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Abstract: In statistical ecology, the number of shared species is a standard measure

of similarity between two communities. Assume that a multinomial sample is drawn

from each of the two target communities. Each observation (individual) in the

sample is classified to species identity, and the frequency for each observed species

is recorded. This paper uses the concept of sample coverage to estimate the number

of species in common to the two communities (the number of shared species). The

result generalizes Chao and Lee (1992) to a two-community situation. Simulation

results are reported to examine the performance of the proposed estimators. Bird

census data collected from April 1994 to March 1995 in Ke-Yar and Chung-Kang

estuaries in Taiwan are used to illustrate the estimation procedure.
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1. Introduction

Estimating the number of species in a community is a classical problem in
ecology, biogeography, and conservation biology, and parallel problems arise in
many other disciplines. This research topic has been extensively discussed in
the literature; see Bunge and Fitzpatrick (1993), Seber (1982, 1986, 1992) for
a review of the historical and theoretical development. In a subsequent paper,
Bunge, Fitzpatrick and Handley (1995) also compared three principal frequentist
procedures using simulation results. Ecologists and other biologists have long
recognized that there are undiscovered species in almost every survey or species
inventory.

Very often, comparison of two communities is required in ecological applica-
tions and environmental policy decisions. The two communities could be candi-
date sites for conservation or restoration, or areas at different latitudes or eleva-
tion above sea level (Colwell (1973), Colwell and Coddington (1994), Feinsinger
(1976), Karr, Robinson, Blanke and Bierregaard (1990)), or could represent the
same area at two different times, e.g., before and after pollution (Grassle and
Smith (1976)). We were motivated by the bird data collected in two estuaries
in Taiwan. These two river estuaries (Ke-Yar River and Chung-Kang River)
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are only 20 kilometers apart and both have been heavily polluted. Bird data
were collected every Sunday morning from April 1994 to March 1995 in these
two areas. These two areas share many species because of similar environments
for both resident and migratory birds. The local wild bird society is especially
interested in knowing whether there were species present in both estuaries but
not observed in both, during this year-long survey.

A common approach to comparing two communities is to measure the extent
of “similarity” (using an overlap index) or “dissimilarity”. For example, Gower
(1985) listed 15 different overlap measures based on various justifications; see also
Pielou (1975, 1976) and Ludwig and Reynolds (1988) for details. Grassle and
Smith (1976) proposed a new measure of similarity based on the expected number
of species shared between sub-samples of larger collections for two sites. Colwell
and Coddington (1994) suggested the use of a dissimilarity measure called “com-
plementarity”. All these measures are functions of the number of species shared
by two samples. Hence an estimator of the shared species plays an important
role in comparing two communities. Surprisingly, ecologists have generally used
the observed number of shared species as the real number of shared species. To
our knowledge, there has been little discussion in the literature regarding the es-
timation of unobserved shared species. It seems worthwhile to explore estimation
procedures for this topic.

Section 2 briefly reviews the sample coverage approach for the one-
community case, since some background is needed for extension. Section 3
presents the model for the two-community case and the procedure to estimate
the number of shared species. Simulation results are reported in Section 4 to
investigate the performance of the proposed estimators. The bird data collected
in the two estuaries in Taiwan, as described above, are used in Section 5 to il-
lustrate the estimation procedure. Details on the data (Chen, Hwang, Chao and
Kuo (1995)) appeared in Chinese in the Journal of Chinese Statistical Associa-
tion. A program EstimateS (Colwell (1997)) which calculates various estimators
of species richness including the sample coverage approach is readily available
from the website http://viceroy.eeb.uconn.edu/estimates.

2. Review of Estimation for One Community

This section reviews the sample coverage approach to estimating the number
of species for one community. Assume that there are S species in the community
and they are indexed by 1, . . . , S. Denote the probabilities of species discovery
by

∏
= (π1, . . . , πS) where

∑S
i=1 πi = 1. A random sample of size m is taken

with replacement from the community and each individual is classified correctly
to species identity. Let Xi be the number of individuals of the ith species ob-
served in the sample. Thus

∑S
i=1 Xi = m. Here we remark that the summation
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is just over all the observed species because any unobserved species (Xi = 0)
would not contribute to the sum. The same remark applies to similar summa-
tions throughout this paper. The frequencies (X1, . . . ,XS) are multinomially
distributed.

The basic idea is that, whereas it is difficult to estimate the number of
species when probabilities of species discovery are heterogeneous, the sample
coverage can nonetheless be well-estimated in such a case. (The sample coverage
is defined below.) Therefore, we first estimate the sample coverage and then use
it to estimate the number of species. Refer to Chao and Lee (1992), Chao, Ma
and Yang (1993) for details. The following notation generally follows that used
in Chao and Lee (1992) and Colwell (1997).

In the sample coverage approach, the frequencies (X1, . . . ,XS) are first clas-
sified into “frequency counts” (f1, . . . , fm), where m is the sample size and fk

denotes the number of species that were observed exactly k times in the sample,
that is, fk =

∑S
j=1 I[Xj = k], where I[.] is the usual indicator function. Note

that the zero-frequency f0 is unobservable and the problem is then reduced to
estimating the expected value of f0. It is intuitively clear that species that occur
many times would be discovered in any sample anyway, so they carry almost
no information regarding the number of unobserved species. Only those species
with small discovery probabilities would be either unobserved or observed once,
twice, . . . or only a few times. Therefore, the lower-order frequency counts carry
nearly all available information about zero-frequency. We base the estimate of
unobserved species on (f1, . . . , f10), then complete the estimate by adding on the
number of species each represented by more than 10 individuals. The cut-off
number 10 has been selected based on empirical experiences, see Chao, Ma and
Yang (1993).

