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1. Introduction

As the papers by Tong (1986) and Davies and Petruccelli (1986) indicate,
the interest in applying non-linear time series models has considerably increased
recently. However, in a majority of applications the need of a non-linear model
is a priori rather uncertain., Therefore it seems reasonable to start the model
building by applying a linearity test which does not require the usually rather
cumbersome estimation of a non-linear alternative. Such tests have been pro-
posed both in the time domain (McLeod and Li (1983), Keenan (1985), Tsay
(1986), Weiss (1986), Petruccelli and Davies (1986), Saikkonen and Luukkonen
(1988), Luukkonen et al. (1988a)) and in the frequency domain (Subba Rao and
Gabr (1980), Hinich (1982), Ashley et al. (1986)). Properties of the time domain
tests have been studied by Chan and Tong (1986) and Luukkonen et a]. (1988b).
From these studies one can conclude that none of the tests js effective as a general
linearity test so that, if the type of the relevant non-linearity is unknown, it is
not advisable to apply only one of them. However, even if one knows the type of
the possible non-linearity one seldom knows the exact form or lag structures of
the relevant non-linear model. Using some simple bilinear models as examples
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the effect of this ignorance on the power of a time domain linearity test will be
discussed in this paper. )

If the alternative to linearity is a bilinear model it is natural to use a score
or Lagrange multiplier (LM) test designed for bilinear models (see Pagan (1978),
Weiss (1986) and Saikkonen and Luukkonen (1988)). To apply this test it is
necessary to specify a bilinear model and estimate the corresponding linear null
model. When the form of the bilinear model is not known it seems reasonable
to start by specifying an adequate linear model and use it as a null model in
the linearity test. A problem with this approach is that the specification of the
linear model is most often data-based. Some of the parameters incorporated
in the specified linear model may therefore act as substitutes for the true but
omitted bilinear parameters. This means that in practice the linearity test may
be based on an overspecified model which contains redundant linear parameters,
not needed in the true bilinear alternative. If the omitted bilinear parameters can
effectively be substituted by adding linear parameters the power of the linearity
test can be expected to decrease. Whether this problem has practical significance
or not will be investigated in this paper both theoretically and by simulation.
The idea is to compare the actually applied LM test, based on an overspecified
model, with the corresponding “optimal” LM test, based on the true bilinear data
generating process. In the theoretical considerations the two tests are compared
by using Pitman’s asymptotic relative efficiency (ARE) (see e.g. Kendall and
Stuart (1979), Chapter 25). The results of these comparisons will be used to
design a simulation study to find out what happens in small samples. The
performance of the LM tests will be evaluated by studying their power in relation
to the reduction of forecasting accuracy caused by erroneously adopting a linear
model. Somewhat surprisingly it turns out that the significance of the problem
is related to the value of the intercept of the model.

The paper is organized as follows: Section 2 presents some preliminaries
and a detailed formulation of the problem. Theoretical properties of the tests
considered in the paper are discussed in Section 3. Section 4 reports results of
the simulation study and Section 5 comprises the conclusion.

2. Preliminaries

In this paper we shall always assume that the observed time series y;,... ,yr
is generated by one of the simple bilinear models
Ye = p+ cee-1Yi—i + €t (2.1)

where ¢ > 1 is a known integer, ¢ and ¢ are unknown parameters and &; ~
NID(0,0?%). For more general bilinear models and their properties, see Granger
and Andersen (1978), Subba Rao (1981) and Subba Rao and Gabr (1984). If we
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knew that the “true” model is (2.1) we could easily construct an LM test for the
linearity hypothesis .

Hy:c=0 against Hy:c#0.

In this context the null model is the simple white noise process

ye=pter (2.2)
so that the resulting LM statistic, denoted by S5;, is also very simple (see Weiss
(1986) or Saikkonen and Luukkonen (1988)). However, a practical problem with
this reasoning is that even if we can choose the relevant value of ¢ to be used in
the test, we can very rarely know that the only linear parameter needed in the
model is the intercept u. Therefore we are not very likely to use (2.2) as the null
model and consequently apply test statistic S;. In order to demonstrate this the
autocovariance function of (2.1) will be considered.

Let 4 = cov(y:, y:—k) be the autocovariance function of y;. Assuming p = 0
Granger and Andersen (1978, Chapters V and VI) and Subba Rao (1981) show
that v; = 0 for all k£ > 2. Although this result also holds when p # 0, the value
of the intercept affects the expressions of 79 and ;. It also affects the second
moment of y; and thereby the condition ¢? Ey? < 1 which is sufficient for y; to be
invertible (see Subba Rao (1981)). However, the intercept is not involved in the
stationarity condition |co| < 1 which is easily seen to be relevant even if u # 0.
Unless otherwise stated it will always be assumed that the models considered
here are both stationary and invertible. The autocovariance function of (2.1) is
identical for all + > 1, but for ¢ = 1 the situation is different. Therefore these
two cases have to be discussed separately.

