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exciting, threshold, autoregressive models and applied the procedure to several real
data sets. The performance of the fitted threshold models to real data is discussed
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1. Introduction

During the last ten years or so, various classes of nonlinear time series mod-
els have been studied and a number of tests for nonlinearity have been developed.
One particular class of the nonlinear time series models is threshold autoregres-
sive models (TAR) proposed by Tong (1978, 1983a). There are various forms of
TAR models. Basically they are piecewise linear autoregressive models in which
the linear relationship varies over regimes delineated by the threshold values.
If the regime is determined by the past values of the time series, the model
is described as self-exciting. Petruccelli and Davies (abbreviated PD (1986)),
Petruccelli (1988) and Tsay (1989) have designed tests specifically to detect self-
exciting, threshold, autoregressive (SETAR)-type nonlinearity.

So far, the study on TAR models and tests of threshold nonlinearity are
mainly concerned with discrete time processes observed at equally spaced time
points. However, unequally spaced data are common in practice. They may be
partially observed with some missing observations or irregularly observed with an
arbitrary sampling interval. Considering partially and irregularly observed data
as being sampled from a discrete and a continuous time process respectively, we
have recently extended the tests of PD, Petruccelli and Tsay to detect general
threshold nonlinearity in these two situations of unequally spaced data (see Tong
and Yeung (1988,1990)). The tests have been applied to several real data sets
which are, in fact, or can be treated as, unequally spaced. As threshold nonlin-
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earity has been suggested for some of them and these data can also be considered
as being sampled from a continuous time process, continuous time TAR models
seem appropriate for analysing such data.

In this paper, we shall discuss identification and estimation procedures of
only the continuous time SETAR model. The identification procedure is similar
to that proposed by Tong and Lim (1980) for the discrete time case. However,
at the estimation stage, we shall use the Kalman filter algorithm, just as we have
done in tests of nonlinearity, in order to cope with unequally spaced observations.
We then apply the modelling procedure to three real data sets and compare the
performance of the fitted TAR models with that of the continuous time, linear,
autoregressive time series models fitted by a method due to Jones (1981).

2. Model Identification

Consider a two-regime continuous time, self-exciting, threshold, autoregres-
sive model of order p, or SETAR(2;p, p), with threshold r,

YO () + a15-19P V(@) + - + ar0y(t) = e2(t) if y(t) <7

() (p-1) = i (2.1)
YP(t) + a2,y PV (8) + - 4 az09(t) = £5(t) if y(t) > 7,
where y(9)(t) denotes the ith derivative of y(t) with respect to time t, and &, (t),
£2(t) are independent continuous time Gaussian white noise with instantaneous
variances o7, 02 respectively.

Clearly, a delay term s has not been introduced in Equation (2.1) unlike
the discrete time case. It would be impractical to use y(t — s), s > 0, as the
threshold variable since this would lead us to a delayed-stochastic differential
equation, an area which is not well charted by the probabilists. Even delayed-
deterministic differential equations are quite tricky. (See, e.g., Tong (1983b).)
However, the possibility of using g(t) (i.e. i%ﬂ) and higher derivatives as the
threshold variables would be interesting and is currently under investigation.

Suppose we have n equally or unequally spaced observations y(t; ), y(t2),. ..,

Y(tn), t1 < t2 < --- < tn, at which points only estimates are required; then the
model (2.1) can be cast in the following state space form with system equation

z(t
d z“(’ ()t)

dt :
z(p_l) (t)
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—ao(t) —ar(t) —ax(t) - —apa()) \ao-D(5)/ \o(®)

where a;(t) = a;;, 0(t) = 04,4 =1,2; = 0,1,... ,p— 1 during the time when
the observation lies in regime i, w(t) is a continuous time Gaussian white noise
with instantaneous variance equal to unity, and observation equation

z(t:)
z() (t:)

y(t) = (10--- 0) . i=1,...,n (2.3)

z(p_l) (t')
In matrix notation, Equations (2.2) and (2.3) can be written respectively as

X(t) = F)X(t) + G(t)w(t) (2.4)
y(t;) = HX (L), i=1,...,n, (2.5)

where X(t) is a p X 1 column vector representing the state of the process at
time ¢,
F(t) is a p X p system dynamics companion matrix at time ¢,
w(t) is the random input to the state equation at time ¢,
G(t) is a p x 1 column vector defining how the random inputs are prop-
agated into the state at time ¢,
H is alXxprow vector defining linear combinations of the state that
are observed at time t,
y(t) is the observation at time ¢,
and the overhead dot denotes the time derivative.
Note that here F(t) and G(t) are time dependent (and random) and for the
time instant when the observation lies in regime i (i = 1,2),

0 1 0 ce 0
0 0 1 s 0
F(t)=F;= . . : . , (2.6)
—ajg —aGiy —Gig c —Gip-1
0
0
G =6Gi=| . |. (2.7)

g
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Now, to evaluate the integral of Equation (2.4) over the given time points
1 <t <--- < ty, we need to determine the length of time during which the
process lies in a certain regime and the time for the process to switch from one
regime to another. For simplicity, we make the assumption that if y(;) and
y(tiy1), ¢ = 1,...,n — 1, lie in the same regime, then there is no switching
between the regimes during the period (%;,%;+1). But if y(¢;) and y(ti41) lie
in different regimes, then we assume that the integral path of y(t;) crosses the
threshold once and only once over the time interval (¢;,%;41); the time of crossing
T, is approximated by a linear interpolation between the observation times as

_ _Gilr — y()]
T y(tier) - y()

where 6; = t;;; — t;, Whether the above assumption is valid or not clearly
depends on the data at hand. However, this assumption is at least one step

closer to reality than the assumption of linearity under which everything always
falls within one and only one regime.