Conceptually, the foregoing arguments lead to separating the observed
species into two groups: abundant and rare. Only the latter group is used to
estimate the number of unobserved species. That is, we consider only a sub-
community by temporarily ignoring the abundant species. Let the total number
of abundant species in the sample be Sabun =

∑m
k=11 fk =

∑S
i=1 I[Xi > 10] and

the number of observed rare species be Srare =
∑10

k=1 fk =
∑S

i=1 I[0 < Xi ≤ 10].
Hence there are N = S − Sabun species in the sub-community, counting unob-
served as well as observed rare species. Since we can permute the species ordering
so that all the abundant species are the last ones, the data restricted to the sub-
community become (X1, . . . ,XN ). The sample size reduces to n =

∑10
k=1 kfk =

m − ∑S
i=1 XiI[Xi > 10]. Theoretically it can be verified that the frequencies

(X1, . . . ,XN ) are also distributed as a multinomial distribution with cell proba-
bility P = (p1, . . . , pn) where pi = πi/{1 − ∑S

j=1 πjI[Xj > 10]}. Therefore, the
data restricted to the sub-community also have a multinomial model structure.
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It is statistically impossible, but fortunately also unnecessary, to identify
each single cell probability in P = (p1, . . . , pN ). We assume that the information
on the species discovery probabilities is concentrated in a non-negative measure
called “coefficient of variation” (CV). The CV for the sub-community is defined
as γ = [N−1 ∑N

i=1(pi − p)2]1/2/p where p =
∑N

i=1 pi/N = 1/N . The value of
CV characterizes the degree of heterogeneity among the pi’s (or in ecological
terminology, the degree of numerical dominance in the relative abundance distri-
bution). The CV vanishes if and only if the sub-community is homogeneous (i.e.,
all pi’s are equal). The larger the CV, the greater the degree of heterogeneity
among species in probability of discovery. The most difficult part in this estima-
tion procedure lies with the estimation of CV, especially when CV is relatively
large and data are sparse. The whole community with both abundant and rare
species would typically have a large value of CV. Therefore, another important
reason for considering only rare species is that the CV for the restricted sub-
community is substantially lower than that of the whole community. Hence we
can obtain a more sensitive and reliable estimate of CV for the sub-community.

The sample coverage is mathematically defined as

C =
N∑

i=1

piI[Xi > 0].

In effect, the sample coverage represents the fraction of actual total (rare) species
that is discovered in the sample. We can interpret 1 − C as the conditional (on
data) probability of discovering a new species if an additional observation (indi-
vidual) were to be taken. A well-known estimator, originally proposed by Turing
(see Good (1953)), for this conditional probability is the proportion of singletons
in the sample (i.e., f1/

∑10
k=1 kfk). This can be intuitively understood because a

new species must be a singleton in the enlarged sample including the additional
individual. The sample coverage estimate for the sub-community thus becomes
Ĉ = 1−f1/

∑10
k=1 kfk. This estimator performs well even in heterogeneous cases,

e.g., Esty (1986).
It follows from the definition of the sample coverage that if p1 = p2 = · · · =

pn = 1/N , then C = Srare/N , where Srare is the number of rare species in the
sample. Hence a valid estimator in the homogeneous cases for the sub-community
is

N̂0 = Srare/Ĉ.

Consequently, the proposed estimator for the whole community in the homoge-
neous case is

Ŝ0 = Sabun + Srare/Ĉ (2.1)
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If heterogeneity (species dominance) is present, we attempt to account for
the heterogeneity by adjusting Srare/Ĉ based on an estimate of the parameter
CV. The proposed estimator of N is

N̂ =
Srare

Ĉ
+

f1

Ĉ
γ̂2,

where γ̂2 = max{(Srare/Ĉ)
∑10

i=1 i(i−1)fi/[n(n−1)]−1, 0} denotes the estimator
of squared CV (Chao and Lee (1992)). For a homogeneous case, the last term
is not needed because the CV is 0. Thus the term that is proportional to the
magnitude of heterogeneity represents the undercount if we adopt an estimator
without considering heterogeneity in a heterogeneous community. Adding in the
number of abundant species, we obtain an estimate for the whole community as

Ŝ = Sabun +
Srare

Ĉ
+

f1

Ĉ
γ̂2. (2.2)

An analytic approximate standard error of Ŝ0 and Ŝ is provided in Chao and Lee
(1992).

3. Models and Estimators for Two Communities

We now extend our approach to the case of two communities. Assume that
there are S1 species in community I and there are S2 species in community II. The
probabilities of species discovery in community I and II are denoted respectively
by

∏
= (π1, . . . , πS1) and

∏∗ = (π∗
1 , . . . , π

∗
S2

) where πi > 0, π∗
i > 0,

∑S1
i=1 πi = 1

and
∑S2

i=1 π∗
i = 1. Let the number of shared species be S12, the parameter of

interest.
Two random samples (sample I and sample II) of sizes m1 and m2 are taken

respectively from community I and II. Assume that S1(obs) and S2(obs) distinct
species are actually observed in sample I and II respectively, and S12(obs) distinct
shared species are observed. As in the one-community case, we first separate our
observed shared species into two groups. One group (“abundant shared species”)
includes species with at least one of the frequencies greater than 10, and the other
group (“rare shared species”) includes species with both frequencies less than or
equal to 10. We rely exclusively on this group of “rare shared species” to estimate
the number of unobserved shared species, then add in the number of abundant
shared species to the resulting estimate. Let the number of abundant shared
species be S12(abun). By temporarily setting aside these abundant shared species,
we perform inference on the restricted two sub-communities.

As in the one-community case, the data confined to the sub-communities
have the same probability structures as in the original communities. There are
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N1 = S1 − S12(abun) species in sub-community I with probability of species dis-
covery P = (p1, . . . , pN1) where pi > 0 for all i and

∑N1
i=1 pi = 1. The relationship

between
∏

= (π1, . . . , πS1) and P = (p1, . . . , pN1) can be easily formulated, as
indicated in the previous section. Similarly, we have N2 = S2 − S12(abun) species
in the sub-community II with species discovery probabilities P∗ = (p∗1, . . . , p∗N2

),
p∗i > 0 for all i and

∑N2
i=1 p∗i = 1. In the two sub-communities, the number of

shared species becomes N12 = S12−S12(abun). Without loss of generality, assume
that the first N12 species in P and P∗ are these shared species.

