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Abstract: A methodology for nonlinear time series analysis is considered. First, the
ideas of (a) added variables in regression analysis and (b) arranged autoregressive
fitting in time series analysis are used to propose a procedure for testing nonlinearity
of a univariate time series. The procedure is quite general as compared with other
tests available in the literature because it can detect various nonlinearities in a time
geries such as threshold nonlinearity, bilinearity, and exponential nonlinearity. We
then use local estimation in arranged autoregressions to suggest suitable models for
a given process. Examples are given to illustrate the proposed methodology.
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1. Introduction

It is well known that Gaussian linear time series models, e.g., the autore-
gressive moving average models of Box and Jenkins (1976), fail to capture certain
phenomena commonly observed in practice. A notable example is the time irre-
versibility exhibited by the asymmetry between the ascent and descent periods of
annual Sunspot data. Motivated by this deficiency of linear models, researchers
have recently proposed many nonlinear models for time series analysis, e.g., see
Chapter 4 of Tong (1990) for a collection of more than ten classes of models, and
reported substantial improvements over linear models in various applications,
e.g., Granger and Andersen (1978), Maravall (1983) and Tong (1983), among
others. The objectives of using nonlinear models are multifold. For instance,
nonlinear models can be used to capture observed nonlinear phenomena and to
improve the accuracy of forecasting. Most of all, they move time series analysis
a step closer to reality. ‘

This paper is concerned with nonlinear time series analysis with emphases
on nonlinearity test and model building. In recent years, many nonlinearity tests
have been proposed in the literature and several modeling procedures suggested.
See Tong (1990) for further information. However, most of the results available
were based on a particular class of nonlinear time series models. For example,
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Keenan (1985) focused on testing second-order nonlinear models. We take an
alternative view in this paper; we believe that, in an analogy to nonlinear re-
gression analysis, the collection of nonlinear time series models is so vast that it
is too much to expect that a single class of models is capable of capturing most
of the observed nonlinear phenomena. It is thus not hard to find some types of
nonlinearity which a given nonlinearity test fails to detect. The first goal of this
article is, therefore, to propose a procedure that is simple yet general enough to
detect most of the nonlinear features considered in the literature. Another goal
of the article is to suggest an approach for building nonlinear time series models.

The paper is organized as follows. Section 2 introduces the proposed non-
linearity testing procedure. Various real examples and simulations are used to
compare the proposed test with other existing ones. Section 3 proposes a mod-
eling approach for nonlinear time series analysis. The approach uses local fitting
of arranged autoregressions to reveal the nonlinear nature of a given process and
suggests a class of nonlinear models accordingly. We also apply the proposed
modeling approach to annual Sunspot data and show that the specified model is
capable of capturing various observed nonlinear phenomena of the data. Some
conclusions are given at the end.

2. A Testing Procedure

Based on real data analysis and simulation study, both from the available
literature, e.g., W. S. Chan and Tong (1986) and Luukkonen et al. (1988), and
from my limited experience including the comparison to be given shortly, we
observe that among the existing nonlinearity tests (i) the idea of Lagrange mul-
tiplier tests appears to be powerful in detecting finite-order nonlinearity, (ii) the
idea of arranged autoregression is useful in spotting threshold nonlinearity, and
(iii) a test that uses the ideas (i) and (ii) separately seems to suffer from power
loss in detecting some types of nonlinear models. Consequently, it appears that
we should combine ideas (i) and (ii) above in testing nonlinearity of a time series.
Such a combined test not only can overcome the weaknesses, but is also able to
retain the advantages of the individual tests. Motivated by this observation,
we propose next a procedure for a nonlinearity test in time series analysis that
uses added variables to detect nonlinearity of bilinear (BI), exponential auto-
regressive (EXPAR), and smooth threshold autoregressive (STAR) models and
employs arranged autoregression to detect threshold nonlinearity.

2.1. The test

Consider an autoregression of order m,

‘Yt=Q0+Q1Y}_1‘+-"+Qm}’t_m+et, t=1,2,...,n. (1)
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It is well known that the ordinary least squares estimates ®; are consistent for
®; if Y; is an AR(p) process such that p < m and the innovation process sat-
isfies E(]a¢|’) < oo for some § > 2, e.g., Lai and Wei (1982). Therefore, the
associated residual {é;} is asymptotically a white noise process if Y; is a linear
AR(p) process. On the other hand, if Y; is bilinear then é, is related to Y;_;a,_ j
for some ¢ and j. Consequently, to detect the possibility of bilinearity in Y; one
may apply the technique of added variables to the autoregression (1) with some
suitably chosen variables such as {Y;_;é;—;} and {é;—;é;—;1} fori=1,... ,m.
The same idea applies to the EXPAR and STAR models. More specifically, for
the EXPAR model, we consider the added variables Y;_; exp(—Y2 ,/v) where v
is a normalization constant, e.g., ¥ = max{|Y;—1|}. For the STAR model of Chan
and Tong (1986) with delay parameter d, we use the added variables G(z;4) and
Y:-iG(2¢-a) where z;_g = (Yi—q — Y34)/Sq with Y; and S, the sample mean and
standard deviation of Y;_g4, respectively, and G(-) is the cumulative distribution
function (CDF) of the standard normal random variable.

