Statistica Sinica 1(1991), 389-400

©

AN ADAPTIVE NONLINEAR STATE SPACE MODEL
APPLIED TO MODELLING EPIDEMICS

Richard H. Jones and Des F. Nicholls

University of Colorado and The Australian National University

Abstract: A state space model is developed for a system of nonlinear differential
equations with observations consisting of nonlinear functions of the state variables.
This is applied to modelling gonorrhea transmission in a heterosexual population.
Variable transformations are used to keep the incidence rates in the interval zero to
one and the unknown parameters in the proper ranges. A refinement of the model
allows adaptively varying contact rates. The Kalman filter is used to calculate an
approximate likelihood, and nonlinear optimization is used to obtain approximate
maximum likelihood estimates.
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1. Introduction

Hethcote and Yorke (1984) discuss deterministic models for the spread of
gonorrhea. Heathcote and Nicholls (1990) use least-squares to estimate the con-
tact rates in the case of discrete time nondeterministic generalizations of these
models. This paper uses a state space approach and generalizes these models
by including random inputs. This generates a system of stochastic nonlinear
differential equations. By integrating the nonlinear differential equations numer-
ically, using small time intervals, linearization methods can be used to obtain
approximate propagation of the state covariance matrix. The Kalman (1960) fil-
ter is used to calculate the approximate —21n likelihood (Schweppe (1965)), and
numerical optimization is used to obtain estimates of the unknown parameters.
The method will be developed for a particular bivariate model.

2. The Basic Model

A bivariate model considered by Hethcote and Yorke (1984, p.26) for the
heterosexual transmission of gonorrhea is
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& ANL()} = Ma{l ~ L)} N2 La(t) - NuLu(t)/dy
dt (1)
:i't‘{NgIz(t)} = Ag]_{l — Iz(t)}NlIl(t) — NgIz(t)/dz,

where N, is the number of females in the population, and I;(t) is the proportion of
females infected at time ¢. Similarly, V3 is the number of males in the population,
and I,(t) is the proportion of males infected at time ¢. Assuming that there is
only heterosexual transmission of the infection, ;2 is the contact rate between
a susceptible female and an infected male. This is interpreted as the average
number of adequate contacts per unit time between an infected male and a
susceptible female, where an adequate contact is one in which the disease is
transmitted from the infected to the susceptible. The unit of time in the example
presented here is one year. Ag; is the contact rate between a susceptible male
and an infected female. d; is the mean length of time that a female remains
infected before returning to the population as a susceptible, and d; is the mean
length of time that a male remains infected. The interpretation of these equations
is that the rate of change of the number of infected females is proportional to
the contact rate for females with infected males multiplied by the proportion of
females who are susceptible times the number of infected males. The last term
with the negative sign reflects the rate at which infected females re-enter the
population as susceptibles. Assuming that the population is constant over time,
Equation (1) can be written

(1) = (/)1 - LOMa(t) - B(t)/dy

%Ig(t) = rAn{l - LE}M(¥) - L(t)/da,

where r = N1/N; is the ratio of females to males in the population.
If random inputs are added to these equations, the rates of infection may not
remain in the interval zero to one. One possibility is to use a logistic transforma-

tion on the I;(t), i = 1,2, which maps them to the real line. This transformation
is

. Li(®)
u,-(t) =In 1_—1,'(t)

with the inverse transformation

B exp{u;(t)}
L) = T et}
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Since £I;(t) = Li(t){1 — Li(t)} % u:i(t), the equations can be written

2 0() = Oua /P BO/(E) - [ {1 - RN

Zua(t) = P h(O/B0) - ({1 - RO

These equations can be integrated forward in time using a small time step 6t,

ur(t+ 6t) = w1 () + (Oaa/M RO/ L) - [d{1 - LEN™)st

up(t + 6t) = uz(t) + (rAar i(1)/ 2 (2) — [d2{1 — L(£)}] 7). @)

Equation (2) can be used to predict the elements of the state vector, u1(t) and
uz(t) forward in time. It is important that 6¢ be chosen small enough so that
the results approximate the solution of the nonlinear differential equations. A
reasonable value of §t can be obtained by experimentation. If a value of ét is
chosen and the numerical integration carried out, the results should not differ
much if the value of 6t is cut in half. In the example presented in this paper
with yearly data, a value of 6t equal to one year was much too large. After some
experimentation, a value of §t = .05 was chosen.