There are 4 cases to describe:
Case 1: 2 adjacent observations in regime 1 and Equation (2.4) becomes

+ t;, (2'8)

X(t) = FLX(t) + Giw(t), t; <t < tips. (2.9)
Case 2: 2 adjacent observations in regime 2 and Equation (2.4) becomes
X(t) = BX(t) + Gow(t), t; <t<tip. (2.10)

Case 3: t;th observation in regime 1 and t;;;th observation in regime 2 and
Equation (2.4) becomes

X(@t)= X))+ Gw(t) ift; <t<T, (2.11)
= BX(t)+ Gaw(t) T, <t<tiy. '

Case 4: tith observation in regime 2 and t¢;;,th observation in regime 1 and
Equation (2.4) becomes

X(t) = HX(t)+ Gyw(t) ift; <t<T,

. (2.12)
= F1X(t) +Gw(t) ifT,<t< tig1.

In each of the four cases, the solution of X (%) over a finite time step §; from
time t; to time ¢;4; can be written as

X (tiy1) = ¢(8:)X (1) + g(t:), (2.13)

where
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Case 1:

8(6:) = exp(Fi6),  g(ti) = /0 ) exp[F1(6; — t)]G1w(t)dt; (2.14)
Case 2:

$(6:) = exp(F26:), g(ti) = /o " exp[F3(6; — )]Gaw(t)dt; (2.15)
Case 3:

¢(8:) = exp(F161:) exp(F263:), 61i=Tr ~ti, &2 =tiy1 - T,

81 52i (2.16)
g(t;) = exp(anz,') A eXp[F1(51,' - t)]Gl‘w(t)dt + A exp[Fg (62,‘ - t)]Gz‘w(t)dt;

Case 4:
#(6;) = exp(F361i) exp(F163:),
516 Sai (2-17)
g(t)= exp(Flégg)/o exp[F3(61i — t)]Gaw(t)dt +/0 exp[F1(62: — t)]|Grw(t)dt.

Cases 1 and 2 are obvious. To see Case 3, we use the usual superscripts “+”,
“—” to denote “from the right” and “from the left” respectively; the solution of
Equation (2.11) over a finite time step §; from time t; to time t;4; is

X(T7) = exp(Fi60) X(£F) + /0 * explFu(6ui — )Grw(t)d,  (218)

3
X(ti_+1) = exp(F262,-)X(T,'.'") + A exp[Fg(ég.- - t)]Gz’w(t)dt. (2.19)

I X(t7) = X(i}), X(T7) = X(T#) and X(t5,) = X(t5,,), then

S1i
X(ti41) = exp(Fb2:){ exp(Fi61) X (t:) + A exp[Fl(él.-—t)]le(t)dt}

62
+ / exp[F3(82i — t)]Gaw(t)dt
0
614
= exp(F161.-) exp(Fz 62,‘)X(t.') + {exp(Fz 62,’)[) exp[F1 (61,‘ - t)]Gl w(t)dt

+ /0 ™ explFa(ba; — )]Gow(t)d:)
= ¢(6:)X (t:) + 9(t:),

where ¢(6;) and g(t;) are as defined in Equation (2.16). The same argument
applies to Case 4.
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Assuming distinct eigenvalues for F; and F,, we have

R =U\U71,
F2 = UzAzUz—l,

where A; is a diagonal matrix of the eigenvalues, A, of F; and U; is a pX p matrix,
the columns of which are the right eigenvectors of F;, 1 = 1,2; k = 1,... ,p. Since
F; is not symmetric, A; and U; are complex and can be used to evaluate #(6;) in
each of the four cases as follows:

Case 1: Uit (U (2.20)
Case 2: U2et2% (U ) (2:21)
Case 3: (U115 U (Uer2d2i ;) (2.22)
Case 4: (Uaet?® U Y (U et b5y, (2.23)

We write Q(8:) = Elg(ti)g' (t:))- (2.24)

To discuss the evaluation of Q(4;), we use the overhead symbol “x” to denote
the complex conjugate transposed matrix and an overhead “—” to denote the
complex conjugate. For Cases 1 and 2 (m = 1,2 respectively),

&;
Q&) = /; exp[Fm (8; — )]G m Gy, exp[Fy, (6 — t))dt (2.25)
- / o exp[Am(6; — 1)U GGl (U2 )™ explAL, (6; — 1)]U dt
0