Consider next the self-exciting threshold autoregressive (SETAR) models of
Tong (1978). Since the models are piecewise linear in the domain of the thresh-
old variable Y;_g4, the traditional way of fitting an AR(m) model is not useful,
because the estimates ®;’s tend to show substantial fluctuation as data from
different regimes are mixed together. To overcome this difficulty, the idea of ar-
ranged autoregression is useful. Roughly speaking, in an arranged autoregression
the observed values of the “dependent variable” and the associated “design ma-
trix” are sorted according to the values of the threshold variable. By so doing, we
effectively transform a SETAR model into a linear regression model with model
changes at the threshold values. This makes the technique of sequential estima-
tion useful. In particular, the (normalized) predictive residuals can be used to
detect the threshold nonlinearity. For instance, Petruccelli and Davies (1986)
use normalized predictive residuals to derive a CUSUM test and Tsay (1989)
employs the predictive residuals to obtain an F-test for threshold nonlinearity.
We refer to this F-test as a TAR-F test.

Putting the above two ideas together, we propose the following procedure
for testing nonlinearity of a univariate time series.

1. For a given delay parameter d, fit recursively an arranged autoregression
of order m to Y;, and calculate the normalized predictive residuals é; for
t=>b+1,...,n, where b is chosen so that the X’X matrix involved in the
initial estimation is invertible.

2. Regress é; on the regressors {1,Y;-1,...,Yi—m}, {Yi—i€ii, €:—i€i—i1]1 <
i < m}, and {Y;-1 exp(~YL,/7), G(2t-d), Yi-1G(2:-4)}, where 7, 2:_4 and
G(-) are defined as before, and compute the associated F-statistic F.

If Y; is a stationary linear AR(p) process of order p < m, F follows asymptotically
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an F-distribution with degrees of freedom 3(m + 1) and n — b — 3(m + 1). This
result can be established along the same lines as in Tsay (1989).

Some remarks on the proposed testing procedure are in order. First, like
many Lagrange multiplier tests, the selection of the added variables is somewhat
arbitrary. For example, we only use one added variable specifically for EXPAR
models and two for STAR models. We believe that these three variables should
be sufficient for reasonable EXPAR and STAR models because the second-order
terms used can also detect certain nonlinearity of EXPAR and STAR models. In
applications, one may choose the added variables based on the substantive infor-
mation of the process under study. Also, other cumulative distribution functions
can be used in lieu of the CDF of the standard normal random variable. Second,
the selection of order m can be done in various ways such as via the Akaike infor-
mation criterion (AIC, Akaike (1974)) or via an inspection of the sample partial
autocorrelation function. Third, the number of observations b used to start the
recursive estimation may depend on the order m and the sample size n. Fourth,
the recursive estimation can be done via various algorithms such as the recursive
least squares method and the Kalman filter. The Kalman filter appears to be
preferable when there are missing observations in the data, e.g., Tong and Yeung
(1991). Fifth, the normalization constant 7 is not critical so long as the resulting
exponents are not too large for most of the data points. Finally, when the delay

parameter is unknown, one may apply the test to some pre-determined values of
d.

2.2. Comparison and application

We now apply the proposed test to various real and simulated data so that
its performance can be compared with other tests. This comparison serves several
purposes. First, it is intended to show that the proposed test can, indeed, detect
nonlinearity of various models such as BI, EXPAR, STAR and SETAR. Second,
for a given alternative nonlinear models, it shows that the proposed test performs
well as compared with other existing tests that are known to work well. Third,
it illustrates the application of the new test to real data.

Stmulation

All the simulation results reported are based on 1000 replications each with
100 observations. Also, the AR order m is selected by AIC among {1,2,3,4},
b = 10+ m, and the delay parameter d = 1. For each realization of a given model,
we generated 3100 data points with zero starting values, that is, setting Y; and
a¢, the innovation, equal to zero for ¢ < 0; but only the last 100 points were used
as observations. The a;’s are standard normal random variates obtained from
the RNNOR subroutine of the IMSL package.
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Tables 1-5 give the empirical frequencies of rejecting a linear time series when
the generating models are BI, EXPAR, logistic STAR, SETAR, and concurrent
nonlinear, respectively. By concurrent nonlinear models, we meant models in-
volving cross products of the innovation a;. The nonlinearity tests used in the
simulation are the original F-test (Ori-F) of Tsay (1986), the augmented F-test
(Aug-F) of Luukkonen et al. (1988), the TAR-F test, the CUSUM test, and the
proposed new F-test (New-F). Notice that Ori-F and Aug-F are based on least
squares estimates of the full data set whereas the remaining tests are based on
recursive estimates of an arranged autoregression of order m. From the results
we make the following observations. (i) As expected, the New-F test appears
to work well for all the cases considered. On the other hand, each of the other
tests shows certain weakness. For example, Table 2 shows that TAR-F test is not
powerful in detecting EXPAR models. This is in agreement with the finding of
Luukkonen et al. (1988). (ii) The Aug-F, TAR-F and New-F tests all have good
power in detecting bilinear nonlinearity. (iii) The CUSUM and New-F test work
well for the EXPAR alternatives. (iv) The nonlinearity of logistic STAR models
employed is relatively hard to detect. (See Table 3.) This is true for all the
tests considered. (v) The Aug-F test seems to work well when the nonlinearity
is caused mainly by the difference in the constant terms. (See Row 1 of Tables 3
and 4.) However, the test has relatively low power when the nonlinearity is not
caused by constant terms. (See the last row of Table 4.) (vi) All the tests seem
to have reasonable Type-I errors. (See the case of linear models in Tables 1, 3
and 4.) (vii) All the tests have relatively low power in detecting concurrent non-
linearity which suggests that further investigation is needed in order to handle
this type of nonlinearity.