Case i = 1. Following the arguments used by Granger and Andersen (1978) and
Subba Rao (1981) for the case pu = 0 yields

a?[u(p + 2¢0?) + 2o (1 + c*o?) + 1]/(1 — ?o?), k=0
Yk = { co?(p + co?), k=1 (23)
0, k> 2.

As can be seen from (2.3), 4 = —co? implies that v, = O forall k > 0. f u =0
this can happen only when ¢ = 0. In general, since Ey; = p+ co?, the condition
Ey: = 0 is always sufficient for v, = 0, £ > 0, to hold.

Case ¢ > 1. In the same way as in the case 4 = 0 in the above citations one
obtains

[o?u? + 0%)/(1 - c*0?), k=0
Yk = { coly, k=1 (2.4)
0, k>2.
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Now the influence of the intercept is even more pronounced than in the case
it =1. If u = 0 we always have 4, = 0 for all k > 0. Since Ey; = p, the condition
FEy; = 0 again implies that the autocovariances with non-zero lags vanish.

At this point we note that if ;3 y¢—; in (2.1) is replaced by £;_;y:—1 (i > 1),
the autocovariance function of the resulting model generally becomes more com-
plicated than above (see Granger and Andersen (1978), Chapter VII). Therefore
these models are not considered in this paper. In the present context it follows
from (2.3) and (2.4) that, for all values of ¢, y; has a simple first order moving
average representation

Yt = v + a + a1, (2:5)

where v = Fy; and a; is a sequence of uncorrelated (but generally not indepen-
dent) random variables with mean zero and variance o2. Model (2.5) is the best
fitting linear approximation of (2.1) in the sense that the innovation variance of
any (genuinely) other linear model is larger than o2. Denote p; = 71/70. As is
well known, % is the solution of

p=9/1+9¥%), ¥l <1,

whereas
o2 = 7 /(1 + ¢?).

By using (2.3) and (2.4) one can thus determine 1 and o2 from the parameters
of (2.1).

Now suppose we wish to test linearity and start by specifying an adequate
linear ARMA model for the series. By the above discussion we can assume that
a first order moving average model will often be selected. To simplify matters we
assume that this is always the case. Then the LM test for Hy against H; will not
be based on the “correct” model (2.1) but on the “overspecified” bilinear model

Yye = p+ e+ 041+ cer1¥i—i. (2.6)

When the linearity hypothesis is tested within (2.6) the null model is not the
simple white noise process (2.2) but the first order moving average process

Yt = g+t + g (2.7)

The relevant LM statistic can again be obtained from Weiss (1986) or Saikkonen
and Luukkonen (1988), and will be denoted by S}.

The purpose of this paper is to investigate the effect of the above overspecifi-
cation on the power of the LM test. This will be done by comparing the actually
applied LM statistic S} with S; which, in a sense, represents the best theoretically
obtainable resuit. Both of these test statistics assume that an appropriate value
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of the integer ¢ can a priori be selected. At least in some cases this assumption
may be questioned, so that one might also be interested in other comparisons, like
those between ST and S5 or Sy and S2. Although not irrelevant, these compar-
isons are outside the scope of this paper. To demonstrate that even the present
case has practical relevance we first note that when the specified null model is
a first order moving average model the most common choice is probably z = 1.
For instance, in a relatively wide application by de Gooijer (1989), white noise
or a first order moving average model is often the null model and (2.1) or (2.6)
with ¢ = 1 the alternative. Therefore, there is some justification to concentrate
on the case ¢ = 1 and consider the values ¢ > 2 mainly to demonstrate that the
results obtained for ¢ = 1 are not a peculiarity of a single model. It may also be
noted that the adverse effects of misspecifying the value of ¢ are more obvious
than those caused by a mere overspecification of the linear part of the model.
Therefore, this problem is probably well recognized in applications. If necessary,
time series analysts can always guard against it by augmenting the model with
additional bilinear terms. For example, instead of €;_1y:—1 one can use €:_;¥y;—i,
3,7 = 1,2, in the test. This results in a model which also contains redundant bi-
linear parameters. However, since the effects of such an overspecification on the
LM test have already been studied it is not necessary to pursue this matter here.
Theoretical results can be found in Saikkonen (1989) and simulation evidence in
Saikkonen and Luukkonen (1988).

