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Abstract: In this paper, we investigate some information properties of parameter

estimation in spectral analysis of stationary time series based on a geometrical

framework. Stationary ARMA models are studied as a submanifold in the expo-

nential family and the so-called Whittle estimator is analyzed in association with

the embedded curvatures. Asymptotic behaviors such as information loss and bias

of the estimator are shown to be dependent on the curvatures of this manifold.

Simulation studies are performed to compare the estimation error in AR(1) models

with the corresponding results in the time domain.

Key words and phrases: ARMA model, differential geometry, Fisher information,

information loss, Whittle estimator.

1. Introduction

Let {xt} be a causal, stationary autoregressive moving-average process
[ARMA(p, q)] satisfying the difference equation

U(B)xt = V (B)et, (1.1)

where B is the backshift operator, U(B) = 1 − u1B − · · · − upB
p and V (B) =

1−ν1B−· · ·−νqB
q are two polynomials in B and {et} is a sequence of i.i.d. ran-

dom variables, referred to as innovations. Anderson (1977) proposed a general
structure for Maximum Likelihood Estimation (MLE) in both time and frequency
domains. The MLE in the frequency domain is actually equivalent to the so-called
Whittle estimator in spectral analysis, and has been extensively studied in the
case of Gaussian innovations (e.g. Whittle (1953), Brockwell and Davis (1991),
Section 10.8). It is known that Whittle’s estimator is asymptotically equivalent
to the MLE in the time domain, but is computationally simpler and more efficient
in the sense of L2 even for non-Gaussian situations (Mikosch, Gadrich, Kluppel-
berg and Adler (1995)). The aim of the present paper is to study the information
properties of this estimator, including information loss and asymptotic bias, in a
differential geometric framework.
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Information that statistics convey, or sufficiency in statistical inference, is
an important criterion for constructing appropriate statistics. Information loss
of the underlying statistics may heavily affect the accuracy of the parameters’
attainability and the asymptotic inference. In the framework of statistical differ-
ential geometry, or the so-called information geometry, the effects of information
loss on parameter estimation and inference have been studied. Rao (1945) first
proposed Riemannian geometry on a family of distributions, in which the prob-
ability measure space is regarded as a manifold. Further, a metric tensor, which
is basically the Fisher information matrix, is introduced on this manifold. It was
structurally formalized by Amari (1982) as the expected geometry. Barndroff-
Nielsen (1988) proposed the observed geometry for recovery of information loss
and developed string theory for invariant asymptotic expansions. Taking a non-
linear regression model as a curve in the space of all regression models, Bates
and Watts (1980) investigated the geometric structure of the nonlinear model,
and successfully explained the fundamental role of intrinsic and parameter-effect
curvatures in nonlinear problems.

For correlated observations, a few studies have been done in the geometric
framework. In the time domain, given a finite sample of ARMA model (1.1),
Ravishanker, Melnick and Tsai (1990) characterized ARMA models as members
of the curved exponential family, developed the geometric calculus per observa-
tion up to order O(1), and provided the estimation bias and revised hypothesis
testing based on the geometric structure. By identifying the nonlinearity charac-
teristics of the transformation function W (z) = U1(z)V (z), Ravishanker (1994)
studied the effects of nonlinearity for various ARMA models. In the frequency
domain, the key part of spectra is also a nonlinear function of parameters W (z),
which has exactly the same form as that in the time domain. As periodograms
and spectra are intrinsic parts of the L2 structure of stationary stochastic pro-
cesses, this nonlinearity inevitably affects the accuracy of the estimates, e.g. the
quadratic estimates of spectral density (Anderson (1994), Section 9.2). Therefore
it is necessary to evaluate the effect of nonlinearity, especially in small samples.
Note that unlike time domain analysis, where complicated and delicate numerical
procedures may be required to evaluate the density function, frequency domain
analysis using Whittle’s estimator is simpler and has received considerable at-
tention in recent years. The objective of the paper is to study the first- and
second-order properties of Whittle’s estimator and to investigate the relation-
ship between its asymptotic performance and model nonlinearity via Edgeworth
expansions (Taniguchi (1991)).