5
= Un{ [ explAn(8: — ) Lrum explAss(6: ~ )}t
0
(where Lym = Uy 'GmGL(UL)™Y)
= U Qmm(6:)U,,, (2.26)
where Q.. (6;) = f:‘ exp[Am (6; —t)] Lmm exp[A}, (8; —t)]dt. The (4, k)th element
of Qmm(6;) is

Lom jk[exp{(Amj + ka)‘si} - 1] 3
. = , Ami + Am 0
Qmm,jk(ai) ={ )\mj + Ak mj + B k # (2.27)
me,jkéi, ‘ Am] + Amk =0

where L., ji is the (j,k)th element of L,,.,.
For Cases 3 and 4, the covariance matrix of g(f;) can be expressed as

Q(é,) =T +T: 4+ T3+ T; (2.28)
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For Case 3, the three terms T;,T;, T3 are evaluated as follows:

614

1
T = E(exp(Fgég,-){/o A exp[F1 (615 — 8)]Grw(s)w(t)G] exp[Fy(61; — t)]dsdt}
exp(Fj8a:) ) (2.29)
31
= exp(F262;){ /0 exp[Fi (61; — t)]|G1G; exp[F{(61i — t)]dt} exp(F362;).

Note that the middle term is just the same as the expression of Q(4;) in Equation
(2.25) except that §; is replaced by §;; and m = 1 here. So

Ty = exp(F262:)[U1Q11(61:)U7) exp(F363:), (2.30)
where @11(61:) and the (j, k)th element of Q11(61:i), Q11,;5(61:), are as defined
in Equations (2.25)—(2.27) with §; replaced by é;; and m = 1.

6a2i poai
T, = E{/O /0 exp[F2(82i — 8)]Gaw(s)w(t)G exp[F3(82i — t)]dsdt}
b2i
=/ exp[F2(82; — t)]G2G) exp[Fy(682; — t)]dt (2.31)

which is just the same as the expression of Q(§;) in Equation (2.25) except that
6; is replaced by é2; and m = 2 here. So

T: = U2Q22(62:)U5, (2.32)

where Q32(62;) and the (j,k)th element of Q22(62:), Q22,;x(62:), are as defined
in Equations (2.25)—(2.27) with é; replaced by §;; and m = 2.

62 b1
Ts =E{/o /0 exp[F3(62i — 8)]Gaw(s)w(t)Gy exp[Fl'(Jl,-—t)]exp(Fz'ég,-)dsdt}.

(2.33)
If 695 > 614,
81
Ts = A exp[F(62; — t)]G2GY exp[F{(61i — t)] exp(Fy62;)dt
61

= Uz exp[Az(82; — £)]U; 1 G2G(UT) ™Y exp[A] (615 — t)]UT exp(Fabyi)dt

81
= Uz{ eXp[Az(&g,' - t)]L21 eXp[A;(ﬁl,' - t)]dt}Ul* exp(Féfz.‘)
(]

(where Ly = U;'G2GL(UT)™)
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= U2Q21(61:)U7 exp(F82;) (2.34)

where Q2;(61:) = j;f“ exp[Az(62; —t)] L2y exp[A](81; —t)]dt. The (4, k)th element
of Q21(61,') is

Q21,jk(61:)

61 -
= L21,jk/ exp[Az;(82i — t)] exp[A1k(b1i — t)]dt
0

_ 61
= L21,jk exp[Azjﬁz,' + A1k61i]/ exp[—()\gj + Xlk)t]dt
0

L2y ik exp[A2i02i + A1xbui < -
_ 21,5k p[ 25 2— + 1k01 ][exp{_(Azj + Alk)&l,‘} _ 1]’ Azl + Alk # 0
= —(Azj + Auk). )
Lay,jk exp[Az;62: + A1x61:]61i, A2+ Ak =0
(2.35)
where L2) jk is the (j,k)th element of L.
If 62; < 614,
62i
Iz = / exp[F3(62: — t)|G2 G exp[F{(61; — t)] exp(F3bq;)dt
0
82i
=/ Us exp[Az(82i — 1)]U5 1 G2 G (UT) ! exp[A}(61i — t)]UT exp(Fiby;)dt

bai
= U { | explAs(bai — 0)]Lan exp[Af(6r: — 1)dt | UF exp(Fytai)

(where Ly = U;'G2G(UD)™)
= U3Q21(62:) U7 exp(F,62;) (2.36)

where Q2;(82;) = f:" exp{Az(83; — )] Loy exp[AT(81; —t)]dt. The (j,k)th element
of Qzl((sg,') is

83i _
@21,jx(82:) = La1,jk exp[Az;(62: — t)] exp[A14(61; — t))dt
[1]

= La1,jk exp[A2;62; + A1x61;) / exp[—(Az; + Arx)t]dt
0

. 62 + . _ _
_ L1 jx exp[ )z 2i + A1k014] [exp{=(Ag; + Mx)d2i} — 1], Az; + Ak # 0
= —(A25 + Ak) )
L21,k exp[A2j62i + A1k61:)62i, A2j+ Ak =0

(2.37)

where L jx is the (j,k)th element of Lj;.
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For Case 4, the three terms are determined similarly and the following is obtained:
Ty = exp(F1 525)[U2Q22 (51.‘)U;] exp(Fl'ﬁg.-) (2.38)

where Q32(61:) and the (j,k)th element of Q22(61:), Q22,;x(61:), are as defined
in Equations (2.25)—(2.27) with é; replaced by é;; and m = 2.

