

so that the efficient score, (8), is

n∑
i=1

{
α′(Ti − β)
α(Ti − β)

(−1 − E [(Ti − β)ϕ�(Ti − β)]) − ϕ�(Ti − β) + E [ϕ�(Ti − β)]
}

the orthogonality equations (9) are: for all x,

nα(x)x

{
E

[
α′(Ti − β)

α(Ti − β)

]2
(−1 − E [ϕ�(Ti − β)(Ti − β)]) − E

[
α′(Ti − β)

α(Ti − β)
ϕ�(Ti − β)

]}

+ nα(x)

{[
α′(x)

α(x)

]
(−1 − E [ϕ�(Ti − β)(Ti − β)]) − ϕ�(x) + E [ϕ�(Ti − β)]

}
= 0,

from which it follows that

ϕ�(t) =
α′(t)
α(t)

− t− β

Var(Ti)
+ c,

for arbitrary c, so that the efficient score for β is, with finite Var(Ti),
∑n

i=1
Ti−β

Var(Ti)
.

This example is also treated in, for example, Newey (1990) and Ibragimov and
Has’minskii (1981).

3.3. Cumulative hazard from censored data

Suppose that (Ti, Ci), i = 1, . . . , n, are independent identically distributed
pairs of independent random variables. Let λ denote the hazard function of the
Ti. Suppose that the distribution of the Ci is completely unspecified. Let β
denote the parameter of interest, the cumulative hazard, β =

∫ t
−∞ λ(s)ds, and

define the nuisance parameter α by α(s) = λ(s)β−1{s≤t} . Then, λ(s) = α(s)β for
s ≤ t and is α(s) for s ≥ t, where α(s) is arbitrary except that

∫ t
−∞ α(s) = 1.

The Ti are failure times, the Ci are censoring indicators, the Zi are covariates,
and the failure times given the covariates are assumed to follow a proportional
hazards model. The Ci are ancillary and the conditional likelihood given the Ci

is

n∏
i=1

exp

(
−
∫ min(Ti,Ci)

−∞
α(s)dsβ1{s≤t}

)(
α(min(Ti, Ci))β1{s≤t}

)1{Ti≤Ci} .
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Let X be the reals and define Ψ by Ψ(g)(s) = λ(s)exp(g(s) − ψ(g)1{s≤t}),
where ψ is defined by exp {ψ(g)} =

∫ t
−∞ λ(s)exp(g(s))ds. Suppose that only the

min(Ci, Ti) and 1{Ti≤Ci} are available. Then,

Sx =
n∑

i=1

∫ ∞

−∞
Yi(s)(dNi(s) − λ(s)ds)

(1{s∈(x,x+dx)}
dx

− 1{s≤t}1{x≤t}
λ(x)
β

)

where Yi(s) = 1{min(Ti,Ci)≥s} and Ni(s) = (1 − Yi(s)) 1{Ti≤Ci}, so that the effi-
cient score, (8), is

n∑
i=1

∫ ∞

−∞
Yi(s) (dNi(s) − λ(s)ds)

(
− 1{s≤t}

β
− ϕ�(s) + 1{s≤t}

∫ t
−∞ ϕ�(u)λ(u)du

β

)
;

the orthogonality equations, (9), are

for all x, nλ(x)EYi(x)
(−1{x≤t}

β
− ϕ�(x) + 1{x≤t}

∫ t
−∞ ϕ�(u)λ(u)du

β

)

−nλ(x)
∫ ∞

−∞
EYi(s)λ(s)ds

(
− 1{s≤t}

β
−ϕ�(s)+1{s≤t}

∫ t
−∞ ϕ�(u)λ(u)du

β

)
=0,

from which it follows that

ϕ�(x) =
( τ

EYi(x)
+ c
)
1{s≤t}, where τ = β−1

∫ t

=∞
λ(x)
EYi(x)

dx

for arbitrary c, so that the efficient score for β is
n∑

i=1

∫ t

−∞
Yi(s) (dNi(s) − λ(s)ds)

(
− 1
β
−
{ τ

EYi(s)
− 1
})
.

Derivations of the this and similar results may be found in, for example, Breslow
and Crowley (1974), Gill (1983) and Andersen, Borgan, Gill and Keiding (1993).