3. Theoretical Properties of the LM Tests

The definitions of the LM statistics §; and S} can readily be obtained from
the above-mentioned references so that they are not repeated in this paper. It
is well known that the LM test has the same asymptotic properties as the corre-
sponding likelihood ratio test but it only requires the efficient estimation of the
(linear) null model. Under the linearity hypothesis both S; and S} are asymp-
totically distributed as x2 and their large values are critical. However, under the
alternative the asymptotic equivalence of S; and S} does not generally hold. As
usual in asymptotic power considerations, the non-null properties of S; and S}
will be studied under a sequence of Pitman’s local alternatives

c=6/T?, 0<|§] < co. (3.1)

Assuming conventional regularity conditions of the maximum likelihood theory
it can be shown that under (3.1) the asymptotic distributions of S; and S}
are non-central x? (see e.g. Saikkonen (1989) and the references therein). The
associated non-centrality parameters are generally different for the two tests and
they depend on the constant é. Instead of considering these asymptotic non-null
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distributions as such we shall use them to derive the ARE of S} with respect to
S;. This ARE is denoted by e;,"and it can be obtained from the general results in
Saikkonen (1989). Since the null hypothesis is one-dimensional, e; is independent
of § and only depends on the parameters of the null model (2.2), i.e., on u and
o?. This is a convenient feature and makes the comparison between $} and S;
very easy.

Denote z1: = (0¢t/0c)et, 22¢ = (Oet/00)e; and 23; = (8e/Au)es where the
partial derivatives are obtained from (2.6) and evaluated under the null model
(2.2). It follows from Saikkonen (1989) that 1—e; equals the square of the partial
correlation coefficient between z;; and z5; conditional on z3;. Since

21t = —(ll + 6t-i)£t-1€t, 23t = —€¢_1€¢ and 23 = —¢&y,

it is straightforward to verify that

- { 2/2+u?/0%), i=1

1/(1 4 p?/0?), i>1. (3:2)

In the same way as with the autocovariance function of the model, the cases i = 1
and ¢ > 1 again differ from each other. It follows from (3.2) that e; < e; < 1
with equalities if and only if 4 = 0. This implies that when px = 0, test statistics
S; and S} are asymptotically equivalent, not only under the null hypothesis, but
also under the local alternatives (3.1). Hence, if 4 = 0, the performance of test
statistic S; relative to S} in finite samples is likely to be good. On the other
hand, the value of (3.2) can always be made arbitrarily close to zero by taking
p?/o? large enough. When p # 0, the test statistic ST may therefore be very
inefficient and its power may also be rather low. We shall take a closer look at
these possibilities in the next section.

In practice one often starts the model building by mean correcting the ob-
servations. Since the mean value of the series depends on the intercept of the
model, the above discussion gives a reason to consider the effect of a mean cor-
rection on the properties of test statistics S; and S}. In most cases the mean
correction is also data-based; so that, suppose the sample mean is subtracted
from the observations. It is well known that this has no effect on the asymptotic
null distribution of an LM test used to check the order of a linear ARMA model.
However, this is not the case in the present context. It is not difficult to show
that analogues of test statistics §; and S} based on such mean corrected ob-
servations do not have an asymptotic x? distribution under the null hypothesis
(details of the required derivations are available upon request). A similar result
can also be obtained for other LM type linearity tests, so that these tests should
not be used with mean corrected observations.
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4. Simulation Study

We shall now present simulation results of the ability of test statistics S
and S; to reveal the non-linearity in series generated by (2.1) with ¢ = 1,2.
Our interest is focused on fairly short time series because they are frequently
encountered in practice, and because in very large samples even a relatively poor
test can have high power. The examined sample sizes are T = 50, 75, 100, 150.
A low power, as such, may not be a serious drawback if the test fails to reject
linearity only when a linear model approximates the true data generating process
so well that improvements achieved by a bilinear model are only marginal. Since
univariate time series models are mainly used for forecasting, it seems reasonable
to follow Granger and Andersen (1978, p.53) and use the ratio 02/o? to measure
the loss caused by erroneously accepting (2.5) instead of the true model (2.1).
The idea is to consider models with various values of the loss function o2/02.
For each value we try to find a model for which the ARE (3.2) is small, implying
difficulties for test statistic 5F. We can make (3.2) small by fixing 0 and choosing
|| large. However, since the value of p affects the invertibility condition of the
bilinear alternative there is an upper bound of |x| which can be considered for a
given value of c.