T; = U1Q11(62:)UF (2.39)

where @11(62:) and the (j,k)th element of Q11(82:), @11,;5(82:), are as defined
in Equations (2.25)—(2.27) with é; replaced by §2; and m = 1.

T — { U1Q12(61:)U5 exp(F162:), 62 > by
3 —

2.40
U1Q12(62:)U3 exp(F162:), 62i < b1: (2.40)

where, for any 4, Q12(6) = f: exp{A1(62; — t)]L12 exp[A3(61; — t)]dt and L3 =
UT1G1GY(U3)™L. The (j,k)th element of Qq5(6) is

Q12,jk(6)
Liz,jx exp[A1;82; + A2k 61i] 3 3
: = exp{—(A1; + A2x)6} — 1], A; + A 0
— { ~(Mj + Aak). [exp{—(A1; + A2k)6} — 1] 1j ‘2k # (2.41)
Li3,jk €xp[A162i + A2k614)6, A1j+ Aar =0

where Ly ji is the (j,k)th element of L;;.

Let X (t;+1]t;) denote the ‘estimate’ of the state vector at observation time
ti1+1 given observations up to time t; and P(%;41[t;) denote the covariance matrix
of the corresponding estimate. Similarly, let X (¢;41|t:+1) denote the ‘estimate’ of
the state vector at observation time t;4; given observations up to time ¢;;; and
P(ti+1|ti+1) denote the covariance matrix of the corresponding estimate. For
each observed y(ti;1), ¢ = 1,... ,n — 1, the following Kalman filter algorithm is
executed to evaluate —2¢n likelihood.

Step 1: Check to which case y(t;4+1) belongs and calculate the length(s) of the
time step §; for Cases 1 and 2 but 6;;, 62; for Cases 3 and 4. Then the
one-step prediction is X (t;+1]t;) = &(8;)X (%:|t:), where ¢(6;) is defined
in Equations (2.20)-(2.23) in each of the four cases respectively.

Step 2: Calculate the covariance matrix of this prediction P(t;4+1]t;) = ¢(6;) -
P(ti]t:)¢*(6:) + Q(6;), where Q(6;) is defined in Equations (2.24)-(2.41)
for the four cases.

Step 8: Predict the next observation y(tiy1lt:i) = HX (tis1|ts).

Step 4: Calculate the innovation I(t;11) = y(tiy1) — y(tig1[t:)-

Step 5: Calculate the innovation variance V(t;41) = HP(t;41|t;)H'.

Step 6: Contribution to —2¢n likeihood is I2(ti41)/V (tis1) + £nV (tis1)-
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Step 7: Calculate the Kalman gain matrix K(ti41) = P(tig1|t:)H'/V (tig1).

Step 8: Update the estimate of the state vector X(tiy1]tiv1) = X(tiga1|t:) +
K (tiy1)I(tiy1)-

Step 9: Update the estimate of the state covariance matrix P(tjyq]tiy1) =
P(tiy1]ts) — K(tip1) HP(tisa]ts).

Then the NAG subroutine E04JBF is applied to find the minimum of —2¢n likeli-

hood which gives the maximum likelihood estimates of the parameters. For ease

of minimization, we normalize the data and scale the time units as appropriate.

To compare the continuous time linear and threshold autoregressive models
of various orders we use the normalized AIC criterion (NAIC):

NAIC = (—2lnMj + 2kj)/n*,

where M; denotes the maximum likelihood value for the jth model under con-
sideration, k; is the number of free parameters in the model and n* denotes the
effective number of observations. For continuous time AR(p) model, the “best”
model refers to the one which has the smallest NAIC value. For the contin-
uous time SETAR(2;p,p) model, which involves the threshold value r as well,
we adopt an identification procedure similar to that for the discrete time case.
Firstly, we fix the order of autoregression to be fitted for each regime and then
compute the NAIC value over a preselected set of threshold values. The choice of
this set is arbitrary. In this paper, we use {Z+ ¢s,q = 0, %,. ..,1} where T and s
denote the sample mean and sample standard deviation of the data respectively.
The value of 7, denoted by # which gives the minimum NAIC, will be adopted as
our initial estimate of 7. Then we allow the order to vary and repeat the above
procedure of finding the threshold value. Finally the models of various orders
with a chosen threshold value are compared and the one which gives the mini-
mum NAIC is adopted. Apart from NAIC, we consider some other methods in
choosing the final model, including e.g. the behavior of the parameter estimates

in the contour plot of —2¢n likelihood function. We also use the normalized BIC
criterion (NBIC):

NBIC = [—2nM; + kjfn(n*)]/n",

where M, k; and n* are as defined above. We consider the size of n; and ny as
well in the TAR case.