Table 1. Empirical frequencies of rejecting a linear model based on 5% and 10% critical
values: The generating models are bilinear given by

(a) Y: = 0.5Y;_1 + fYs_1a:-1 +ar  (b) Yz = ar + 0.5a;_1 + Ba’_;.

Model| B |Cri. V. [Ori-F Aug-F TAR-F CUSUM New-F
(a) [—.6 5% 872 980 987 391 976
10% 906 987 994 497 991
(a) |o. 5% 50 53 52 61 44
10% 100 106 98 113 83
(a) |06 5% 859 970 . 924 949 968
10% 898 982 953 973 991
(b) |-6 5% 471 913 791 931 780
10% 575 951 872 960 865
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Table 2. Empirical frequencies of rejecting a linear model based on 5% and 10% critical
values: The generating models are exponential AR given by

Y: = [® + Bexp(—Y1)]Vio1 +as.

® B Cri. V. {Ori-F_Aug-F TAR-F CUSUM New-F
0.3 | 10.0 5% 126 283 269 826 999
10% 203 422 367 951 999

0.3 | 20.0 5% 196 395 208 903 991
10% 267 506 277 956 993

0.3 1100.0 5% 90 189 183 976 784
10% 115 258 244 984 833

Table 3. Empirical frequencies of rejecting a linear model based on 5% and 10% critical
values: The generating models are logistic STAR given by

Ye =10 - 0.5%1 + (B0 + $1Yie1)G(a¥so1) +ar with G(z) = —RE)_

1+exp(z)’
Bo | B | « |Cri. V. |Ori-F Aug-F TAR-F CUSUM New-F
-40|-4 (2.0 5% 620 886 338 374 566
10% 722 934 473 497 696
-2.0] 0. {20 5% 78 496 191 326 373
10% 152 664 293 479 644
20 (-4 (2.0 5% 736 675 738 594 501
10% 830 783 821 696 642
0.0 | 0. |20 5% 46 43 46 51 51
10% 79 89 96 97 99

Table 4. Empirical frequencies of rejecting a linear model based on 5% and 10% critical
values: The generating models are SETAR given by

{ O+ ®1Y;—1+a; ifYig <w
T\ Bo+BYicitar Yy >w

D {®P1| Bo || w [Cri. V. |Ori-F Aug-F TAR-F CUSUM New-F
10{-5|-1.0|~-.5]0.0 5% 62 567 121 275 461
10% 119 680 209 397 607
20/05]05 |—.4(|1.0 5% 931 985 983 978 989
10% 962 993 990 994 998
0.0{05]0.0 |0.5(0.0 5% 47 45 35 43 37
10% 89 98 69 94 88
00/05(00 [—-.5(0.0 5% 53 136 560 199 412
10% 103 230 679 302 557
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Table 5. Empirical frequencies of rejecting a linear model based on 5% and 10% critical
values: The generating models are concurrent nonlinear given by

(a) Yt = a¢ + 0.5a;-1 — 0.6asa:_3 (b) Y: =0.5Y;—1 — 0.6Yi_10a¢ + a;.

Model [Cri. V. [Ori-F_ Aug:F TAR.F CUSUM New-F
(a) 5% 211 209 76 135 216
10% 306 295 138 234 288
(b) 5% 239 308 453 154 447
10% 331 403 554 213 537

Applications

We now apply the tests discussed earlier as well as the bispectrum test of
Hinich (1982) and the DBS test of Brock et al. (1987) to some data sets that
have been widely analyzed in the literature. Since the delay parameter is often
unknown in applications, the set {1, 2, 3} or {1, 2, 8} was used as the possible
values for d. These values have been used in the literature for the processes
employed. Also b = [n/10] + p with p the AR order used and [h] the integer
part of h. Table 6 gives the results of the tests. There “.000” denotes that
the corresponding p-value is less than 0.001. The data employed are (i) the
annual Sunspot series from 1700 to 1979, (ii) the Canadian lynx series, (iii) the
observations from ¢t = 48 to 206 of the blowfly population data used in Tong
(1983) and Tsay (1988a), and (iv) Series A — C of Box and Jenkins (1976). From
the table we conclude the following: (a) The results of the CUSUM test depend
very much on the threshold variable Y;_,. Consider, for instance, the Sunspot
series. The CUSUM test suggests linearity for d = 2 or 3 whereas the other tests
indicate nonlinearity. (b) All the F tests suggest that Series A is linear whereas
Sunspot, Lynx and Blowfly series are nonlinear. (c) For the first difference of
Series B, the use of delay parameter d = 2 fails to detect any nonlinearity. This
is conceivable given the fact that the differenced series of a stock price is close to
white noise. (d) The Aug-F test and New-F test with d = 2 or 3 seem to suggest
some nonlinearity in Series C whereas all of the other tests suggest linearity. We
interpret this as an indication that the nonlinearity is caused either by difference
in constant terms or by some STAR-type structure in the series, because both
Aug-F and New-F tests are more sensitive to these two types of nonlinearity.
(See the simulation results of Tables 3 and 4.) In fact, the outlier and level
shift techniques of Chang et al. (1988) and Tsay (1988b) suggest that there are
two level shifts at t = 58 and ¢t = 61, respectively, and an innovational outlier
at t = 60. After adjusting for these disturbances, all the tests fail to detect
nonlinearity at the 5% level.