The observations were obtained as follows. The normally distributed in-
novations ¢; were first generated by using a random number generator in the
NAG subroutine library on a VAX 8800 computer of the University of Helsinki.
The value of the innovation variance o? is always 0> = 1. Observations from
model (2.1) with various values of u and ¢ were obtained recursively. The initial
value g9 was simulated and yp chosen to be yo = Ey;. The first 100 observa-
tions were discarded to avoid initialization effects. The number of replications
was 1000 and between successive replications 700 observations of the innovation
series were discarded to better guarantee the independence of the replications.

For test statistic S} we have to fit a linear first order moving average model to
the generated series. This was done by using the conditional least squares method
with the maximum number of iterations 30 (see e.g. Box and Jenkins (1976),
Chapter 7). Realizations for which the estimation algorithm fails to converge
within 30 iterations were discarded. Since the proportion of such realizations
was always small (mostly a few percents), the number of discarded realizations
is not reported. It should be noted, however, that the discarded realizations
were not used to compute the empirical power of test statistic S; so that in this
respect the results of test statistics S} and S; are comparable. The reason for
using the conditional least squares method is that the LM tests for bilinearity
are derived from a corresponding conditional likelihood function. Moreover, in
the models considered below the value of the moving average parameter is always
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reasonably far from the boundary of the invertibility region (|#] < 0.67) so that
the performance of the conditional least squares method should be quite good
(see Dent and Min (1978)).

Tables 1 and 2 present empirical rejection frequencies of test statistics S}
and §; for ¢ = 1,2, respectively, at the nominal 5% significance level when u # 0.
The results are fairly similar in both tables. Since ¢? = 1 the variance o2

a

directly expresses the loss of not rejecting the linearity hypothesis. The value of
o? increases when one moves from the top of the tables to the bottom. In each
case the estimated power of test statistic S; is very high so that if we knew the
right alternative we could almost always reveal the non-linearity in the series.

Now consider the performance of test statistic S} (¢ = 1,2). When T = 50
its power is much weaker than that of §;. For instance, in the fifth entries of
Tables 1 and 2 the use of the best fitting linear model results in an increase
of about 20% in the one step ahead forecast error variance of the model, but
the empirical rejection frequencies of test statistics S; and S; are below 70%
and 50%, respectively, whereas those of $; and S; are over 90%. When the
sample size increases to 75 and 100 the performance of S} improves although
the probability of type II error can still be nonnegligible for 02 /02 up to 1.15 or
so. At this point it may be noted that in an economic application in Maravall
(1983) a reduction of 8% in the one step ahead forecast error variance is deemed
worthwhile. When T = 150 the performance of S} is further improved and the
test fails only rarely unless 02 /0? is less than 1.10.

In the examples of Tables 1 and 2 the value of the ARE (3.2) is always very
low but sometimes the power of S} is nevertheless fairly high. As discussed in
Luukkonen et al. (1988b) the ARE may not be a very good indicator of the
power of a linearity test if the true model is bilinear and the sufficient condition
of invertibility is nearly violated. Even though our models are always clearly
invertible, the invertibility condition of the bilinear model is usually much easier
to violate than that of the linear moving average model. Despite this remark the
ARE calculations have been useful in helping to design the simulation study.

In the models of Tables 1 and 2 the intercept u is always non-zero because
in this way it is possible to construct alternatives against which test statistic S
is likely to have low power. In order to demonstrate the behaviour of S} in the
favourable situation u = 0 a few results of Sy and S} are presented in Table 3.
Now the ARE equals one and S7 is practically as powerful as the “optimal” test
statistic §;. The necessity of specifying an adequate linear model using data
before applying an LM test against a bilinear alternative is thus not a drawback
if one, a priori, knows that the model has no intercept. On the other hand, the
results of Table 3 indicate that when p = 0 and the sample size is not large even
the “optimal” test statistic §; may have rather low power.
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5. Conclusions

Of the time domain tests considered in Luukkonen et al. (1988b) the LM test
designed for bilinear models is the most powerful one to discriminate between
a linear model and a bilinear alternative. However, a practical problem with
the LM test, as well as any other time domain test, is that the structure of the
relevant bilinear model is unknown and the test is applied by first specifying an
adequate linear model using the observed time series. As the results of this paper
show, this can have an adverse effect on the power of the LM test. Somewhat
surprisingly, the power is related to the intercept of the model and it can be
substantially reduced if the model has a non-zero intercept and the sample size
is not large. As compared with linear time series models this is very peculiar
and implies that in non-linear models the role of the intercept is rather different
from that in linear models in which it can simply be eliminated before inference
on other parameters of the model is performed. Unfortunately we have not been
able to find any intuitive interpretation for this phenomenon.