The final linear and TAR models are then checked for adequacy. As some
of the conventional diagnostic checking methods cannot be used for unequally

spaced standardized innovations, we consider the following alternatives based on
the predictive residuals:
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(a) CUSUM and CUSUMSQ plots suggested by Brown, Durbin and Evans
(1975) for detecting structural change over time in linear regression models.
(b) CUSUM and reverse CUSUM test statistics suggested by PD (1986) and
Petruccelli (1988) for detecting threshold nonlinearity.
If there is no structural change or threshold nonlinearity in the data, the pre-
dictive residuals are independent and identically distributed (i.i.d.) normal vari-
ables. Then the above plots or test statistics constructed from them will fall
within some limits. Similarly if our model is adequate, the standardized innova-
tions are also i.i.d. normal variables. So, if there is any significant deviation of
the above plots or test statistics from the limits, we suspect that the model is
inadequate. For details, see Yeung (1989).

3. Applications
3.1. Stock price data

In Tong and Yeung (1988), we have considered three sets of daily closing
stock price data: (i) IBM(1) covering the period Dec. 18, 1959 — May 12, 1960;
(ii) IBM(2) covering the period May 18, 1961 — March 30, 1962; (iii) Hang Seng
Index (HSI) covering the period June 20, 1985 — March 7, 1986. Commonly stock
price data are treated as fully observed time series for analysis by ignoring the
closing dates. (We retain this usage in later discussions.) As the data contain
gaps corresponding to weekends, public holidays or other extraneous factors, they
can also be treated as partially observed. The daily percentage relative changes
in price 7y = (P; — P;—1)/P;—1 x 100, where P; denotes the stock price at time
t, are calculated for the three sets of price series and tested for nonlinearity.
Using discrete time autoregressive models with order p = 1, we have obtained
the following results with our tests for nonlinearity:

(a) IBM(1)—strong linearity, moderate closing-date effects
(b) IBM(2)—strong nonlinearity, almost no closing-date effects
(c) HSI—marginal nonlinearity, strong closing-date effects.

Now the {r{} series are normalized and fitted by linear and threshold au-
toregressive models with order one in the following form:

First-order linear autoregressive model AR(1)

WO+ ay) = e(v), e(t) ~ N(0,0%). (31)
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First-order threshold autoregressive model TAR

y()
y()

+ary(t) = es(t) if yt)<r
(3.2)
+ axy(t) = e2t) if y(t)>r,

where £1(t) ~ N(0,0%) and &,(t) ~ N(0,0%).
The parameter estimates of the fitted models are given in Table 1 and some
conclusions can be drawn:

1. In fitting linear models to IBM(1) data, the parameter estimates for the
autoregressive coefficients are insignificant for both fully and partially ob-
served case so that the fitted models correspond to a continuous time random
walk. Hence, these results agree with those of the runs test for randomness
as reported in Tong and Yeung (1988).

2. Previously, the tests of nonlinearity have suggested that there may be a
threshold effect at the value zero for IBM(2) and HSI data such that different
linear dynamics dominate according to the direction of price change. From
continuous time threshold modelling, the suggested threshold values in non-
normalized units for IBM(2) and HSI data are also fairly close to zero.
Specifically, the threshold value is negative, around —0.433 to —0.477 for the
former data set but positive, around 0.656 to 0.791 for the latter. Given that
our computer package for fitting the TAR models is at present constrained
to two regimes, our interpretation of the results must be quite tentative. It
is suspected that the IBM firm, which has a large share in the computer
market and a long standing reputation, is responsive to the negative rate
of change, whereas the speculative Hong Kong stock market is responsive
to the profitable positive rate of change. We hope to improve our fitting
package so that we can explore the possibility of a three-regime model, with
one positive threshold and one negative threshold. This would be quite
similar to the model of Granger and Morgenstern (1970) on stock price data
with two reflecting barriers due to the operation of limit orders.

3. TAR models for both fully and partially observed IBM(2) data have failed to
reduce the residuals to normality (p-value of the Kolmogorov-D test statistic
< 0.1), and perform poorly in respect to the CUSUM plots (see Figure 1).
As for the fully observed HSI data, the likelihood function of the fitted TAR
model is badly behaved (see Figure 2). It seems that we might need to allow
non-normal errors or to consider TAR models with three regimes.

4. In fitting linear models, the parameter estimates for fully and partially ob-
served IBM(2) data are closer to each other as compared with the IBM(1)
and HSI series. This also suggests the absence of strong closing date effects.
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for the IBM(2) data as observed in the tests of nonlinearity.