3.4. Proportional hazards

Suppose that (Ti, Ci, Zi), i=1, . . . , n, are independent identically distributed
triplets of random variables. Suppose that the Ti are conditionally independent
of the Ci given the Zi. Suppose that the joint distribution of the (Ci, Zi) pairs
is completely unspecified and that only the min(Ci, Ti), the 1{Ti≤Ci} and the Zi

are available. Suppose that there is an unspecified non-negative function α and
a parameter of interest β such that the hazard function of the Ti at t, given
that Zi = z, is of the form α(t)exp(βz). The conditional likelihood given the
censoring variables is

n∏
i=1

exp

(
−
∫ min(Ti,Ci)

−∞
α(s)ds exp(βZi)

)
(α(min(Ti, Ci)) exp(βZi))

1{Ti≤Ci} .
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Let X be the reals and let Ψ be defined by Ψ(g)(t) = α(t)exp {g(t)} . Then

Sx =
n∑

i=1

∫ ∞

−∞
Yi(s) (dNi(s) − α(s)exp(Ziβ)ds)

1{s∈(x,x+dx)}
dx

where the Yi(s) and theNi(s) are as in the preceding example, so that the efficient
score, (8), is

n∑
i=1

∫ ∞

−∞
Yi(s) (dNi(s) − α(s) exp(Ziβ)ds) (Zi − ϕ�(s)) ,

and the orthogonality equations, (9), are

for all x, nEYi(x)α(x)exp(Ziβ)(Zi − ϕ�(x)) = 0.

It follows that
ϕ�(x) =

EYi(x)exp(Ziβ)Zi

EYi(x)exp(Ziβ)
.

Similar derivations may be found in Bickel, Klaassen, Ritov and Wellner (1993)
and Andersen and Gill (1982). See also, for example, Tsiatis (1981) and Breslow
(1974).

3.5. Missing covariates

Let D = {1, . . . ,D} denote a set of stratum indicators and suppose that
(Xi,d, Yi,d), i = 1, . . . , nd, d ∈ D, are independent pairs of covariates and outcome
pairs. Denote the marginal density of Xi,d, the nuisance parameter, by α(x, d)
and denote the conditional density of Yi,d given Xi,d by fβ(y|x), assumed known
up to the finite dimensional parameter of interest β. Let Yj,d, j = nd + 1, nd +
2, . . . , nd +md, d ∈ D, be independent outcomes with density

∫
α(x, d)fβ(y|x)dx.

The Yi,d, i = nd + 1, . . . nd +md, have missing covariates. The likelihood is

∏
d∈D

( nd∏
i=1

α(Xi, d)fβ(Yi|Xi)
md∏

i=nd+1

∫
α(x, d)fβ(Yi|x)dx

)
.

Let X be the cross product of the support of the Xi,d and D, and define Ψ
by Ψ(g)(s, d) = α(s, d)exp (g(x, d) − ψ(g, d)) , where

exp (ψ(g, d)) =
∫
α(x, d)exp (g(x, d)) dx.

Then

Sx,d =
nd∑
i=1

(1{Xi,d∈(x,x+dx)}
dx

− α(x, d)
)
+

nd+md∑
j=nd+1

(
α(x, d)fβ(Yj,d|x)∫
α(s, d)fβ(Yj,d|s)ds − α(x, d)

)
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so that the efficient score, (8), is

∑
d∈D

nd∑
i=1

(
sβ(Yi,d|Xi,d) − ϕ�(Xi,d, d) −

∫
α(x, d)ϕ�(x, d)dx

)

+
∑
d∈D

md∑
j=nd+1

∫
α(x, d)fβ(Yj,d|x) (sβ(Yj,d|x) − ϕ�(x, d) − ∫ α(s, d)ϕ�(s, d)ds) dx∫

α(u, d)fβ(Yj,d|u)du ,

where sβ(y|x) = d
dβ log fβ(y|x); the orthogonality equations, (9), are

for all x, d, α(x, d)
(
ndϕ

�(x) −md

∫
K(x, s, d)ϕ�(s)ds

)
= ν(x, d), (10)

where

K(x, s, d) =
∫
α(u, d)

∫
fβ(y|u)f(y|s)α(s, d)f(y|x)ds

(
∫
α(v, d)fβ(y|v)dv)2 dydu

and

ν(x, d) = α(x, d)
∫
α(u, d)

∫
fβ(y|u)

∫
f(y|s)α(s, d)f(y|x)s(y|s)ds

(
∫
α(v, d)fβ(y|v)dv)2 dydu.