It is not surprising that the performance of the LM test improves when the
sample size or the non-linearity of the process increases. We would expect that
for sample sizes larger than 150 or 200 the power of the LM test is quite good
even if a data-based technique is used to specify the null model.

Finally, we believe that the results of the paper have practical relevance even
though the considered models are very simple. As already pointed out, simple
models of this kind have been of interest in some fields of application (see de
Gooijer (1989)). Furthermore, in principle, ARE’s, similar to (3.2), can always
be obtained although the calculations are involved except in special cases. The
following general conclusions can be made, however. If a bilinear model has no
intercept, then the overspecification of the linear part of the model as in (2.6)
has no effect on the asymptotic (local) power of the LM test. The ARE of
the “overspecified” test with respect to the corresponding “optimal” test is then
always equal to one. On the other hand, for any bilinear model with a non-zero
intercept this ARE is smaller than one. We have no reason to believe that in
general bilinear models the problems caused by such an overspecification would
be less serious than in the simple examples of this paper. The results of Tables 1
and 2 should thus indicate what can at least happen in this respect. We would
also expect that the conclusions of the paper do not greatly change if the best
fitting linear model is replaced by a statistically adequate approximation.
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Table 1. Empirical rejection freqﬁencies (%) of test statistics S and S; at the nominal

5% significance level computed from time series generated by (2.1) with { = 1 and
2

g’ =1

2 Test _ - _ _
B c e1 oa statistic T=50 T=7 T=100 T =150
6.0 -0.11 0.05 1.049 S1 94.7 99.5 99.8 100.0
ST 32.8 45.2 53.7 721
5.5 —-0.13 0.06 1.078 S1 96.1 99.7 99.9 100.0
ST 44.2 57.6 69.6 86.4
-4.0 0.17 0.11 1.116 S1 96.7 99.6 100.0 100.0
ST 49.3 69.0 81.8 94.3
3.5 -0.20 0.14 1.162 S1 96.6 - 99.7 99.9 100.0
ST 65.5 80.9 91.4 98.0
-34 0.22 0.15 1.212 S1 98.1 99.8 100.0 100.0
ST 69.8 89.1 95.3 99.5
-3.0 0.25 0.18 1.263 S1 98.6 99.8 100.0 100.0
ST 77.0 92.1 97.2 99.6
2.3 -0.30 0.27 1.321 S1 97.3 99.6 99.9 100.0
Sy 83.6 94.1 98.7 100.0
2.0 —-0.35 0.33 1.425 S1 98.1 99.7 99.9 100.0
St 89.1 96.9 99.7 100.0

Table 2. Empirical rejection frequencies (%) of test statistics S and S, at the nominal

5% significance level computed from time series generated by (2.1) with i = 2 and
2

c°=1

2 Test _ _ - _

u c e2 og .. T=5 T=75 T=100 T=150
45 -0.15 0.05 1.059 Sy 94.4 99.6 99.9 100.0
S3 33.2 45.2 57.9 79.3
—4.2 0.17 0.05 1.085 S, 94.7 99.8 100.0 100.0
S3 44.4 60.6 73.2 87.8
35 0.20 0.08 1.111 S, 90.8 98.6 99.9 100.0
S 42.5 60.2 74.1 89.8
-3.1 023 0.09 1.151 Sa 94.4 99.8 100.0 100.0
S3 60.8 77.8 88.2 97.7
-30 -025 0.10 1.197 S, 90.2 98.9 99.7 100.0
S3 46.3 66.5 81.8 93.7
24 0.30 0.15 1.256 Sy 89.0 97.8 99.4 100.0
S3 545 . 74.6 86.5 96.3
1.6 -0.38 0.28 1.321 Sa 92.4 99.1 99.9 100.0
S 71.9 90.4 97.2 99.7
1.3  -0.44 037 1415 S, 90.9 99.0 99.8 100.0

3 737 909 97.6 99.8
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Table 3. Empirical rejection frequencies (%) of test statistics S; and S; at the nominal
5% significance level computed from time series generated by (2.1) with i = 1, u = 0
and 02 =1

¢ o2 Test — 7_50 T=75 T=100 T=150
statistic
0.15 1.046 Si 22.8 38.0 48.4 67.3
Sf 21.6 36.9 48.3 66.9
0.25 1.134 S1 51.7 72.9 86.2 96.5
Sf 50.5 71.1 84.9 95.8
0.35 1.285 S1 73.0 89.5 97.7 99.6
S'l" 71.0 89.8 97.1 99.7
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