5. In fitting the TAR models for each set of price data, both fully and partially
observed series give similar parameter estimates and threshold values (in
normalized units). On the other hand, for the IBM(2) and the HSI data,
the fully observed series give a greater NAIC reduction ratio as compared
with the linear models; whereas for the IBM(1) data, the partially observed
series gives a greater NAIC reduction ratio. Hence, closing dates have not
affected the parameter estimates and threshold values. However, they have
reduced nonlinearity in nonlinear process such as IBM(2) and HSI data but
introduced nonlinearity in linear process such as IBM(1) data.

3.2. Beach water quality data

In Hong Kong, water quality data are taken from the selected beaches be-
tween one to three times a month, which are not equally spaced. In Tong and
Yeung (1990), we carried out tests of nonlinearity on dissolved oxygen content
(DO) measured in percentage of saturation for six beaches shown in Figure 3 for
the period 1980-1985. The data are divided by 10 and then log transformed to
enhance data stability. Using continuous time autoregressive models with order
P = 1, the test suggested linearity for the heavily polluted Anglers and Butterfly
beaches, nonlinearity for the moderately clean Repulse Bay and Shek O beaches
and linearity for the relatively clean Cheung Sha and Pui O beaches. In other
words, the extents of linearity for the beaches are similar in pairs but vary with
the pollution level.

Now, as in the tests of nonlinearity, the unit of time is taken as 10 days
and outliers are removed. The data are normalized and then fitted by linear and
threshold autoregressive models with order one as in Section 3.1. The parameter
estimates of the fitted models are given in Table 2 and some conclusions can be
drawn:

1. For the Anglers and the Butterfly beaches, the fitted linear models have
failed to reduce the residuals to normality. Though the TAR model for
Anglers Bay can reduce the residuals to normality and achieve quite small
NAIC and NBIC values, the reverse CUSUM statistic crosses the boundary 7
times at the 10% significance level. The TAR model for the Butterfly beach
performs badly by reference to the Kolmogorov-D test statistic,c CUSUM
statistic and CUSUM plot.

2. For the Repulse Bay and the Shek O beaches, the fitted linear models seem
inadequate by reference to the Kolmogorov-D test statistic, the reverse
CUSUM statistic and the CUSUMSQ plots. Similar problems apply to
the fitted TAR models but the TAR model for Shek O performs slightly
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better and has a threshold value of —0.285 (i.e. 2.230 in non-normalized
units) which is roughly comparable to the value of —0.143 (i.e. 2.130
in non-normalized units) obtained from the TAR model for the Anglers
Bay. Usually, less than 50% saturation level of DO (i.e. 1.609 in our non-
normalized units) is considered unsatisfactory and the decomposition mech-
anism changes from aerobic to anaerobic. The above estimated threshold
values, which are smaller than the sample means of the two beach series,
tend towards this low level.

3. For the Cheung Sha and the Pui O beaches, both linear and threshold au-
toregressive models perform badly by reference to the Kolmogorov-D test
statistic and CUSUMSQ plots.

4. Overall, the modelling results for the six beaches are not good. The data
themselves seem to be very noisy and might be affected by irregular factors
such as tidal flow and remedial works carried out by the government to
improve the beach water quality, which we have not taken into account.
Moreover our data are less than adequate to reflect the known periodicities
of diurnal effect (24hr.) in the DO series caused by photosynthesis and
respiration of aquatic plants. As a result, the assumptions about the number
of switchings and the times of switching in threshold modelling are probably
not appropriate. '

3.3. Lynx data

This data set (1821-1934) has usually been treated as fully observed for tests
of nonlinearity and model fitting. However, the data for the years 1892-1896 and
1914 were apparently obtained from private records kept by some of the older
fur trade factories. Therefore, if we treat the data for these six years as missing,
the lynx data set becomes partially observed. In Yeung (1989), we consider four
cases for the logged lynx data: fully observed and then partially observed for
the whole period 1821-1934 and the early period 1821-1910. In each case, the
data have been tested for nonlinearity using discrete and continuous time models
respectively with order p = 2; and nonlinearity has been detected.

Now, the data in each case are normalized and fitted by linear and threshold
autoregressive models with order up to two in the following forms:

Second-order linear autoregressive model AR(2)
YD) + a1y () + aoy(t) = (1), e(t) ~ N(0,0%). (3.3)
Second-order threshold autoregressive model TAR '
YD) + auyM(®) + awy(t) =a1(t) if y(t)<r

3.4
Y1) + anyD (@) + ary(t) = e2(t) if y(t) > 7, (34)
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where £;(t) ~ N(0,0?) and 3(t) ~ N(0,03).
The parameter estimates of the fitted models are given in Table 3 and some
conclusions can be drawn:

1. For all four cases, the fitted linear and threshold autoregressive models are
satisfactory, based on the diagnostic checking statistics and various plots.
Furthermore, TAR models have a smaller NAIC but a larger NBIC value
than the linear models.

2. Similar parameter estimates are obtained irrespective of whether the data
for the whole period or early period are used for fitting both linear and
threshold autoregressive models. However, in terms of NAIC and NBIC
values, the performance of TAR models is slightly better if the data for the
whole period are used.