Denote the observed frequencies in the two sub-communities by (X1, . . . ,

XN1) and (Y1, . . . , YN2) respectively. The reduced samples sizes are n1 =
∑N1

i=1 Xi

and n2 =
∑N2

i=1 Yi. In the two sub-communities, the number of distinct (rare)
shared species in the samples becomes S12(rare) = S12(obs) − S12(abun). For nota-
tional simplicity, we denote S12(rare) by M12 in the following derivations. That
is, S12(rare) ≡ M12 =

∑N12
i=1 I[0 < Xi ≤ 10, 0 < Yi ≤ 10]. Again, we can as-

sume that these observed shared species are the first M12 species in the actual
N12 shared species. For index i = M12 + 1,M12 + 2, . . . , N12, we have Xi = 0,
Yi �= 0; or Yi = 0, Xi �= 0; or Xi = Yi = 0. In the first two situations, the ith
species appears in one of the two samples as a unique species, but it is actually
an unobserved shared species because it was missed in the other sample.

The extension to the estimation of the number of shared species in two com-
munities is not directly obvious. In addition to a heterogeneity measure for each
community, we also need a parameter to specify the “dependence” of the two
sets of species probabilities P and P∗. Therefore, three parameters are needed.
It would be conceptually simpler if we could adopt the use of two heterogeneity
measures and one dependence measure in the inference. However, this approach
results in some non-estimable quantities. We thus need to introduce one ad-
ditional set of probabilities Q = (Q1, . . . , QN12), for the shared species where
Qi = pip

∗
i . The three measures (two heterogeneity parameters and one depen-

dence parameter) are then reparameterized into the following three parameters
called “coefficient of covariation” (CCV). We define them in the following two
types of models:

• Fixed-effects model:

Assume that the average of the shared species probabilities (p1, . . . , pN12)
in sub-community I is p; and the average for the shared species probabilities
(p∗1, . . . , p∗N12

) in sub-community II is p∗. Let Q =
∑N12

i=1 Qi/N12. Define the
following coefficients of covariation (CCV):

CCV of P and Q: Γ1 =
N−1

12

∑N12
i=1 (pi − p)(Qi − Q)

pQ
,
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CCV of P∗ and Q: Γ2 =
N−1

12

∑N12
i=1 (p∗i − p∗)(Qi − Q)

p∗Q
,

CCV of P,P∗ and Q: Γ12 =
N−1

12

∑N12
i=1 (pi − p)(p∗i − p∗)(Qi − Q)

p∗Q
.

• Random-effects model:

Assume that (pi, p
∗
i ), i = 1, . . . , N12, are a random sample from a two di-

mensional distribution F (p, p∗) with marginal distributions F1(p) and F2(p∗).
Let p0 =

∫
pdF1(p), p∗0 =

∫
p∗dF2(p∗) and Q0 =

∫
pp∗dF (p, p∗). Define

CCV of P and Q: Γ1 =
∫
(p − p0)(pp∗ − Q0)dF (p, p∗)

p0Q0
,

CCV of P∗ and Q: Γ2 =
∫
(p∗ − p∗0)(pp∗ − Q0)dF (p, p∗)

p∗0Q0
,

CCV of P,P∗ and Q: .Γ12 =
∫
(p − p0)(p∗ − p∗0)(pp∗ − Q0)dF (p, p∗)

p0p∗0Q0
.

In a random-effects model, the two sets of probabilities P and P∗ are called
independent if F (p, p∗)=F1(p)F2(p∗), which implies that

∫
h(p)g(p∗)dF (p, p∗)=∫

h(p)dF1(p)×∫
g(p∗)dF2(p∗) for any functions h and g. In a fixed-effects model,

the independence assumption means that N−1
12

∑N12
i=1 h(pi)g(p∗i )=[N−1

12

∑N12
i=1 h(pi)]

×[N−1
12

∑N12
i=1 g(p∗i )]. As a special case, we have N−1

12

∑N12
i=1 pα

i (p∗i )β =[N−1
12

∑N12
i=1pa

i ]
×[N−1

12

∑N12
i=1(p

∗
i )

β ] for any positive integers α and β.
In the following, we use a fixed-effects model approach to obtain the proposed

estimators. The random-effects model will produce exactly the same estimators.
First, the intuitive meaning of the parameters CCV can be understood by con-
sidering the following special cases.
(1) If both sets of species probabilities P and P∗ are homogeneous, then they

are independent. We can readily see that Γ1 = Γ2 = Γ12 = 0.
(2) If p1p

∗
1 = p2p

∗
2 = · · · = pN12p

∗
N12

(i.e., the set of probabilities Q is homoge-
neous), then it follows from the definition that Γ1 = Γ2 = Γ12 = 0. Note
that in this case, the two sets of probabilities P and P∗ are not necessarily
independent.

(3) When community I is heterogeneous but community II is homogeneous, it is
clear that the two sets of probabilities are independent. The CCVs in this
case are Γ2 = Γ12 = 0 and Γ1 = γ2

1 = [N−1
12

∑N12
i=1 (pi − p)2]/p2, which is the

squared CV of the shared species in community I. Similarly, if community I
is homogeneous but community II is heterogeneous, then Γ1 = Γ12 = 0 and
Γ2 = γ2

2 = [N−1
12

∑N12
i=1 (p∗i − p∗)2]/p∗2, the squared CV of the shared species

in community II.
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(4) If both communities are heterogeneous, but the two sets of probabilities are
independent, simple expansion leads to Γ1 = γ2

1 , Γ2 = γ2
2 and Γ12 = γ2

1γ2
2 .

Hence in the special case of independence, only the two CVs need to be
identified in the analysis.

Although in the above special cases, all CCVs appear to be nonnegative, they
could be negative in other situations. In general, the CCVs can be expressed as:

Γ1 =
N12σ21

σ10σ11
− 1, Γ2 =

N12σ12

σ01σ11
− 1, (3.1a)

Γ12 =
N2

12σ22

σ10σ01σ11
− N12σ11

σ01σ10
− Γ1 − Γ2, (3.1b)

where σαβ =
∑N12

i=1 pα
i (p∗i )β.