Table 7 gives the results of the Bispectrum and BDS tests by using 5%
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asymptotic critical values. For the Bispectrum test, the smoothing parameter M
was determined by max{10,[/% — 1]}, where n is the sample size, and the 80%
fractile test was used. These values were used based on Hinich’s suggestion. For
the DBS test, each data set was properly filtered by fitting a linear AR(p) model
before applying the test. The parameter m was 2 or 3, and € was set equal to
one standard deviation of the prefiltered process. The simulation results of Hsieh
and LeBaron (1988) suggest that these choices often give the best performance
of the test. From the table, the BDS test tends to suggest nonlinearity whereas
the bispectrum test indicates non-normality over nonlinearity for several series.

Table 6. P-values of nonlinearity tests on real data, where OF, AF, TF, CU and NF
denote Ori-F, Aug-F, TAR-F, CUSUM and New-F tests, respectively, TR stands for
transformation and “.000” indicates that the corresponding p-value is less than .001.
The delay parameter d = 8 is used for the blowfly series.

d=1 d=2 d=3or8

OF AF|TF CU NF|TF CU NF| TF CU NF
.000 .000|.000 .000 .002}.000 .607 .000]|.000 .573 .000
.003 .001}.015 .107 .062].012 .000 .085].041 .000 .015
.000 .000(.002 .007 .000|.000 .009 .000|.000 .016 .000
.000 .000 |.000 .008 .002|.009 .018 .035|.000 .000 .000
.000 .000(.000 .064 .000}.000 .396 .006|.000 .000 .000
.828 .953|.455 .441 .244{.366 .597 .938|.746 .835 .504
.003 .001(.007 .039 .038 |.842 .925 .861|.000 .750 .001
.700 .019].983 .869 .455|.890 .976 .000|.747 .996 .007

Data TR | n

Sunspot | Raw | 280
Lynx Log | 114
Lynx Raw [ 114
Blowfly | Log | 159
Blowfly | Raw | 159
Ser A |Raw | 197
Ser B |Diff |368
Ser C |Raw | 226

"3

o
ot

N = = NW WP

Table 7. Results of BDS and Bispectrum tests on real data using asymptotic 5%
critical values where the parameters used were given in the text, “L” and “NL” denote
linear and nonlinear, respectively, “G” and “NG” denote normality and non-normality,
respectively, and TR stands for transformation.

BDS Test Bispectrum
Data TR n| plm=2 m=3 | Norm. Lin.
Sunspot | Raw | 280} 11| NL NL || NG L
Lynx Log | 114 9| L NL || NG L
Lynx Raw| 114| 3 | NL NL || NG L
Blowfly | Log | 159| 3 | L L NG NL
Blowfly | Raw| 159} 2 | NL ‘NL || G L
Ser A Raw| 197] 7 | NL L G L
Ser B Diff | 368] 1 | NL NL || NG NL
Ser C Raw| 226 2 | NL NL i G L
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3. Nonlinear Time Series Modeling

We now turn to model b{ﬁlding. An important problem here is to select an
appropriate class of nonlinear models for a given data set. The common practice
has been to select a priori a class of models based on the subjective judgement of
an analyst. Haggan et al. (1984) employed the state-dependent models (SDM) as
a tool to suggest a candidate class of models to use. This approach, however, re-
quires close attention on the choices of smoothing parameters and the state-space
model. It also tends to suggest a smooth model because the SDM’s employed
are smooth functions. In this article, we suggest an alternative approach that
does.not suffer these drawbacks.

The proposed modeling approach is motivated by the distinctive local char-
acteristics of various nonlinear models; and the basic tools used are (a) local
fitting of arranged autoregressions and (b) scatterplots of local estimates versus
the selected threshold variable. As will be seen later, an advantage of the pro-
posed approach is its simplicity. For instance, the local fitting can be computed
recursively via recursive least squares methods with a fixed rectangular window.

To provide a framework for the proposed procedure, we consider, as a base-
line model, the general threshold autoregressive model

P

Vo= [ @) + ) S @e-Yimi 40w <Yea<w;  (2)
=1 :

where the superscript (j) with j = 1,... ,£ denotes the jth regime, —co0 = wy <

wy < --- < wy = 00 are the threshold values, aﬁ’ ) is the Gaussian white noise of

the.jth regime, and f,-(J )(¢'t—1) are differentiable and measurable functions with

respect to the o-field ,_; generated by {Y;_n|h > 0}. Alternatively, the model
can be rewritten as

2
Yo=Y U eo1) + £ (1) Yeer +- 4+ ) (1) Yimp +0DedTi(Yima), (3)

i=1

where I;(-) is the indicator variable of the interval [w;_1,w;), () is the standard
deviation of agj ) and {e:} is a sequence of independent standard normal random
variates. If the f,.(j)('gbt_l)’s are constants, model (2) reduces to the SETAR
model, and when k = 1, i.e., there is a single regime, it becomes the nonlinear

autoregressive model of Jones (1978). Obviously, BI, EXPAR and STAR models
are special cases of model (2).

A key difference between model (2) and the SDM is that for a given lag
¢ the functions f,-(J )(¢t—1) may be different for different regimes. Thus, global
smoothness is not required in model (2) even though local smoothness is essential
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in a given regime. In applications, we expect that the number of regimes £ is
small and all of the functionsf;”’(1;_1) are simple, e.g., functions of a single
argument. In addition, we assume that the number of observations of each regime
is unbounded when the sample size goes to infinity, that is, for 1 < j < ¢

n
n,-sEI,-(YQ—»oo as n — 0o,
t=1

Model (2) is rather general and certain restrictions on the coefficient func-
tions f,-(j )() are needed in order for the process Y; to be stationary. A sufficient
condition for the ergodicity of Y; is given in Chen and Tsay (1990). The use of
such a general model here is simply to provide an umbrella under which we can
make use of the local features of f,-(J )() to select an appropriate class of models
for a given data set. Consider, for example, the simple EXPAR model

Y: = (& + Be M=)y, | +a, with a>0.