3. All fitted TAR models suggest a threshold value at about 3 which is compa-
rable with the previous results reported in Tong and Lim (1980) and Tong
(1983a).

4. The missing observations have not caused much difference in the parameter
estimates. Based on NBIC values, the missing observations in the early
period case seem to mask nonlinearity. However, based on NAIC values, the
missing observations in the above case seem to induce further nonlinearity.

4. Concluding Remarks and Unsolved Problems

We have fitted continuous time threshold autoregressive models to three un-
equally spaced data sets and found that these models can in some cases improve
the goodness of fit over linear models. In Yeung (1989), we have also fitted dis-
crete time models to the “fully observed” case of stock price series and lynx data
and obtained similar results as in the continuous time case. The main contribu-
tions of using continuous time models are (i) they are more natural for modelling
continuous time processes and (ii) they are particularly useful if the processes are
irregularly observed. Provided that the data are of reasonable quality and the
sampling rate is comparatively short relative to the frequency of oscillations of
the underlying continuous time realisation, continuous time TAR models fitted
to unequally spaced discrete time data can provide useful interpretations. Since
we have not included a delay term in the model, least squares prediction may be
obtained by the standard method as described in Liptser and Shiryayev (1978,
Chapter 12).

At present, the application of continuous time TAR models is somewhat
limited due to the unknown switching conditions. To overcome this problem,
we have suggested the switching assumption described after Equation (2.7). We
have tried previously to approximate the time of crossing in Equation (2.8) by a
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weighted average of the observation times. The results were not satisfactory. To
explore the various possible assumptions we are planning to carry out analogue
simulation of some continuous time processes. Furthermore, we are currently
studying the effect of including a model error term in Equation (2.13) to account
for the switching assumption. We may then apply the error analysis methods
commonly described in the engineering and optimal control literature (see, e.g.,
Anderson and Moore (1979), pp. 130-132) to study the sensitivity of the switch-
ing assumption to model fitting.
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Table 1. Parameter estimates of the fitted models to stock price data with standard
errors in parentheses

(a) Linear Model

Fully observed Partially observed
a c a o
IBM(1) 5.539 3.314 9.046 4.237
(7.522) (2.422) (19.163) (5.113)
IBM(2) 1.561 1.764 1.684 1.834
(0.235) (0.157) (0.396) (0.213)
HSI 2.601 2.255 3.282 2.525
(0.819) (0.380) (1.995) (0.810)
(b) TAR Model
Fully observed Partially observed
a1 o1 as o2 r ay o1 as o2 r
IBM(1)[10.234 3.783 — 0.900 0.571 |11.058 4.014 — 0.589 0.715
(4.417)(0.843) — (0.211) (0.599) |(6.769)(1.193) — (0.136) (0.848)
IBM(2)] — 0.662 10.941 4.169 -—0.571 | — 0.475 8.269 3.710 -0.571
— (0.091)(4.082)(0.849) (-0.477)] — (0.086)(2.301)(0.546) (—0.433)
HSI 8.271 3.735 — 0.482 0.571 |6.497 3.275 — 0579 0.715
~ )(2.510)(0.597) — (0.089) (0.656) [(2.026)(0.522) — (0.161) (0.791)

* the threshold values are given in normalized units (with non-normalized units enclosed
in parentheses).
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Table 2. Parameter estimates of the fitted models to beach water quality data with
standard errors in parentheses .

(a) Linear Model (b) TAR Model
a o ai o az o2 r*
Anglers 3.054 2.433 21.025 7.669  0.495 0.687 —0.143
(mean=2.15) | (1.189) (0.464) | (13.622) (2.451) (0.108) (0.064) (2.130)
Butterfly 2.425 2.199 8.694 3.653 - 0.867  0.715
(mean=2.25) | (0.644) (0.302) | (3.868) (0.912) —  (0.206) (2.339)
Repulse 37.361 8.540 16.295 4.897 - 1.042 0.715
(mean=2.27) | (49.822) (6.411) | (9.541) (1.528) —  (0.271) (2.346)
‘Shek O 2.754 2.286 24.456 8.228 0.466 0.826 -—-0.285
(mean=2.26) | (0.811) (0.352) | (10.734) (1.835) (0.132) (0:075) (2.230)
Cheung Sha 2.411 2.203 — 0.943 13.310 4.390 -—0.715
(mean=2.29) | (0.730) (0.371) —  (0187) (8.019) (1.462) (2.230)
Pui O 2.198 2.100 - 0.250 15.804 5.198 -—-0.571
(mean=2.29) | (0.686) (0.363) —  (0.087) (8.971) (1.575) (2.233)

* the threshold values are given in normalized units (with non-normalized units enclosed
in parentheses).