We now define the sample coverage for the two sub-communities as follows:

C12 =
∑N12

i=1 pip
∗
i I[Xi > 0, Yi > 0]∑N12

i=1 pip∗i
. (3.2)

Thus the sample coverage represents the fraction of product probabilities associ-
ated with the shared species that were discovered in both samples. Note that

I[Xi > 0, Yi > 0] = 1 − I[Xi = 0] − I[Yi = 0] + I[Xi = 0, Yi = 0].

Then

E(C12) = 1 −
∑N12

i=1 pip
∗
i [(1 − pi)n1 + (1 − p∗i )n2 − (1 − pi)n1(1 − p∗i )n2 ]∑N12

i=1 pip∗i
. (3.3)

≈ 1 −
∑N12

i=1 pip
∗
i [(1 − pi)n1−1 + (1 − p∗)n2−1 − (1 − pi)n1−1(1 − p∗i )n2−1]∑N12

i=1 pip∗i
.

The last approximation is valid if the sample sizes n1 and n2 are large enough.
Based on the moments of the multinomial distribution, we can verify that

E
( M12∑

i=1

XiYi

)
= n1n2

N12∑
i=1

pip
∗
i , (3.4)

E
( M12∑

i=1

XiI[Yi = 1]
)

= n1n2

N12∑
i=1

pip
∗
i (1 − p∗i )

n2−1,

E
( M12∑

i=1

YiI[Xi = 1]
)

= n1n2

N12∑
i=1

pip
∗
i (1 − pi)n1−1,

E
( M12∑

i=1

I[Xi = Yi = 1]
)

= n1n2

N12∑
i=1

pip
∗
i (1 − pi)n1−1(1 − p∗i )

n2−1.
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Hence an estimator of the sample coverage can be seen to be

Ĉ12 = 1 −
∑M12

i=1 {YiI[Xi = 1] + XiI[Yi = 1] − I[Xi = Yi = 1]}∑M12
i=1 XiYi

(3.5)

In obtaining (3.5), we use the approximation that the expectation of a ratio is
approximately the ratio of the expectations. The discrepancies here are negligible
when sample coverage is not too low (say, not less than 70%). Unless there are
many shared species that are abundant in one community but rare in the other,
the sample coverage estimator (3.5) performs well, as we will see in the simulation
section. As in the one-community case, the number of singletons in each sample
plays an important role in the estimation of sample coverage. It follows from
the definition in (3.2) that if the set of probabilities Q is homogeneous, that
is, p1p

∗
1 = p2p

∗
2 = · · · = pN12p

∗
N12

, then C12 = M12/N12. Therefore, a natural
estimator of N12 when all product probabilities are equal is

N̂0
12 = M12/Ĉ12 = S12(rare)/Ĉ12. (3.6)

Also notice that

E(M12) =
N12∑
i=1

=
N12∑
i=1

[1 − (1 − pi)n1 ][1 − (1 − p∗i )
n2]. (3.7)

This implies that E(M12)/E(C12) = N12 if Q is homogeneous. However, the
identity is no longer valid if Q is heterogeneous. To evaluate the discrepancy
between E(M12)/E(C12) and N12 in such cases, we need more notation. Let
f1+ =

∑M12
i=1 I[Xi = 1, Yi ≥ 1] be the number of shared species which are single-

tons in sample I; f+1 =
∑M12

i=1 I[Xi ≥ 1, Yi = 1] be the number of shared species
which are singletons in sample II; f11 =

∑M12
i=1 I[Xi = 1, Yi ≥ 1] be the number

of shared species which are singletons in both samples. A simple expansion of
E(M12)/E(C12) results in the following:

M(M12)
E(C12)

= N12 − 1
E(C12

)[E(f1+)Γ1 + E(f+1)Γ2 + E(f11)Γ12] + R, (3.8)

where R is a remainder term. The magnitude of R depends on the two sets
of P and P∗. We provide the following justifications of ignoring the remainder
term.
(1) If both sets of species probabilities are homogeneous, it is easy to check that

R = 0.
(2) If p1p

∗
1 = p2p

∗
2 = · · · = pN12p

∗
N12

, we also have R = 0.
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(3) If community II is homogeneous and community I is heterogeneous, where
(p1, . . . , pN1) is a random sample from a Dirichlet distribution, then we can
show that R/N12 converges to 0 as N12 grows large and n1/N12 → c1 > 0. The
above result is mainly based on Chen (1980). See Chen, Hwang, Chao and
Kuo (1995) for details. Similar results hold if community I is homogeneous
and community II is heterogeneous.

(4) Consider the following special (independent) heterogeneous case: If (p1, . . . ,

pN1) is a random sample from a Dirichlet distribution with parameter a and
(p∗1, . . . , p∗N2

) is also a random sample from a Dirichlet with parameter b,
then R/N12 tends to 0 as N12 grows large enough, n1/N12 → c1 > 0 and
n2/N12 → c2 > 0.

If R can be ignored in the expansion of (3.8), then we can subsequently obtain
estimators if the CCV parameters can be estimated. Note that

E
( M12∑

i=1

Xi

)
= n1

N12∑
i=1

pi[1 − (1 − p∗i )
n2 ] ≈ n1

N12∑
i=1

pi,

E
( M12∑

i=1

Yi

)
= n2

N12∑
i=1

p∗i [1 − (1 − pi)n1 ] ≈ n2

N12∑
i=1

p∗i ,

E
( M12∑

i=1

Xi(Xi − 1)Yi

)
= n1(n1 − 1)n2

N12∑
i=1

p2
i p

∗
i ,

E
( M12∑

i=1

Yi(Yi − 1)Xi

)
= n2(n2 − 1)n1

N12∑
i=1

(p∗i )
2pi,

E
( M12∑

i=1

Xi(Xi − 1)Yi(Yi − 1)
)

= n1(n1 − 1)n2(n2 − 1)
N12∑
i=1

p2
i (p

∗
i )

2.