The special local features here are (i) when a(Y;—; — 1)® = 0, the coefficient
function fl(l)(-) ~ ® + 3, (ii) when a(Y;—1 — n)? is large, fl(l)(') ~ @, and (iii)
most importantly, ffl)(-) is a symmetric function of Y;_; with respect to . In
practice, if some preliminary estimator of the coefficient function f{l)(-) exhibits
features similar to those mentioned above, we can infer that some EXPAR models
might be appropriate for the given data.

3.1. Recursive local fitting

To explore the local features of a given data set, we employ model (3) and
use a local fitting procedure of the arranged autoregression to obtain preliminary
estimates of the functions f,.(J )() By “local fitting”, we mean using a rectangular
window with fixed number of data points inside the window. Intuitively, if the
threshold variable Y;_4 of all the data points inside the specified window is in
the interval [w;_;,w;), then by model (3) the ordinary least squares estimates of
an AR(p) regression would provide plausible estimates of the coefficients f,-(j )(-),
especially when f,-(j )() are sufficiently smooth. The consistency of such local
estimates and some of their variants is investigated in Chen (1990). In practice,
the local fitting can be done recursively.

For given observations {Y;,Y2,...,Y,} and an AR(m) arranged autoregres-
sion with a delay parameter d, the threshold variable Y;_; may assume the values
{Va, Yn415-.. ,Yn_q} where b = max{1,m + 1 — d}. Let 7; be the time index
of the ith order statistic of {Y4,Yrt1,...,Yn-a}. For ease of description, we
refer to (Y;,1,Y:_1,...,Y;—r) as the data case corresponding to Y; in fitting an
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AR(m) regression. Then, the local estimation of an AR(m) arranged autore-
gression with a rectangular window of size k can be carried out recursively as
follows:

e Initialize the estimation procedure by fitting, via the ordinary least squares
method, an AR(m) model to the first k£ data cases corresponding to Yy, 44
with i = 1,2,... ,k.

o Proceed with the estimation by (a) adding the next available data case, e.g.,
the one corresponding to Yx,,,+4, and (b) deleting the first data case in the
rectangular window, e.g., the one corresponding to Yz, 4+4.

e Repeat step 2 until all the data cases have been processed.

Denote the vector of least squares estimates of AR coefficients by &, when
the last data case in the rectangular window corresponds to Y, 4. Also, denote
the corresponding (X’'X)~! matrix by P,. Let X; be the regressor in the data
case corresponding to Yy, 4. Then, the addition of the data case corresponding
to Y, ,,+4 can be done recursively by

;+l =&, + P,,Xu+1[1-0 + XI1,+1Pva+1]—1[Y7rv+1+d - Xir-l»l@"]’ (4)
:+1 =P, - P,X,41[1.0 + X:,+1vav+1]_1X::+1Pv’ (5)

where &, ,; and P,,, are respectively the least squares estimates and the
(X' X)~! matrix with k+1 data cases corresponding to Yriga for j=v+1-k,

. v+ 1. The deletion of the first data case in the rectangular window, i.e., the
case corresponding to Yy, .., +d, can be done by

Pyy1 = Qu‘«i-l + P;+1Xu+1—k[X::+1—kP;+1Xv_+1—k - 1]_1
* [Y"fu+1—k+d - X:;+l—k¢:+1]7 (6)
Pv+1 = P:+1 + P;+1Xv+l-k[X:;+1-kP:+1Xv+1—k - 1]_1X:1+1—kP:+1' (7)

The above recursive formulas can be derived by using a matrix inversion formula.
For details, the readers are referred to Young (1984, p.60).

3.2. A modeling procedure

Given the observations {Yj,...,Y,}, the proposed modeling procedure con-
sists of the following steps.

1. Apply the test procedure discussed in Section 2 to detect nonlinearity of
the process. If the process appears to be linear, use a traditional modeling
method, e.g., the Box and Jenkins (1976) method, to build a model. When
nonlinearity is present, proceed to Step 2.

2. Select the delay parameter d by using the method of Tsay (1989), i.e. choose
d based on the p-value of the nonlinearity test of Step 1. If necessary,
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entertain several tentative values of d and select a final model after building

a model for each d. .

3. Select the size of the rectangular window and perform local fitting of the
AR(m) arranged autoregression.

4. Obtain scatterplots of the local estimates of Step 3 versus the (ordered)
threshold variable Y;. 4 and select a nonlinear model based on the pattern
of the scatterplots.

5. Refine the model if necessary.

Some remarks on the above procedure are in order. First, since the values
of Y;_q4 are not equally spaced, one may wish to omit some extreme values of
Y:—a in the scatterplots. Otherwise, the plots may be squeezed making it hard
to read. Second, various window sizes can be used. We have tried k£ = 30, 40
and 50, and found that the patterns of local estimates appear to be stable so
long as the window size is reasonably large compared with the AR order m.
Of course, one should use the corresponding standard errors of the estimates to
judge the significance of a pattern. Also, since no attempts have been made to
smooth the scatterplots, some deviations can be expected from the ideal local
features. For instance, a minor zigzag curve instead of a smooth transition
may appear for a logistic model. The problem of smoothing the scatterplots
deserves further study. Third, the selection of the fitted AR order m may be
determined by using some information criteria, e.g., AIC, or by using the usual
sample partial autocorrelation function of Y;. Fourth, one can refine the model
and the threshold values based on some criterion function, e.g., we used the AIC
and the Schwarz information criterion (Schwarz (1978)) in the study. Here the
value of an overall criterion function is the sum of that criterion of each regime.
Finally, it is important to perform a general nonlinearity test at the beginning
of a modeling procedure, because (a) certain types of nonlinearity may easily be
overlooked without such a test and (b) the test provides a means for identifying
the possible threshold variable.