The equation (10) takes the form of a Fredholm type II integral equation for
ϕ�. In general, there is not an explicit solution to the integral equation, but
approximate solutions may be found. Derivations of the efficient score for this
and related problems may be found in, for example, Robins, Rotnitzky and Zhao
(1995), Cosslett (1981) and Chamberlain (1987).

3.6. Regression with interval censored data

Let failure times Ti, i = 1, . . . , n, satisfy Ti = Ziβ + εi, where the εi are
independent and independent of the Zi with unspecified marginal density α,
the Zi are real valued, and β is a real valued parameter of interest. Let ni

denote numbers of examination times and let Xi = (Xi,1, . . . ,Xi,ni) denote the
ordered sequence of examination times. For convenience, define Xi,0 = −∞,
and Xi,ni+1 = ∞. Let Xi,L be the last of the ith subjects examination times
preceding Ti, and let Xi,U be the first examination time following Ti. Suppose
that only the Xi,L, Xi,U , Zi and triplets are available. The failure times Ti, given
the covariates Zi follow an accelerated failure time model. The failure times are
not observed, however, as they are only known to lie between the immediately
preceding and following examination times. The likelihood is

n∏
i=1

(F (Xi,U − Ziβ) − F (Xi,L − Ziβ)) ,
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where F is the distribution function corresponding to α, F (x) =
∫ x
−∞ α(u)du.

Let X be the reals, and define Ψ by Ψ(g)(e) = α(e) exp(g(e) − ψ(g)) where
ψ is defined by exp(ψ(g)) =

∫
α(e) exp(g(e))de. Then,

Sx =
n∑

i=1

1{x∈(Xi,U−Ziβ,Xi,L−Ziβ)}
F (Xi,U − Ziβ) − F (Xi,L − Ziβ)

,

so that (8) is

n∑
i=1

(α(Xi,U − Ziβ) − α(Xi,L − Ziβ))Zi

F (Xi,U − Ziβ) − F (Xi,L − Ziβ)
−

∫Xi,L−Ziβ
Xi,U−Ziβ

α(u)ϕ�(u)du

F (Xi,U − Ziβ) − F (Xi,L − Ziβ)
.

In this expression, the appearance of ϕ� in the integral suggests that it may
be convenient to parameterize the nuisance and to define the score operator in
terms of the function µ(t) =

∫ t
−∞ α(u)ϕ�(u)du, so that

Sx =
n∑

i=1

1{x=Xi,U−Ziβ}/dx− 1{x=Xi,L−Ziβ)}/dx
F (Xi,U − Ziβ) − F (Xi,L − Ziβ)

and the efficient score, (8), is

n∑
i=1

(α(Xi,U − Ziβ) − α(Xi,L − Ziβ))Zi

F (Xi,U − Ziβ) − F (Xi,L − Ziβ)
− µ(Xi,U − Ziβ) − µ(Xi,L − Ziβ)
F (Xi,U − Ziβ) − F (Xi,L − Ziβ)

.

The orthogonality equations, (9), take the form of the type II Fredholm equation
for µ,

n
P{Xi,U−Ziβ=x}

dx E

{
(α(x)−α(Xi,L−Ziβ))Zi

(F (x)−F (Xi,L−Ziβ))2 − µ(x)−µ(Xi,L−Ziβ)

(F (x)−F (Xi,L−Ziβ))2

∣∣∣∣Xi,U−Ziβ=x
}

−nP{ Xi,L−Ziβ=x}
dx E

{
(α(Xi,U−Ziβ)−α(x))Zi

(F (Xi,U−Ziβ)−F (x))2 − µ(Xi,U−Ziβ)−µ(x)

(F (Xi,U−Ziβ)−F (x))2

∣∣∣∣Xi,L−Ziβ=x
}
.