Based on the above identities and the expressions (3.1a), (3.1b), (3.4), the CCV
can be estimated as follows:

Γ̂1 =
N̂0

12n1T21

(n1 − 1)T10T11
− 1, Γ̂2 =

N̂0
12n2T12

(n2 − 1)T01T11
− 1, (3.9a)

Γ̂12 =
n1n2(N̂0

12)
2T22

(n1 − 1)(n2 − 1)T10T01T11
− N̂0

12T11

T01T10
− Γ̂1 − Γ̂2, (3.9b)

where

T10 =
M12∑
i=1

Xi, T01 =
M12∑
i=1

Yi, T11 =
M12∑
i=1

XiYi, T21 =
M12∑
i=1

Xi(Xi − 1)Yi,

T12 =
M12∑
i=1

XiYi(Yi − 1), T22 =
M12∑
i=1

Xi(Xi − 1)Yi(Yi − 1).
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Using the concept of sample coverage and the estimates of the CCVs, we propose
the following estimator of the number of shared species for the sub-communities:

N̂12 =
M12

Ĉ12

+
1

Ĉ12

[f1+Γ̂1 + f+1Γ̂2 + f11Γ̂12], (3.10)

where Ĉ12 is derived in (3.5). Adding the number of abundant shared species,
S12(abun), to the resulting estimator, we have the following estimator for the whole
communities when Q is homogeneous:

Ŝ0
12 = S12(abun)+N̂0

12 = S12(abun)+S12(rare)/Ĉ12. (3.11a)

If Q is heterogeneous (in which case the data should yield relatively large esti-
mated CCVs), our estimator becomes

Ŝ12 =S12(abun)+N̂12 =S12(abun)+
S12(rare)

Ĉ12

+
1

Ĉ12

[f1+Γ̂1+f+1Γ̂2+f11Γ̂12]. (3.11b)

Note that (3.11a) and (3.11b) are natural extensions of (2.1) and (2.2).
An analytic variance estimator for the proposed estimators is still not avail-

able. We suggest, instead, the use of a bootstrap procedure. First we divide
the data into two parts: shared species {(Xi, Yi),Xi > 0, Yi > 0, i = 1, . . . ,M12}
and unique species (one of the frequencies is 0). The bootstrap procedure is ap-
plied only to the shared species part since the unique species have little effect on
the resulting estimation (they change only the sample size, due to restriction to
sub-communities, and thus affect the CCV estimates only slightly). Consider a
“shared” population with N̂12 shared species. There are M12 “observable” shared
species with frequencies (Xi, Yi), i = 1, . . . ,M12, and N̂12 − M12 “unobservable”
shared species with frequencies (0, 0). The cell probability for each pair (Xi, Yi)
is 1/N̂12. A random sample of size N̂12 is drawn with replacement from this pop-
ulation of paired values and a bootstrap replication {(X∗

i , Y ∗
i ), i = 1, . . . , N̂12}

can be generated. Then based on the replication and the observed unique species
in the original sample, estimates N̂∗

12 for the sub-communities and Ŝ∗
12 for the

whole communities are calculated. After B replications, we have B estimates
{Ŝ∗1

12 , . . . , Ŝ∗B
12 } and the bootstrap variance estimator is the sample variance of

the resulting B estimates. The performance of this bootstrap standard error
estimation will be examined in the following section.

4. Simulation Study

A simulation study was carried out to investigate the performance of the pro-
posed estimator (3.11a) for the homogeneous case and the estimator (3.11b) for
the heterogeneous case. We considered one homogeneous and four heterogeneous
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communities with 200 species in each; the five sets of species discovery probabil-
ities are given as follows. (The constant c in Cases II and IV is a normalizing
constant such that the sum of species probabilities is equal to 1.)

Community I: πi = 0.005, i = 1, . . . , 200.

Community II: πi = c/(i + 10), i = 1, . . . , 200.

Community III: πi = 0.01, i = 1 − 50; πi = 0.005, i = 51 − 100; πi = 0.003,
i = 101 − 150; πi = 0.002, i = 151 − 200.

Community IV: πi = c/i, i = 1, . . . , 200.

Community V: (π1, . . . , π200) represents a random sample from a Dirichlet dis-
tribution with parameter 2, which is a multivariate generalization of a beta dis-
tribution.
Communities II and IV are in a form of truncated logarithmic series, which
is widely prevalent in modeling natural frequency data; see Fisher, Corbet and
Williams (1943). It is also called Zipf’s law in linguistics and behavioral sciences.

We considered all 15 possible combinations of two communities: I vs. I, I
vs. II,. . ., V vs. V as our target communities. Thus we have S1 = S2 = 200.
Two cases for the number of shared species were selected: S12 = 80 and 120.
We assume that the first S12 species are the shared species. In other words, in
communities II, III and IV the shared species are the most abundant species
whereas in communities I and V the shared ones are equally rare as the unique
species. The sample sizes were taken as m1 = m2 = 400. Tables 1 and 2 present
the simulation results for S12 = 120 and 80 respectively.

For each fixed pair of communities, 200 data sets were generated. Each data
set consisted of two multinomial samples with 400 individuals in each sample.
Then for each generated data set, the observed number of shared species, S12(obs),
was recorded; the estimator Ŝ0

12 given in (3.11a) and the estimator Ŝ12 given in
(3.11b) as well as their bootstrap s.e. estimates using 200 replications were
obtained. The resulting estimates and s.e.’s were averaged to give the results
under the heading “average estimate” and “average estimated s.e.” in Tables 1
and 2. The sample s.e. and sample root mean squared error (RMSE) were also
tabulated. The computer program was written in GAUSS and carried out on an
IBM RISC 6000 work-station. We also give the values of three CCVs (Γ1,Γ2,Γ12),
sample coverage (C12) and its estimator (Ĉ12) for the two sub-communities of
rare, shared species (as defined in Section 2).