3.3. An illustrative example

We illustrate the proposed modeling procedure by analyzing annual Sunspot
data from 1700 to 1979. The data are given in Tong (1983) and have been widely
analyzed in the literature. As shown in Table 6, the series is highly nonlinear
with a delay parameter d = 2 or 3. A SETAR model with d = 2 and three
regimes was adopted in Tsay (1989). However, it was noted there that the linear
model of the first regime is not satisfactory, because the model contains some
higher-order AR coefficients that are small compared with their sample standard
errors but are important according to AIC. In this article, we use d = 3 which
was also used by Tong (1983).
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Following the proposed steps, Figure 1 gives the scatterplots of some local
estimates of an AR(11) arranged autoregression with a rectangular window of size
50. Some interesting features are clearly seen from the plots. First, the estimated
coefficients of lags 1-4 appear to be rather stable for Y;—3 > 40. Second, some
quadratic patterns with a center around 25 are apparent in the local estimates
of lag-1 and lag-2 coefficients. Third, the quadratic pattern of the estimates of
the lag-3 coefficient is less clear and is centered around 35 instead of 25. Fourth,
the estimates of the lag-4 coefficient are relatively stable as compared with those
of lag-1 and lag-2. In addition, the local estimates of lags 5-11, not shown in
order to reduce the number of plots, are relatively small compared with their
standard errors. Another possible feature of those plots is that there may be a
model change around Y;_3 = 60.0, which suggests a potential threshold model
with three regimes. However, our analysis shows that adding this threshold value
does not substantially improve the fit. Hence, this possible model change was
omitted. Based on the above observations, the local fitting seems to suggest that

e a general threshold model of (2) with two regimes might be reasonable for
the data,

o the model for the first regime is nonlinear with some quadratic coefficient
functions at lags 1 and 2 and linear coefficient functions for lags 3 and 4,
¢ the model for the second regime is linear, and

e the two regimes are separated by a delay parameter d = 3 and a threshold
value around 40.0.

Thus, we tentatively specify the model
Yi= )+ T, VY i+ T, Ai(Yeos — M)W +af) Vi <w (8)
o7+ 7L, 8 Yi-i + 0 if Yees > w,

where 7 and w are around 25 and 40, respectively, for the data. The scatterplots
of Figure 1 also provide some initial parameter estimates of model (8). For
instance, (I>(11) = 2.0 and Q(;) = —2.0. Note that the specified threshold value is
in good agreement with that of Tong (1983) who used w = 36.6.

To refine the specified model, we begin with the first regime. With w = 36.6,
the estimated results of model (8) are given in Table 8(a). Here the estimated
coefficients of B; have been multiplied by 18.2, which is half of the range of the
data in the first regime. The estimation was carried out by the nonlinear least
squares subroutine DU2LSJ of the IMSL Package. The residuals of the estimated
model show no large serial correlations. However, the residuals appear to have
some correlation with Y;2 ;. More specifically, a t-ratio of 1.4 was obtained when
we regressed the estimated residuals on Y;2 ;. Thus, we refine the model to
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" 2
Y; = @E,” + Z @Sl)Yg-e + Zﬂi(Yt—3 - 7)*Ye—s

=1 i=1

2
+3 V2 +aY  if Vs < 36.6. (9)

=1

Tables 8(b) and 8(c) give the estimated results when Y> ; and Y2, are added
sequentially to the model. Some improvements are seen by adding these two
quadratic terms. Again, the corresponding residuals have no large serial correla-
tions. Y2 ; was further added to the model, however, no significant improvement
was obtained. In fact, when Y2 ; was added, the residual mean squared error is
&% = 206.1 and AIC increases to 714.7. Thus, the two models in Tables 8(b) and
8(c) appear to be appropriate.

Table 8. Estimation of nonlinear models for annual Sunspot data, 1700-1979, where S;

have been multiplied by 18.2 which is the half-range of observations of the first regime
when w = 36.6.

Do (& | @2 | ®3 [®a ] B (B n | m | 72] o [AIC
(a) |Initial Model

8.81[2.16| —2.22] .339 [.296 ] —.044].115]23.32] | |240.9]729.0
(b) |Initial Model plus Y ; term
2.48)2.53 [ -1.87] ~.092].492] —.040] .09222.13] —.004]  [209.0]7125

{c) |Initial Model plus Y2 ; and Y , terms
036 {2.62 [ —2.24] .115 [ .522]—.027[.078]23.96] —.006].007[206.2 [712.7

Using the model in (9) for the first regime and a linear AR(11) model for
the second regime, we further modify the model including refining the threshold
value w. Based on AIC, a threshold value of 34.8 was selected. The resulting -
nonlinear model for the first regime is