Table 3. Parameter estimates of the fitted models to lynx data with standard errors in
parentheses

(a) Linear Model

Fully observed Partially observed
ai ap o ai ap o
early period 0.482 0.447 0.740 0.553 0.442 0.774
(1821-1920) (0.156)  (0.085) (0.078) | (0.171)  (0.093) (0.088)
whole period 0.491 0.433 0.736 0.552 0.427 0.764
(1821-1934) (0.142)  (0.078)  (0.072) | (0.155)  (0.085) (0.079)

* the threshold values are given in normalized units (with non-normalized units enclosed

in parentheses).
(b) TAR Model

— — — Fully observed

*

an a10 g1 az1 a20 2 r
early period 0.334 0.547 0.706 1.782 0.259 0.852 0.857
(1821-1920) | (0157) (0.111) (0.083) (0.884) (0.146) (0.280) (3.374)
whole period 0.354 0.521 0.707 1.877 0.247 0.870 0.857
(1821-1934) | (0.146) (0.104) (0.077) (0.860) (0.144) (0.272) (3.382)

— — — Partially observed

a1 a0 o1 a2 a20 o2 r*
early period 0.407 0.579 0.745 2.005 0.234 0.914 0.857
(1821-1920) | (0.172) (0.142) (0.091) (1.130) (0.157) (0.361) (3.361)
whole period 0.414 0.539 0.739 2.017 0.217 0.902 0.857
(1821-1934) | (0.155) (0.129) (0.083) (1.071) (0.150) (0.339) (3.372)

* the threshold values are given in normalized units (with non-normalized units enclosed

in parentheses).
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Figure 1. CUSUM plots of the TAR models fitted to IBM(2) data. The 10% significance

lines are given by C' = £[0.85v/n — k + 1.70(¢t — k)/v/n — k] where n = 218, k = 16 for
fully observed case and n = 169, k = 11 for partially observed case.
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Figure 2. Contour plot of —2¢n likelihood of the TAR models fitted to fully observed HSI
data. The broad contours around the maximum likelihood estimates of the parameters
indicate that the model is inadequate.




429

CONTINUOUS TIME THRESHOLD AUTOREGRESSIVE MODELS

(pourjIopun aze seyoeaq 9Y) Jo ssweu ayJ,) Suoy| Buoy ur saydeaq Apnjs jo uoIjed0] ‘g AANSIg

m‘m 'ﬂﬂv-—nv

Ppue[s] nejue]

N,oC aal
@@ow. Yovasg sis¥uiy ﬂ'ﬂﬂmﬂﬂ
(Y / a
% I~ S9LIOJIIIT], MIN

| §v

N N,08 o2E

a2 r ~
Leg sarN A..\,.V A{\ N\ s

2 .VA.&
. 7& -\\(.\Cl./\ A:V/
°

X
P
e ;e \A




430 HOWELL TONG AND IRIS YEUNG

References

Anderson, B. D. A. and Moore, J. B. (1979). Optimal Filtering. Prentice-Hall, Englewood
Cliffs, NJ.

Brown, R. L., Durbin, J. and Evans, J. M. (1975). Techniques for testing the constancy of
regression relationship over time (with discussion). J. Roy. Statist. Soc. Ser.B 87, 149-
192.

Granger, C. W. J. and Morgenstern, O. (1970). Predictability of Stock Market Prices. Mas-
sachusetts, Heath-Lexington.

Jones, R. H. (1981). Fitting a continuous time autoregression to discrete data. In Applied Time
Series Analysis II (Edited by D. F. Findley), 651-682. Academic Press.

Liptser, R. S. and Shiryayev, A. N. (1978). Statistics of Random Processes II. Springer-Verlag,
New York.

Petruccelli, J. D. and Davies, N. (1986). A portmantean test for self-exciting threshold
autoregressive-type nonlinearity in time series. Biometrika 73, 687-694.

Petruccelli, J. D. (1988). A comparison of tests for SETAR-type nonlinearity in time series.
Technical Report, Worcester Polytechnic Institute.

Tong, H. (1978). On a threshold model. In Pattern Recognition and Signal Processing (Edited
by C. H. Chen). Sijthoff and Noordhoff, Amsterdam.

Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data (with
discussion). J. Roy. Statist. Soc. Ser.B 42, 245-292.

Tong, H. (1983a). Threshold Models in Nonlinear Time Series Analysis. Lecture Notes in
Statistics 21, Springer-Verlag, New York.

Tong, H. (1983b). A note on a delayed autoregressive process in continuous time. Biometrika
70, 710-712.

Tong, H. and Yeung, I. (1990). On tests for threshold type nonlinearity in irregularly spaced
time series. J. Statist. Comput. Simulation 34, 177-194.

Tong, H. and Yeung, I. (1991). On tests for SETAR-type nonlinearity in partially observed
time series. Applied Statistics 40, 43-62.

Tsay, R. S. (1989). Testing and modeling threshold autoregressive processes. J. Amer. Statist.
Assoc. 84, 231-240.

Yeung, I. (1989). Continuous time threshold autoregressive models. Unpublished Ph.D. thesis,
University of Kent at Canterbury, U.K.

Mathematical Institute, University of Kent at Canterbury, Canterbury CT2 7NF, U.K.
Department of Applied Mathematics, City Polytechnic of Hong Kong, Kowloon, H.K.

(Received November 1989; accepted January 1991)