The paper is organized as follows. In Section 2, we introduce a few basic
concepts in statistical geometry. In Section 3, we define a separable curved ex-
ponential family as a special case of the curved exponential family, and develop
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its curvatures and their calculations. In Section 4, stationary time series obser-
vations are modeled as a curved exponential manifold in the frequency domain,
and the stochastic expansion of MLE associated with the curvatures is given.
Section 5 discusses the main results concerning the information loss of MLE and
estimation bias, and simulation is performed to compare the estimation bias with
that in the time domain.

2. Preliminaries

We give a brief introduction to a few basic concepts of statistical geometry
in this section. More detailed mathematical treatments can be found in Amari
(1985).

Consider a probability space as a set of probability distribution functions
indexed by θ :

∏
= {f(x, θ)|θ ∈ Θ}, given the observation x = (x1, . . . , xn) of a

random variable X. Let Θ ⊆ Rp denote the parameter space of
∏

and l(x, θ) =
log f(x, θ) denote the corresponding log-likelihood function.

∏
is defined as a

p-dimensional manifold since there exists a map θ from
∏

to Θ, and θ is also
called a set of coordinates of

∏
, which corresponds to a parameterization of the

model.
A manifold

∏
becomes a Riemannian manifold if we define a Riemannian

metric tensor g(θ) which measures the distance between two points. Rao (1945)
and later Amari (1982) used the Fisher information matrix (g(θ))ij = gij(θ) =
Ef(x,θ)[∂l(x, θ)/∂θi · ∂l(x, θ)/∂θj ] as such a measure. In a Riemannian manifold,
a path γ is defined as a smooth map from [a, b] ⊂ R to

∏
, i.e., γ(t) : t →

(γ1(t), . . . , γp(t)), and its length is calculated as

L(a, b) =
∫ b

a

√√√√∑
i,j

gij(γ(t))
d

dt
γi(t)

d

dt
γj(t)dt.

This length is invariant to a change of parameterization on
∏

due to the tensorial
nature of the metric. A geodesic between two points in a Riemannian manifold
is defined as a curve joining them with minimum path length, and the length is
called their geodesic distance.

The geometric structure extended by Amari (1982) is defined by a pair
of tensors gij(θ) and Tijk(θ), where Tijk = Ef(x;θ)[∂l(x, θ)/∂θi · ∂l(x, θ)/∂θj ·
∂l(x, θ)/∂θk], and the α-connections are defined by Γα

ijk = Γ0
ijk − αTijk/2, where

Γ0
ijk = [∂gjk/∂θi + ∂gik/∂θj − ∂gij/∂θk]/2. In the above structure, each α-

connection defines a set of geodesics. In general, a geodesic is a solution of a set
of differential equations determined by a connection. Intuitively, geodesics are
the “straight lines” of geometry.
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Based on the above definitions, we can define α-flatness. A manifold M is
called α-flat if a coordinate system θ exists such that, for all θ1 and θ2, the α-
geodesic joining them is of the form γ(t) = (1− t)θ1 + tθ2. Amari (1982) proved
that any full exponential family is both +1-flat and -1-flat. Furthermore the point
which is closest to a fixed point in M in the sense of Kullback-Leibler divergence
on a submanifold of an exponential family (i.e., a curved exponential family),
can be found by dropping a -1-geodesic which cuts the submanifold orthogonally.

3. Separable Exponential Geometry

Amari (1982) provided a substantial discussion of the exponential geometry.
In the log-likelihood function of an exponential family

l(T, θ) = θ′T − Ψ(θ), (3.1)

where T = (T1, . . . , Tn)′ is a random vector and θ = (θ1, . . . , θn)′ is a set of natural
coordinates, the characteristic function Ψ(θ) plays an important role in evaluating
all moments, in particular, E(Ti) = ∂Ψ/∂θi and Cov (Ti, Tj) = ∂2Ψ/∂θi∂θj.
When Ψ(θ) is a separable function of the components of θ, i.e. Ψ(θ) =

∑
ϕk(θk),

it is easily seen that the variables {Ti} are uncorrelated with the covariance
matrix

A2 =




ϕ̈1(θ1)
. . .

ϕ̈n(θn)


 .

In this case, the geometry induced by Ψ(θ) is referred to as a separable exponential
geometry, and the corresponding space of probability distributions is a separable
manifold.