Y: = —1.21 + [2.72 — .0019(Y;—3 — 22.99)2]Y;_;
— [2.53 — .0060(Y;—3 — 22.99)*]Y;_; + .31Y;_3
+.49Y;_4 — .0059Y2, + .0086Y2, + a{” ifY,_3 < 34.8 (10)

with Var(agl)) = 200.9. The AIC of the overall model is 1357.4. Note that model
(10) can in effect be approximated by a cubic autoregressive model that can be

estimated by the ordinary least squares method. More specifically, rewriting the
model (10) as
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4 2 2
Ye=0" + > oVVii+ ) 1wV + ) 6YisYi
=1

i=1 i=1
2
+ Y eV Y+ el Y5 <348, (11)
i=1

we can estimate the parameters by using any regression package. With this
approximation, a model for the Sunspot data was obtained and the results are
given in Table 9. The corresponding AIC is 1357.0, which is much smaller than
those of the models in Tsay (1989) and Tong (1983). Various residual analyses
including checking for linear dependence by examining serial correlations of the
residuals, checking for conditional heteroscedasticity by using McLeod and Li’s
(1983) test on the squared residuals, and checking for normality and outliers
by examining the normal probability plot of standardized residuals all fail to
suggest any inadequacy of the fitted model. Furthermore, the BDS test of the
standardized residuals gives a value of 1.56, implying that the test fails to reject
the ¢id assumption at the 5% level.

Table 9. Estimation results for annual Sunspot data, 1700-1979, with a delay parameter
d = 3 and threshold value 34.8.

(a) | Model for Y;_3 < 34.8
Par.| &g @, @, ® | P4 | 1 72
Est. [ —-0.623 | 1.654 [ .530 | .506 |.407|—.006] .013
SE.| 4236 | .375 | .721 | .437 |.174]| .002 | .006
Par. 61 62 oy g o? AIC
Est,| .114 |[-.313(-.003| .007 197.0 |1 661.3
S.E.| .039 .075 | .001 | .002

(b) | Model for Y;_3 > 34.8
Par. Qo Ql Qz @3 Q4 Q5 ¢6

Est.| 7.471 | .699 | .061 | —.203|.047|—.139|.030
S.E.| 2.580 | .059 | .071 | .066 [.067] .070 |.075
Par. LT ‘}8 Qg @10 Qu 0’2 AlIC
Est.| .169 |-—.289! .284 |—-.197|.259| 80.7 [695.8
SE.| .086 | .099 | .099 [ .100 |.062

Some discussion: To further evaluate the adequacy of the fitted model in
Table 9, we compute the eventual forecasting function of the model, that is,
compute the long-term forecasts starting at time index 281 by dropping the in-
novation terms. As noted by Tong (1983), the eventual forecasting function can
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be regarded as the skeleton of the fitted model that describes the underlying
structure of the series. For instance, the eventual forecasting function of a sta-
tionary linear model is a constant function, i.e., the sample mean of the observed
data. Figure 2 shows the observed data (¢t = 171,...,280) and 144 point fore-
casts (t = 281,... ,424) of the model. There the time scale used is t — 170 instead
of t. It is seen from the plot that the eventual forecasting function of the model
is also periodic with a period of 10 years which is in reasonable agreement with
the observed data. In particular, the asymmetry between the ascent and descent
periods of the data is well reproduced by the model. This suggests that the fitted
model has an asymmetric limit cycle. Furthermore, Figures 3(a) and 3(b) show
the ‘sample autocorrelation functions (ACF) of the observed data and the 144
forecasts, respectively. From the plots, the sample ACF's are in nice agreement:
(i) basically both ACF's peak at lags 1, 5, 11, 16, 21 and 27, (ii) the positive and
negative signs of the ACFs are the same except for lags 3, 29 and 34 where the
magnitudes of ACF are small, e.g., the ACF at lag 3 is 0.03 for the observed series
and —.14 for the forecasts, (iii) both ACFs show a similar symmetric pattern with
respect to the peaks. Finally, to further check the model, Figure 3(c) shows the
sample ACF of a simulated series of 200 observations from the model in Table 9.
The series, say Z;, was generated by using the first 80 observed Sunspots as the
initial values and the formula Z, = Zt—l + aﬁ’ ) where Zt_l was computed from
the previous Z;_;’s by the model in Table 9 and agl) and a{.” were independent
N(0,197.0) and N(0,80.7), respectively. However, the agj )’s were constrained, if
necessary, so that Z; and Z;_, stay in the same regime. Based on the sample
ACF of the agj) ’s used in the simulation, the constraint did not introduce any
serial correlations in the noise process. Comparing Figures 3(a) and 3(c), the
agreement in sample ACF's is remarkable. Figure 4 shows the simulated series
and the observed Sunspot data from 1780 to 1979. The simulated series bears a
strong resemblance to the observed data.

4. Conclusion

In this article, we considered a general procedure for detecting nonlinearity
of a univariate time series. The test is based on the ideas of added variables and
arranged autoregressive fitting and is shown to be powerful in detecting various
types of nonlinearity commonly discussed in the literature. We also proposed a
procedure for building nonlinear time series models. The annual Sunspot data
were used to illustrate the proposed modeling procedure, and the specified model
was capable of reproducing various nonlinear features of the data.
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Figure 1. Scatterplots of local estimates of lags 0-4 AR coefficients in an AR(11)
arranged autoregression of annual Sunspot data with delay d = 3 and window size 50.
The X-axis is Y;_3.
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Sunspots plus Eventual Forecasts