It is evident from the two tables that the observed number of shared species,
S12(obs), severely underestimates in all cases. It has the largest bias and largest
RMSE. Even in the simplest situation (community I vs. I), its bias is substantial.
Hence the traditional approach of using S12(obs) as an estimator of S12 is not
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appropriate unless sample sizes are so large that all shared species are observed.
Therefore, S12(obs) will not be included in our following comparison.

When both communities are homogeneous as in the case of I vs. I, all CCVs
are zero. The proposed estimator Ŝ0

12 valid for this homogeneous case performs
very well and significantly improves over S12(obs) in bias and RMSE. When only
one community is homogeneous so that two of CCVs are 0, as in the cases of I vs.
II, I vs. III, I vs. IV and I vs. V, the estimator Ŝ0

12 still has the smallest RMSE.
This reveals that it is not worthwhile to estimate CCVs in such situations in
terms of RMSE. However, when the degree of heterogeneity in the heterogeneous
sample is severe, as in the cases of I vs. II, I vs. IV, and I vs. V, the estimator
Ŝ12 that incorporates estimated CCVs yields smaller or comparable bias. This
shows that if one community is homogeneous, we can adopt the use of estimator
Ŝ0

12 unless the other community is highly heterogeneous.
When both communities are heterogeneous (which is the case for virtually

any pair of natural communities of species), all CCVs are nonzero. The estimator
Ŝ0

12 that does not consider CCVs is biased downwards, and the magnitude of the
bias increases with the magnitude of CCVs. The proposed estimator Ŝ12 that
takes into account the CCVs can reduce bias but increase the variation due to
estimating more parameters. Both tables show that Ŝ12 generally has the smallest
bias and RMSE if community I is not one of the target communities. With respect
to RMSE, the estimation of CCVs is warranted because the reduction in bias can
compensate for the increase in variation.

The performance of the estimator Ŝ12 clearly depends on the magnitude of
CCVs. As in the one-community case, it is usually difficult to estimate CCVs.
When all CCVs are large, they cannot be accurately estimated because the
species probabilities spread over a wide range. For examples, in the cases of
II vs. II, II vs. IV and IV vs. IV in Table 1, as well as the case of IV vs. IV in
Table 2, the relatively large CCVs lead to the resulting estimate having larger
bias or variation compared with other cases.

Except for the lower sample coverage situations (I vs. IV and IV vs. V), the
sample coverage estimator Ĉ12 performs well in estimating C12 in both tables.
This is exactly the motivation for attempting to estimate the number of shared
species using the concept of sample coverage. Note that community IV, where
species discovery probability is proportional to 1/i (i.e. πi ∝ 1/i), is involved in
the two exceptional cases. In community IV, there are only few very frequent
species but many infrequent ones. For those few frequent species, if the corre-
sponding species probabilities in the other community are relatively small (such
as IV vs. I and IV vs. V), then they are likely be missed in the samples. Conse-
quently the sample coverage, defined in Equation (3.2), tends to be low. These
cases also yield a biased coverage estimator. However, for those few frequent
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species in community IV, if the corresponding species probabilities in the other
community are also large, as in the cases of IV vs. II, IV vs. III and IV vs. IV,
then they would appear in both samples and no problem arises. Generally, when
the sample coverage is relatively low (say, lower than 70%), the data provide
insufficient information about the number of species in common. In these cir-
cumstances, our proposed estimator Ŝ12 has unavoidably larger bias or variation,
although it still has the smallest RMSE and no other competing estimators exist.

Table 1. Comparison of estimators when the true parameter is S12 = 120,
m1 = m2 = 400.

S12(abs): The number of observed shared species;
Ŝ0

12: Proposed estimator for the homogeneous cases, see Equation (3.11a);
Ŝ12: Proposed estimator for the heterogeneous cases, see Equation (3.11b).

Average Sample Average Sample
Cases Γ1 Γ2 Γ12 Estimator Estimate s.e. Estimated RMSE

s.e.
I vs. I 0 0 0 S12(abs) 90 4.1 30.0

C12 = 0.752 Ŝ0
12 121∗ 9.1 9.9 9.2∗∗

(Ĉ12 = 0.749) Ŝ12 130 13.5 15.9 16.6
I vs. II 0 0.571 0 S12(abs) 87 4.2 33.3

C12 = 0.766 Ŝ0
12 111 8.4 8.6 12.4∗∗

(Ĉ12 = 0.782) Ŝ12 128∗ 14.0 16.3 16.1
I vs. III 0 0.176 0 S12(abs) 92 4.3 28.2

C12 = 0.802 Ŝ0
12 116∗ 8.2 8.2 9.0∗∗

(Ĉ12 = 0.795) Ŝ12 126 12.3 13.1 13.6
I vs. IV 0 2.064 0 S12(abs) 73 4.4 47.2

C12 = 0.655 Ŝ0
12 100 9.7 11.0 22.3∗∗

(Ĉ12 = 0.719) Ŝ12 130∗ 21.0 26.0 23.0
I vs. V 0 0.478 0 S12(abs) 78 4.4 41.8

C12 = 0.757 Ŝ0
12 105 10.8 9.8 18.2∗∗

(Ĉ12 = 0.748) Ŝ12 123∗ 18.3 19.1 18.6
II vs. II 1.127 1.127 1.974 S12(abs) 88 3.9 32.7

C12 = 0.919 Ŝ0
12 96 5.2 4.0 24.5

(Ĉ12 = 0.907) Ŝ12 129∗ 15.3 16.0 17.6∗∗

II vs. III 0.778 0.353 0.224 S12(abs) 92 4.0 28.7
C12 = 0.899 Ŝ0

12 102 5.7 4.4 19.1
(Ĉ12 = 0.897) Ŝ12 119∗ 10.0 10.9 10.0∗∗

II vs. IV 1.099 1.847 2.989 S12(abs) 74 4.3 45.8
C12 = 0.892 Ŝ0

12 84 6.2 4.7 36.5
(Ĉ12 = 0.877) Ŝ12 127∗ 21.9 22.2 23.0∗∗
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Table 1. (Continued)