A separable (n,m)-curved exponential manifold is defined as a submanifold
embedded in a separable manifold with a mapping from β to θ, θ = θ(β) =
(θ1(β), . . . , θn(β))′, in which β ∈ B ⊂ Rm. Let V (β) = (∂θ/∂β), W (β) =
(∂2θ/∂β2), where V is a matrix of order n × m, and W is an array of order
n×m×m with elements Wiab = ∂2θi/∂βa∂βb (i = 1, . . . , n; a, b = 1, . . . ,m). At
a point β0 of interest, consider a line lh in the direction h that passes through
β0, i.e., β(b) = β0 + bh where b is a real value. There is a corresponding curve
Ch in the space of θ : θ = θh(b) = θ(β0 + bh), called a lifted line. The directional
derivatives of η in the direction h at β0 are defined by θ̇h = ∂θ/∂b = V h, and
θ̈h = ∂2θ/∂b2 = h′Wh. As pointed out by Amari (1985), θ̈h is a curvature vector
that can be decomposed into tangent and normal components: θ̈h = θ̈T

h + θ̈N
h , and

the intrinsic curvature and parameter-effects curvature can be defined as follows.

Definition 3.1. KN
h = ‖θ̈N

h ‖/‖θ̇h‖2 = ‖(h′Wh)N‖/(h′V ′V h) and KT
h = ‖θ̈T

h ‖/
‖θ̇h‖2 = ‖(h′Wh)T ‖/(h′V ′V h) are called the intrinsic curvature and parameter-
effects curvature at β0 in the direction of h, respectively.
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For a separable exponential manifold, standardize T as

T = E(T ) + Λε, (3.2)

where E(ε) = 0, Var (ε) = In, In is the unit matrix of order n. Introducing a
linear transformation in θ : η = Λ(θ0)(θ−θ0) at θ0 = θ(β0), we get a new set of η-
coordinates for this curved exponential manifold, where l(T, η) = θ(η)T−Ψ(θ(η)).
The lifted line becomes η = ηh(b) = η(θ(β0 + bh)) in the new coordinates with
the directional derivatives of η in the direction of h changed to η̇h = ∂η/∂b = V h

and η̈h = ∂2η/∂b2 = h′Wh, respectively, where V = ΛV and W = [Λ][W ]. Thus,
with η-coordinates, the intrinsic curvature and the parameter-effects curvature
at β0 in the direction of h change to

K
N
h = ‖(h′Wh)N‖/(h′V ′

V h) (3.3)

and
K

T
h = ‖(h′Wh)T ‖/(h′V ′

V h), (3.4)

respectively. Since the transformation is linear which does not influence the
assessment of curvatures, analogous to the discussion in Amari (1985), it is easy
to prove that K

N
h and K

T
h are the same as KK

h and KT
h , respectively.

To compute K
N
h and K

T
h at point β0, we perform a QR decomposition on

V :

V = (Q,H)

[
R

0

]
= QR, (3.5)

and a transformation of β : ϑ = R(β − β0), or β = β0 + Lϑ, where L = R
−1.

This results in a new expression of η with respect to ϑ : η(θ) = η(θ(β0 + Lϑ)),
and β0 becomes ϑ = 0 with the derivatives changed to

∂η

∂ϑ
=

∂η

∂θ
· ∂θ

∂β
· ∂β

∂ϑ
= ΛV L = Q,

∂2η

∂ϑ2
= L

′
W L := U.

Replacing direction h by d = Rh and using P T = QQ
′ and PN = H H

′ as
the projection matrices in (3.3)-(3.4), the curvatures can be calculated as KN

d =
K

N
d = ‖d′[H ′][U ]d‖ and KT

d = K
T
d = ‖d′[Q′][U ]d‖. It is found that the following

two curvature arrays are simpler and more important for further derivations.

Definition 3.2. I = [H ′][U ] and P = [Q′][U ] are called the intrinsic curvature
array and parameter-effects curvature array, respectively, where I is of order
(n − m) × m × m, and P is of order m × m × m.

By denoting H = ΛH and Q = ΛQ, we have I = L
′[H][W ]L and P =

L
′[Q][W ]L. With an analysis analogous to the one given in Bates and Watts
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(1980) and Efron (1975), it can easily be proved that I and P are important
terms which reflect the nonlinear feature of the curved exponential family (3.1).
It is important to note that I is an intrinsic part of this model and does not
depend on the parameter that we choose, while P does. Actually, in nonlinear
regression models, Λ is the unit matrix, and I(P ) is the same as I(P ) defined
in Bates and Watts (1980). Thus, a nonlinear regression model with Gaussian
innovations is a special case of the separable exponential geometry we discussed
above. In the next section, we will apply this framework to ARMA models with
Gaussian innovations.