obs

200 2%0 360 350 400
time

Figure 2. Time plot of the annual Sunspot data from ¢t = 171 to 280 and 144 point
forecasts for ¢ = 281 to 424. The forecasts are based on the model in Table 9 and the
X-axis denotes year.
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(a) ACF of the annual Sunspot series: (b) ACF of point forecasts of the annual
. .
1700-1979. ‘ Sunspot series: 144 forecasts starting
at 1980.
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 ~1.0 ~0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Lag ACF 1 Lag ACF ¢ :
1 0.80 + IXXEXXXXARXAXXXXXXXAX 1 0.75 + IXXX4XXXXXXXAXXXKXXX
2 0.43 + TXXX4IO00;KXX 2 0.31 + IXXXXX+XX
3 0.03 + 1x + 3 -0.14 + XXXXT +
4 -0.26 XX+XXXXT + 4 -0.49 AXXXXX+XXAXXT +
5 -0.40 AARXK+XXXXT + 5 -0.64 XXXXXXXXX+XXXXXXT +
6 -0.36 XXXX+XXXXT + 6 =-0.59 XXXXXXX+XXXXXXXT +
7 -0.15 #XXXX1 + 7 -0.34 XXXXXXXXXT +
8 0.15 + IXXXX4+ 8 0.00 + I +
S 0.44 + IXXXX+XXXXXX 9 0.35 + IXAXXXXXXX
10 0.62 + IXXXXX4AXAXXXXXX 10 0.55 + IXXXXXXXX+XNXXK
11 0.61 + IAXRXN+ AXXXXAXXXX 11 0.55 + IXXXXXXXXX$NXXX
12 0.43 + IXAXXXXX+XAXX 12 0.36 + IXXXXXXXXX S
13 0.15 + IXXXX ¢+ 13 0.08 + 1x +
14 -0.12 + XXXT + 14 -0.24 + AXXXXXT +
18 -0.29 XXXXXXXT + 15 -0.45 X+XXXXXXXXXT +
16 -0.35 XX+XXXXXXT + 16 -0.49 X+XXXXXXXXXXT +
17 =-0.29% AXXXXXXT + 17 -0.38 + XXXXXXXXXI +
18 -0.14 +  XXXXI + 18 -0.12 + xXX1 +
19 0.06 + IXX + 19 0.18 + IXXXXX +
20 0.24 + IAXXAXX+ 20 0.42 - IXXXXXAXXXX+
21 0.34 L TXXXXXX XX 21 0.46 + IXXXXXXXXAXXX
22 0.33 + IAAXARKXX 22 0.33 + IXXXXXXXX +
23 0.20 + IXXXXX + 23 0.1l + IXXX +
24 -0.01 + 1 + 24 -0.12 4+ XXXT +
25 -0.19 4+ XXXXXT + 2% -0.27 + AXXXXXXT +
26 -0.31 AAXXXXXKT + 26 -0.32 + XXXXXXXX1 +
27 -0.34 XXXXXAXKT . 21 -0.25 + XXXXKXE +
28 -0.26 + XXXXXXT + 28 -0.10 + XXX1 +
29 -0.13 + XXX1 + 29 0.07 + xXx +
30 0,02 + 1 + 30 0.9 + IXXXXX +
31 0.13 + XXX . N e.23 + IXXXXXX +
32 0.18 + IXXXX ¢ 32 0.16 + TXXXXX +
33 0.14 + IXKXX 4 I N x M
34 0.0¢ M s N 34 -0.09 + xx1 +
35 -0.09 + xX1 N 35 -0.21 + XXXXXT +
36 -0.21 4+ XXXRXT N 36 -0.25 + XXXXXXT +
( (c) Sample ACF of a simulated series of 200 obser-

vations generated from the model in Table 9.

-1.0 ~0.90 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

, Lag ACF 1
1 0.90 + IXXEXXXXAXRXXXXXXXXXXX
2 0.39 + IXXXX+XXXXX
3 -0.08 + XX 04
4 -0,42 XXXXX+XXXXXT +
5 -0.58 RXXXAAXK+XAXXX T +
§ -0.51 AARAAK +XXXXAX T +
T -0.2% AXXXXXXT +
L} 0.01 * x +
9 .9 + IXAXAXX+X
10 0.51 + IXXXXXX+XAXXXXX
11 0.54 + IAXXXXXX+XXXXX
12 ¢.39 + TXXXXXXX XX
13 0.14 + IXXXX  +
14 -0.13 + XXXX +
15 -0.33 AXXXXXXXT +
16 -0.41 A+XXXXXAXXT +
17 -0.37 AXXXRXXXXT +
18 -0.20 + XXXXXT +
19 0.01 + 1 +
20 0.17 + TXXXX +
21 0.2% + IXXXXXX  +
2 0.24 + IXXAXXX  +
23 0.14 + oo +
24 0.63 + x +
25 =-0.07 + XX +
26 ~-0.13 * XXX +
27 -0.17 + XXXX1 +
28 -0.17 + XXXXT +
23 -0.12 + XXX1 +
30 -0.03 + X1 +
31 0.06 + XX +
32 0.13 * IXXX +
a3 0.14 + IXXXX +
34 0.11 * IXXX +
s 0.06 + Ixx +
36 -0.02 + b4 +

Figure 3. The sample autocorrelation functions of the annual Sunspot data, the 144
point forecasts of Figure 2, and a simulated series of 200 observations.
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(a) A Simulated Sunspot Series
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(b) Sunspot Numbers: 1780-1979
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Figure 4. Time plots of the simulated Sunspot data of Figure 3(c) and the annual
Sunspot data from 1780 to 1979.
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