This does not have an explicit solution but approximate solutions may be found.
Similar calculations appear in Rabinowitz, Tsiatis and Aragon (1995).

3.7. Logistic regression from case-control data with independent co-
variates

Let X1 and X2 be independent random variables with unspecified marginal
densities α1 and α2 respectively, and let Y be Bernoulli with conditional ex-
pectation given X1 and X2 equal to π(X1,X2;β), where β is a finite dimen-
sional parameter of interest and π is known. Let (X1,i,X2,i, Yi), i = 1, . . . , n,
be drawn from the conditional distribution of (X1,X2, Y ) given Y = 1, and let
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(X1,i,X2,i, Yi), i = n+ 1, . . . , n+m, be drawn from the conditional distribution
of (X1,X2, Y ) given Y = 0. The likelihood is

n∏
i=1

α1(X1,iα2(X2,iπ(X1,iX2,i, 1)∫ ∫
α1(x1)α2(x2)π(x1, x2, 1)

n+m∏
i=1

α1(X1,iα2(X2,iπ(X1,iX2,i, 0)∫ ∫
α1(x1)α2(x2)π(x1, x2, 0)

.

Let X be the cross product of the ranges of X1 and X2, assumed disjoint
without loss of generality, and define Ψ by

Ψ1(ζ1, ζ2)(x1) =
α1(t) exp {ζ1(x1)}∫

α1(u1) exp {ζ1(u1)} du1
,

Ψ2(ζ1, ζ2)(x2) =
α2(t) exp {ζ2(x2)}∫

α2(u2) exp {ζ2(u2)} du2
.

Then, for x1 in the range of X1,

Sx1 =

n+m∑
i=1

[
1{X1,i∈(x1,x1+dx1)}

dx1
−

∫
α1(x1)α2(x2)π(x1, x2; β)Yi{1−π(x1, x2; β))}1−Yi dx2∫ ∫

α1(u1)α2(u2)π(u1, u2; β)Yi{1 − π(u1, u2; β)}1−Yi du1du2

]
,

and for x2 in the range of X2,

Sx2 =

n+m∑
i=1

[
1{X2,i∈(x2,x2+dx2)}

dx2
−
∫

α1(x1)α2(x2)π(x1, x2; β)Yi{1 − π(x1, x2; β)}1−Yi dx1∫ ∫
α1(u1)α2(u2)π(u1, u2; β)Yi{1−π(u1, u2; β)}1−Yi du1du2

]
.

Then the residual from the projection of the jth component of the score for β,
is

n+m∑
i=1


{Yi − π(X1,i,X2,i;β)} d

dβj
π(X1,i,X2,i;β)

π(X1,i,X2,i;β) − π2(X1,i,X2,i;β)
− ϕ�

1(X1,i) − ϕ�
2(X2,i)

−
∫ ∫ [ {Yi−π(x1,x2;β)} d

dβj
π(x1,x2;β)

π(x1,x2;β)−π2(x1,x2;β) −ϕ�
1(x1)−ϕ�

2(x2)

]
µ(x1, x2, Yi)dx1dx2

)
,

where

µ(x1, x2, y) =
α1(x1)α2(x2)π(x1, x2;β)y{1 − π(x1, x2;β)}1−y∫ ∫

α1(u1)α2(u2)π(u1, u2;β)y{1 − π(u1, u2;β)}1−ydu1du2
;

the orthogonality equations, (9), may be written as the pair of Fredholm type II
integral equations, for all x1

m

∫ {0 − π(x1, x2;β)} d
dβj

π(x1, x2;β)

π(x1, x2;β) − π2(x1, x2;β)
− ϕ�

1(x1) − ϕ�
2(x2)


µ(x1, x2, 0)dx2

+ n

∫ {1 − π(x1, x2;β)} d
dβj

π(x1, x2;β)

π(x1, x2;β) − π2(x1, x2;β)
− ϕ�

1(x1) − ϕ�
2(x2)


µ(x1, x2, 1)dx2,
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and for all x2

m

∫ {0 − π(x1, x2;β)} d
dβj

π(x1, x2;β)

π(x1, x2;β) − π2(x1, x2;β)
− ϕ�

1(x1) − ϕ�
2(x2)


µ(x1, x2, 0)dx1

+ n

∫ {1 − π(x1, x2;β)} d
dβj

π(x1, x2;β)

π(x1, x2;β) − π2(x1, x2;β)
− ϕ�

1(x1) − ϕ�
2(x2)


µ(x1, x2, 1)dx1.