4. Geometric Structure of ARMA Models and Stochastic Expansions

In ARMA model (1.1), the circular model is defined by xk = xM−k, k =
0, . . . , p − 1, and el = eM−l, l = 0, . . . , q − 1, where X = (x1, . . . , xM )’ is a set
of M observations. It is assumed that with respect to (1.1), U(B) = 0 and
V (B) = 0 have no common roots and all roots lie outside the unit circle. The
spectral density function is given by f(λ) = σ2|V (eiλ)|2/(2π|U(eiλ)|2) and its
periodogram is

I(λt) =
1

2πM

M∑
s,r=1

eiλt(s−r)xsxr,

where λt = 2πt/M , t = 0, . . . ,M − 1. Based on the above assumptions, the
log-likelihood function can be written as

l(X,β) = −M log 2π − 1
2

M−1∑
t=0

{
log f(λt, β) +

I(λt)
f(λt, β)

}
,

where β = (u1, . . . , up; ν1, . . . , νq;σ2)′ is a vector of the unknown parameters.
With fixed M , the manifold induced by this distribution is (n,m)-curved ex-
ponential with n = M , m = p + q + 1, where θ = θ(β) = (θ1(β), . . . , θn(β))′

with θk(β) = (2f(λk, β))−1, and T = (T1, . . . , Tn)′ with Tk = −I(λk). Since
the characteristic function of this manifold is Ψ(θ) =

∑
ϕ(θk) where ϕ(θ) =

− log θ+const, the diagonal elements of Λ are θ−1
i , i.e., the manifold is separable.

It is not hard to prove that the Tk are independent variables and 2I(λk)/f(λk)
follows a χ2(2) distribution (see Anderson (1977) for a detailed discussion).

Using the general notation of separable exponential geometry in the last sec-
tion, the Maximum Likelihood Estimate (MLE) of β can be obtained by solving
the system of equations

∂l(X,β)
∂β

∣∣∣β̂ = V ′(β̂)(T −∇Ψ(θ(β̂))) = 0,

where ∇ denotes the gradient operator. This is equivalent to Whittle’s estimator,
or Quasi-Maximum Likelihood Estimator (q-MLE) developed by some authors
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(Taniguchi (1991)). To derive the stochastic expansion of this estimator, we make
the following assumptions. First we assume (C1) : limn→∞ n−1V

′(β)V (β) =
Ω(β), where Ω(β) is positive definite. This can be rewritten as V

′(β)V (β) =
O(n), or V (β) = O(n1/2). Second, the Fisher information matrix related to the
coordinates is assumed to be consistent with gab, where gab is defined by Amari
(1985), i.e., (C2) : limn→∞ n−1 ∑n

i=1(Wiab)2 = Eab(β).
From the QR decomposition of V (β), a vector γ̂ exists such that

T −∇Ψ(θ(β)) = Λ(β)H(β)γ̂ = H(β)γ̂.

By expanding H(β) at β0 to Op(n−1), we get H(β̂) = H(β0) + (F (β0) · ∆β)′ +
Op(n−1) where F (β) = (F λia) = (∂H iλ/∂βa). Lemma 4.1, without proof, is for
further investigation of the Edgeworth expansion of relevant statistics. The main
result of the Edgeworth expansion is given in Theorem 4.1.

Lemma 4.1. V ′F + �H ′�[W ] = 0.

Theorem 4.1. If conditions C1, C2 are satisfied, the first order expansions of
∆β and γ̂ are

∆β = Lµ + Op(n−1), γ̂ = ν + Op(n−1/2),

where µ = Q
′
ε, ν = H

′
ε. The second order expansion of ∆β is

∆β = Lµ + L{[ν ′][I]u − 1
2
µ′Pµ + µ′Sµ} + Op(n−3/2),

where P = L
′[Q

′
][W ]L, S = [Q′][Σ

(2)
], Σ

(2)

i = Q
′
iQi, Σ

(2)

i is the ith face of Σ
(2)

.
Furthermore, each component of γ̂ is asymptotically normal N(0, 1), i.e., γ̂ is an
asymptotically ancillary statistic for recovering information from β̂.