Average Sample Average Sample
Cases Γ1 Γ2 Γ12 Estimator Estimate s.e. Estimated RMSE

s.e.
II vs. V 0.546 0.475 0.241 S12(abs) 76 4.8 44.2

C12 = 0.779 Ŝ0
12 97 8.9 8.2 25.1

(Ĉ12 = 0.785) Ŝ12 121∗ 17.4 18.6 17.4∗∗

III vs. III 0.309 0.309 0.027 S12(abs) 95 3.7 25.0
C12 = 0.908 Ŝ0

12 105 5.2 4.1 15.9
(Ĉ12 = 0.907) Ŝ12 115∗ 8.3 8.2 9.7∗∗

III vs. IV 0.393 1.479 0.555 S12(abs) 77 4.1 43.2
C12 = 0.841 Ŝ0

12 90 6.7 5.8 30.3
(Ĉ12 = 0.842) Ŝ12 117∗ 16.8 16.6 17.1∗∗

III vs. V 0.177 0.484 0.083 S12(abs) 80 4.9 40.5
C12 = 0.810 Ŝ0

12 99 8.1 7.5 22.1
(Ĉ12 = 0.804) Ŝ12 117∗ 13.8 15.0 14.1∗∗

IV vs. IV 2.064 2.064 6.464 S12(abs) 65 4.3 55.1
C12 = 0.888 Ŝ0

12 74 6.0 4.7 46.7
(Ĉ12 = 0.870) Ŝ12 128∗ 28.0 29.7 29.2∗∗

IV vs. V 2.028 0.407 -0.131 S12(abs) 64 4.8 56.3
C12 = 0.661 Ŝ0

12 89 10.6 11.6 33.1
(Ĉ12 = 0.711) Ŝ12 128∗ 27.9 32.7 28.9∗∗

V vs. V 0.476 0.478 0.227 S12(abs) 67 5.1 52.9
C12 = 0.757 Ŝ0

12 89 9.7 8.8 32.8
(Ĉ12 = 0.762) Ŝ12 112∗ 17.2 19.8 19.1∗∗

∗ denote the smallest bias; ∗∗ denote the smallest RMSE

The magnitude of sample coverage also has an impact on the performance
of the estimated standard errors based on a bootstrap method as described in
the end of Section 3. We can examine the behavior of the estimated s.e. by
comparing the estimated s.e. (column 8 in both tables) with the sample stan-
dard errors (column 7). Except for the low sample coverage cases, the standard
error estimates for Ŝ12 and Ŝ0

12 using a bootstrap resampling method is generally
satisfactory.

In summary, the number of observed shared species in samples severely un-
derestimates the true number of shared species. The proposed estimator Ŝ0

12 for
the homogeneous communities is still appropriate if all CCV do not deviate from
zero greatly. Otherwise, the estimator Ŝ12 incorporating the estimated CCVs
can reduce bias and RMSE and can be adopted for practical use.
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Table 2. Comparison of estimators when the true parameter is S12 = 80,
m1 = m2 = 400.

S12(abs): The number of observed shared species;
Ŝ0

12: Proposed estimator for the homogeneous cases, see Equation (3.11a);
Ŝ12: Proposed estimator for the heterogeneous cases, see Equation (3.11b).

Average Sample Average Sample
Cases Γ1 Γ2 Γ12 Estimator Estimate s.e. Estimated RMSE

s.e.
I vs. I 0 0 0 S12(abs) 60 3.8 20.3

C12 = 0.750 Ŝ0
12 81∗ 9.1 8.6 9.1∗∗

(Ĉ12 = 0.745) Ŝ12 88 14.1 14.4 16.0
I vs. II 0 0.394 0 S12(abs) 64 3.1 16.7

C12 = 0.810 Ŝ0
12 77∗ 5.5 6.2 6.0∗∗

(Ĉ12 = 0.816) Ŝ12 84 8.3 10.0 9.1
I vs. III 0 0.089 0 S12(abs) 65 3.4 15.0

C12 = 0.833 Ŝ0
12 80∗ 5.9 6.0 5.9∗∗

(Ĉ12 = 0.824) Ŝ12 83 8.4 8.7 9.0
I vs. IV 0 1.503 0 S12(abs) 56 3.5 24.1

C12 = 0.697 Ŝ0
12 73∗ 7.6 8.2 10.4∗∗

(Ĉ12 = 0.756) Ŝ12 88 14.8 17.3 16.8
I vs. V 0 0.482 0 S12(abs) 51 4.3 29.1

C12 = 0.747 Ŝ0
12 69∗ 8.3 8.2 13.9∗∗

(Ĉ12 = 0.749) Ŝ12 81∗ 14.0 16.3 14.0
II vs. II 0.726 0.726 0.840 S12(abs) 67 2.8 13.0

C12 = 0.942 Ŝ0
12 72 3.5 2.6 9.1

(Ĉ12 = 0.936) Ŝ12 83∗ 7.0 7.6 7.7∗∗

II vs. III 0.482 0.170 0.037 S12(abs) 69 3.0 11.6
C12 = 0.927 Ŝ0

12 74 3.6 2.9 7.1
(Ĉ12 = 0.928) Ŝ12 79∗ 5.3 5.6 5.4∗∗

II vs. IV 0.710 1.230 1.349 S12(abs) 60 3.3 19.9
C12 = 0.913 Ŝ0

12 66 4.3 3.4 14.5
(Ĉ12 = 0.904) Ŝ12 84∗ 10.8 11.7 11.7∗∗

II vs. V 0.375 0.477 0.174 S12(abs) 55 4.1 25.3
C12 = 0.814 Ŝ0

12 67 7.0 5.7 15.1
(Ĉ12 = 0.823) Ŝ12 78∗ 12.7 11.8 12.9∗∗

III vs. III 0.151 0.151 -0.023 S12(abs) 71 2.6 9.5
C12 = 0.937 Ŝ0

12 76 3.5 2.8 5.3
(Ĉ12 = 0.933) Ŝ12 79∗ 4.4 4.3 4.5∗∗

III vs. IV 0.192 1.077 0.167 S12(abs) 61 3.2 19.2
C12 = 0.864 Ŝ0

12 69 4.9 5.6 12.8
(Ĉ12 = 0.877) Ŝ12 80∗ 9.3 9.5 9.3∗∗
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Table 2. (Continued)