It may be of interest to note that, when π is a nontrivial function of both x1 and
x2, the efficient score is not equivalent to the score that is obtained through the
prospective likelihood described in Prentice and Pyke (1979).

3.8. Current status and complete data

Let T denote a failure time and let C denote a censoring time. Suppose that
C and T are independent. Denote the distribution function of T by F , supposed
unspecified. Denote the distribution function of C by G. Let Y be the indicator
that T is less than C. Let β denote the parameter of interest, F (t), and define
the nuisance parameter α by

α(s)ds =

{
dF (s)/β if s ≤ t,

dF (s)/(1 − β) if s > t.

Let Ti, i = 1, . . . , n, be independent and identically distributed according to the
distribution of T , and let (Cj , Yj), j = 1, . . . ,m, be independent and identically
distributed according to the joint distribution of C and Y . The likelihood is

n∏
i=1

α(Ti)(1/β)1{Ti≤t}(1/(1 − β))1{Ti>t}
m∏

j=1

(
α(s)(1/β)1{s≤t} (1/(1 − β))1{s>t}

)Yj

×
(
1 − α(s)(1/β)1{s≤t} (1/(1 − β))1{s>t}

)1−Yj
.

Let X be [0,∞) and define Ψ by

Ψ(ζ)(s) =



α(s) exp{ζ(s)}/ ∫ t

0 α(u) exp{ζ(u)}du. if s ≤ t,

α(s) exp{ζ(s)}/ ∫∞t α(u) exp{ζ(u)}du. if s > t.

Then,

Sx =




∑n

i=1

[
1{Ti∈(x,x+dx)}

dx
− α(x)1{Ti≤t}

]
+
∑m

j=1

Yj−F (Aj)

F (Aj)−F2(Aj)
α(x)

(
F (t)1{x≤Aj≤t}−F (Aj)1{Aj≤t}

)
if x ≤ t,

∑n

i=1

[
1{Ti∈(x,x+dx)}

dx
−α(x)1{Ti≤t}

]
+
∑m

j=1

Yj−F (Aj)

F (Aj)−F2(Aj)
α(x)

(
{F (Aj)−F (t)}1{t≤Aj≤x}−{1 − F (Aj)}1{Aj>x}

)
if x > t,
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so that the efficient score, (8), is

n∑
i=1

1{Ti≤t} − β

β(1 − β)
+

m∑
j=1

Yj − F (Aj)
F (Aj){1 − F (Aj)}

F (Aj ∧ t){1 − F (Aj ∨ t)}
β(1 − β)

+
n∑

i=1

ϕ��(Ti) +
m∑

j=1

Yj − F (Aj)
F (Aj){1 − F (Aj)}

∫ Aj

−∞
ϕ��(s)f(s)ds,

where

ϕ��(s) = ϕ�(s) − 1{s≤t}
∫ t

−∞
ϕ�(u)α(u)du − 1{s>t}

∫ ∞

t
ϕ�(u)α(u)du.

The orthogonality equations (9) are

f(x)b(x) = f(x)ϕ��(x) − f(x)
∫ ∞

−∞
ϕ��(s)K(x, ds),

where

b(x) =




∫ t
−∞ dG(a)

(
1{x≤a}−F (a)

F (t)

F (t){1−F (a)}

)
if x ≤ t,

− ∫∞t dG(a)

(
1{x>a}− 1−F (a)

1−F (t)

F (a){1−F (t)}

)
if x > t,

and

K(x, ds) =




f(s)ds1{s≤t}
∫ t
s dG(a)

(
1{x≤a}−F (a)

F (t)

F (a){1−F (a)}

)
if x ≤ t,

f(s)ds1{s>t}
∫ s
t dG(a)

(
1{x>a}− 1−F (a)

1−F (t)

F (a){1−F (a)}

)
if x > t.

This problem is treated in Bagiella (1997).
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