Proof. Following the decomposition (3.2), we have

Λ(β0)ε = T −∇Ψ(θ(β0))
= [T −∇Ψ(θ(β̂))] + [∇Ψ(θ(β̂)) −∇Ψ(θ(β0))]

= H(β̂)γ̂ + [∇Ψ(θ(β̂)) −∇Ψ(θ(β0))]

= Hγ̂ + [γ̂′][F∆β] + Λ2V ∆β + Op(n−1)

= ΛHγ̂ + ΛV ∆β + [γ̂′][F∆β] + Op(n−1).

By multiplying both sides of the above equation by H
′Λ−1 and noticing that

H
′
V = 0, ∆β = Op(n−1/2), it is easy to see that γ̂ = ν + Op(n−1/2). The

higher order properties can be studied via evaluating the above equation up to
the second order, that is

Λε = Hγ̂ + [γ̂′]
[
F∆β

]
+ Λ2V ∆β +

1
2
(∆β)′Σ(∆β) + Op(n−1), (4.1)
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where

Σiab =
∂2

∂βa∂βb
(
∂Ψ
∂θi

) = Λ2
i

∂2θ1

∂βa∂βb
+ ϕ̈(θi)

∂θi

∂βa

∂θi

∂βb
.

It turns out that Σ is composed of two terms: Σ(1) and Σ(2), where Σ(1) = [Λ2][W ]
and Σ(2) = −2[Λ][V ′

tV t]. By multiplying both sides of (4.1) with V
′Λ−1, we have

V
′
ε = (V ′

V )∆β + [γ̂′][V ′
F ]∆β + (∆β)′[V ′Λ−1][Σ](∆β)/2+ Op(n−1/2). It follows

that the second order expansion of ∆β can be obtained by multiplying both sides
with (V ′

V )−1, i.e.,

∆β = (V ′
V )−1V

′
ε − (V ′

V )−1{1
2
(∆β)′[V ′][Σ](∆β) + [γ̂′][V ′

F ]∆β + Op(n−1/2)}

= Lµ − LL
′{1

2
µ′[V ′][L′ΣL]µ − [ν ′][R′

I R]Lµ} + Op(n−3/2)

= Lµ + LL
′{−1

2
µ′[V ′][L′ΣL]µ + R

′[ν ′][I ]µ} + Op(n−3/2).

Now it leaves the computation of the two components in [V ′][L′ ∑
L]:

[V ′][L′Σ(1)L] = L
′[V ′][[Λ2][W ]]L = L

′[V ′Λ][W ]L = L
′[R′

Q
′Λ][W ]L

= L
′[R′][Q

′
][W ]L = [R′][P ]

and

[V ′][L′Σ(2)L] = −2L′[V ′][[Λ][Σ(2)]]L = −2[V ′][L′Σ(2)
L]

= −2[R′][[Q′][Σ(2)]] = −2[R′][S].

Therefore, we have ∆β = Lµ + L{[ν ′][I]µ − 1
2L

′
µ[R′][P ]µ + L

′
µ′[R′][S]µ} +

Op(n−3/2) = Lµ + L{[ν ′][I ]µ − 1
2L

′[R′][µ′Pµ] + L
′[R′][µ′Sµ]} + Op(n−3/2). The

proof is complete.

5. Information Loss in Estimation

Information hidden in data often plays an essential role in a decision making
process. Correct decisions such as forecasting and control are highly dependent
on valuable hidden information. In statistical inference, it is well known that the
Fisher information matrix reflects all the information the relevant data conveys.
It can be represented as Jβ(T ) = Cov (∂il, ∂j l), where ∂il = ∂l(T, β)/∂βi. When
estimating the unknown parameters, the information behind the data transfers
to the parameters’ estimates, and the dimension of information stored is reduced.
However, part of the information may be lost in the estimation process, which
results in the second-order inefficiency of the estimate. Amari (1985) proposed
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that this information loss can be measured by ∆J(β̂) = Jβ(T ) − Jβ(β̂), and
computed as

∆J(β̂) = Eβ

{
Var β

[
∂l(T, β)

∂β

∣∣∣β̂]}
.

Using the main results of Theorems 4.1, the information loss can be evaluated
with relation to the intrinsic curvature of the curved manifold.

Theorem 5.1. ∆J(β̂) =
∑n−m

t=1 R
′(I t)2R + O(n−1) where Ii is the ith face of I.