Average Sample Average Sample
Cases Γ1 Γ2 Γ12 Estimator Estimate s.e. Estimated RMSE

s.e.
III vs. V 0.088 0.481 0.041 S12(abs) 57 3.6 23.7

C12 = 0.832 Ŝ0
12 69 5.9 5.6 12.8

(Ĉ12 = 0.827) Ŝ12 78∗ 9.7 10.5 9.9∗∗

IV vs. IV 1.383 1.383 2.934 S12(abs) 54 3.7 26.0
C12 = 0.907 Ŝ0

12 60 4.9 3.5 20.7
(Ĉ12 = 0.894) Ŝ12 86∗ 16.2 16.3 17.1∗∗

IV vs. V 1.608 0.386 -0.101 S12(abs) 49 4.3 31.4
C12 = 0.689 Ŝ0

12 63 8.3 7.9 18.5
(Ĉ12 = 0.758) Ŝ12 81∗ 16.3 19.8 16.3∗∗

V vs. V 0.460 0.456 0.192 S12(abs) 46 4.4 34.6
C12 = 0.762 Ŝ0

12 61 8.0 8.1 20.5
(Ĉ12 = 0.750) Ŝ12 76∗ 14.8 18.1 15.3∗∗

∗ denote the smallest bias; ∗∗ denote the smallest RMSE

5. Real Data Analysis

We refer to Ke-Yar and Chung-Kang estuaries as community I (or area I) and
II (or area II), respectively. Totals of m1 = 85867 and m2 = 59646 observations
have been made from them. In these two areas there were, respectively, 155 and
140 species observed, with 111 of these recorded for both areas (shared species).
In our notation, S1(obs) = 155, S2(obs) = 140 and S12(obs) = 111. Now the
objective is to estimate the number of unobserved shared species.

First we present the analysis for one community, using area I as an illustra-
tion. That is, suppose we have the data only for area I. We estimate the number
of species in area I. There are 96 abundant species (each observed more than
10 times) and 59 rare species (each observed 10 times or fewer) in the sample.
Using the notation discussed in Section 2, we have Sabun = 96, Srare = 59 and
the first ten order frequency counts are (f1, . . . , f10) = (25, 6, 10, 3, 4, 4, 1, 1, 4, 1).
The sample coverage estimate for the sub-community is Ĉ = 1− f1/

∑10
k=1 kfk =

1−25/184 = 86.4%. If we wrongly regarded the community as homogeneous, then
formula (2.1) results in an estimate Ŝ0 = Sabun +Srare/Ĉ = 96+59/0.864 = 164.
However, the homogenous assumption is not appropriate, as reflected by a large
value of CV (γ̂ = 0.768). Therefore, it is necessary to estimate the CV and use
the estimator proposed in (2.2). Our estimator yields Ŝ = Sabun + Srare

Ĉ
+ f1

Ĉ
γ̂2 =

96 + 59/0.864 + 25(0.768)2/0.864 = 181. The standard error formula provided
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in Chao and Lee (1992) produces an estimate of 11. Hence there are about
26 species that were undiscovered in area I. Based on a method suggested by
Ken Burnham and presented in Chao (1987), we can construct a 95% confidence
interval for S of (167, 213).

Similarly for area II, 59 species were observed 10 times or fewer, and 81 were
seen more than 10 times; the first ten frequency counts are 22, 12, 4, 4, 6, 2, 1,
2, 3, 3. Using this information, we obtain an estimate of 163 species (s.e. 10)
and a 95% interval of (150, 192).

We now proceed to estimate the number of shared species. Among the
observed 111 shared species, there were 90 abundant shared species observed
more than 10 times in one or both areas, the other 21 shared species are rare
shared species. In our notation, S12(abun) = 90 and S12(rare) ≡ M12 = 21. The
pairs of frequencies for the 21 “rare shared species” are: (1, 1), (1, 1), (1, 1), (1,
1), (1, 2), (1, 2), (1, 5), (1, 5), (2, 1), (3, 1), (3, 1), (5, 1), (9, 1), (3, 2), (3, 2),
(3, 7), (5, 9), (6, 4), (8, 10), (9, 3), and (9, 4). From the data, we have f1+ = 8,
f+1 = 9 and f11 = 4. There are also observed, unique species but we will not list
them. The reduced sample sizes (for the sub-community) become n1 = 3358 and
n2 = 558. It follows from Equation (3.5) that the sample coverage estimate is
Ĉ12 = 85.97%. If the set of product probabilities Q = {p1p

∗
1, . . . , pN12

p∗N12
} were

homogeneous, the estimator given in (3.6) gives N̂0
12 = 21/0.8597 = 24.43. Thus

based on (3.11a), we obtain Ŝ0
12 = S12(abun) + N̂0

12 = 90+24 = 114. However, the
CCV estimates using (3.9) are Γ̂1 = 0.7328, Γ2 = 1.0072 and Γ̂12 = 0.4574. These
large values of CCVs show strong evidence for the heterogeneity of Q. Therefore,
we need to incorporate the estimated CCVs in the resulting estimator. Equation
(3.10) yields N̂12 = M12

Ĉ12
+ 1

Ĉ12
[f1+Γ̂1 + f+1Γ̂2 + f11Γ̂12] = 24.43 + (0.8579)−1[8×

0.7328+ 9× 1.0072+ 4× 0.4574] = 44. The proposed estimator of the number of
shared species using Equation (3.11b) is Ŝ12 = S12(abun)+N̂12 = 90+44 = 134. A
bootstrap s.e. estimate based on 200 bootstrap replications is approximately 20,
which implies a 95% confidence interval of (116, 210). We can conclude that there
are still 23 shared species not discovered in the survey, with a 95% confidence
range of [5, 99].
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