Proof. From the QR decomposition of V (β) and Lemma 4.1, we have

∂l

∂β
=V ′(β)(T −∇Ψ(θ(β)))=V ′(β)

{[
T −∇Ψ(θ(β̂))

]
+[∇Ψ(θ(β̂)) −∇Ψ(θ(β))

]}

=V
′
Hγ̂ − [γ̂′]

[
[H

′
][W ]

]
∆β + Op(n−1) + ∆(β, β̂)

=−[ν ′]
[
[H

′
]
]
[W ]

]
Lµ + Op(n−1/2) + ∆(β, β̂).

It follows that the variance of ∂l/∂β conditioned on β̂ can be calculated as
Var β(∂l/∂β|β̂) =

∑
(R′

Itµ)2 + Op(n−1). From Amari’s (1985) definition, the
information loss of β̂ is

∆J(β̂)=Eβ

{
Var β

[
∂l

∂β

∣∣∣β̂ ]}
=

n−m∑
t=1

E(R′
Itµ)2+Op(n−1)=

n−m∑
t=1

R
′(I t)2R+Op(n−1).

The proof is complete.

As in the case of independent observations, the above theorem indicates
that the information loss of MLE is only related to the intrinsic curvature and
will not be influenced by parameterization. However, some ancillary statistics
may help to recover the lost information. In the time domain, Taniguchi (1991)
provides a detailed discussion on the information loss and recovery of MLE. Using
Edgeworth expansions, he constructs an asymptotically ancillary statistic, which
can recover the information loss in the reduction process from observations X

to MLE. In the frequency domain, the Edgeworth expansions of the MLE has
been derived in Theorem 4.1. Here, γ̂ is expected to be used as an ancillary
statistic to help recover the information loss. This will be discussed in future
work. Furthermore, the asymptotic bias of Whittle’s estimator is given in the
following theorem.

Theorem 5.2. The bias of β̂ is given by −1
2L · tr[P − 2S] + O(n−3/2).

Proof. With the decomposition (3.2), it is not hard to prove that E(εi) = 0,
E(εiεj) = δij (i, j = 1, . . . , n). Thus, E(µ) = 0, E(µaµb) = δab, and E(µ′Pµ) =
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tr[P ], where P is any array of order m × m × m whose faces are all symmetric
matrices. From Theorem 4.1, we can obtain the estimation bias

Bias(β̂) = E(∆β) = L{E[ν ′][I]µ − 1
2
E(µ′Pµ) + E(µ′Sµ)} + O(n−3/2)

= −1
2
L · tr[P − 2S] + O(n−3/2).

This completes the proof.
The asymptotic bias of MLE in the time domain was addressed in Ravis-

hanker, Melnick and Tsai (1990). However, the derivations are more compli-
cated in the analysis of frequency domain. Here, it is verified again that the
estimation bias is only related to the parameter-effects curvature. To have more
understanding of the asymptotic performance of Whittle’s estimator, the AR(1)
model is used to illustrate the difference between MLEs in the time and fre-
quency domains. In the time domain, as Ravishanker, Melnick and Tsai (1990)
and Taniguchi (1991) showed, the asymptotic bias is (−2u/n) + o(n−1). In the
frequency domain, the above asymptotic bias with known variance σ2 can be cal-
culated from Theorem 5.2 as −3u/n+O(n−3/2), which is the same as Taniguchi’s
derivation (1991, Chapter 7). Note that the bias is O(n−1), the same order as
that in the time domain, but a bit larger. We do not intend to interpret the dif-
ference here, however, it is worth noting that both biases vanish as u gets close
to zero. This coincides with our expectation that the model approaches linear-
ity when u diminishes. Table 1 shows simulation results for n = 100, where the
comparisons between MLEs in both time and frequency domains are summarized
based on 1000 replications.

Table 1. Estimating the parameters of AR(1) processes via Whittle’s esti-
mator and MLE in the time domain.

φ
Whittle’s Estimator MLE in Time Domain
Mean St. Dev. Mean St. Dev.

-0.9 -0.877 0.096 -0.875 0.098
-0.6 -0.577 0.063 -0.582 0.065
-0.3 -0.290 0.047 -0.297 0.050
0.0 0.002 0.001 0.001 0.001
0.3 0.285 0.051 0.289 0.053
0.6 0.590 0.040 0.593 0.045
0.9 0.859 0.099 0.871 0.099
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