While predictions of the state vector can be carried out using numerical
integration, the updating of the state covariance matrix after a prediction over a
time interval of ¢ can only be approximated because the equation is nonlinear.
The approximate propagation of the state covariance matrix can be carried out
by expanding these equations in a Taylor series about the values at time ¢. If
fi(t) represents the right hand side of equation i, element ij of the linearized
state transition matrix is

Bi5(t) = %f.-(t)-

Dropping the argument ¢ for convenience, the linearized state transition matrix
is

Ma2lL(1-1) I Azl (1-13)
1 - ( . :'Il * + dl(liIl))6t = 3'Il ? 6t (3)
TA21I1!1—I1!6t 1— (TA21I1!1—13! + I )6t :
I I dz(1-12)

The data to be used in the example were obtained from the Center for
Disease Control' and are shown in Table 1. These rates will be used as the
observations and denoted by y;(t) for females and y;(¢) for males.

13TD Statistics No. 135. Source: Form CDC 73.2638:HHS:PHS:CDC:DSTD:ESSB:SSS: At-
lanta, Georgia 30333, U.S.A.
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3. The Kalman Filter

The use of Kalman filter for calculating the exact likelihood for linear state
space models with Gaussian errors will be reviewed here and related to our
nonlinear model. The state equation contains the dynamics of the system being
studied. For a linear system the state equation is

s(t+ 6t) = B(t + 6t;t)s(t) + G(t)w(t),

where s(t) is the state vector, ®(¢ + 6¢;¢) is the state transition matrix from time
t to time ¢ 4 6t, and G(t) is a matrix multiplying the vector of random inputs
that are assumed to have a normal distribution with zero mean and covariance
matrix equal to the identity matrix. Correlation is introduced through the matrix
G(t) which is assumed, in the example presented here, to be lower triangular so
the GG’ is the Cholesky factorization of the random input covariance matrix.
Parameterizing the input covariance matrix by using the factor G ensures that the
input covariance matrix will remain non-negative definite during the nonlinear
optimization search. The random inputs w(t) are assumed to be uncorrelated at
different times. The observations are specified by the observation equation

y(t;) = H(t;)s(t;) + (t5),

where y(t;) is a vector of observations at time ¢; which are linear combinations
of the state vector, specified by the matrix H(t;), plus a random observational
error vector v(t;). These errors are assumed to be Gaussian with zero mean and
covariance matrix R(t;), uncorrelated at different times and uncorrelated with
the state noise w(t). The matrices ®(t + 6t;t), G(t), H(t;) and R may contain
unknown parameters to be estimated by maximum likelihood. The initial state
vector is specified as s(0/0) with initial state covariance matrix P(0[0). The
notation s(t;t;) indicates the optimal estimate of the state at time t; given
observations up to time ¢;. These initial conditions may either be specified as
known properties of the system or estimated by maximum likelihood. When
P(0]0) is estimated by maximum likelihood, this is referred to as an empirical
Bayes procedure.

The Kalman recursion as presented here is similar to the procedure used by
Jones (1980) for missing observations. There are small steps between observa-
tions used for the purpose of numerical integration, as follows:

1. Calculate a one step prediction s(t + 6t) = ®(t + 6t;t)s(t|t).
2. Calculate the covariance matrix of this prediction

P(t + 6tft) = ®(t + 6t;t)P(t|t)®'(t + 6t;t) + G(H)G'(2),
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where the ' denotes the transposed matrix. When we are integrating for-
ward using a small step size between observations, these first two steps are
repeated until the next observation point is reached.

. Predict the next observation vector, y(t;|t; — 6t) = H(t;)s(t;|t; — 6t).
. The innovation vector is the difference between the observation vector and

the predicted observation vector, €(t;) = y(t;) — y(¢;|t; — 6t).

. The innovation covariance matrix is V(t;) = H(t;)P(t;|t;—6t)H'(t;)+ R(t;).
. For the purpose of calculating —21n likelihood at the end of the recursion,

€ (t;)V1(;)e(t;) and In|V(t;)| are accumulated over all the observations.
Here |V (t;)| denotes the determinant of the innovation covariance matrix.

. The state vector is now updated to reflect the new information obtained

from the new observation vector,

s(t;1t;) = s(tjlt; — 6t) + P(t;]t; — 6O)H'(¢,)V 1 (¢;)e(t;).

. The updated state covariance matrix is

P(t;]t;) = P(tjlt; — 6t) — P(t;]t; — 6t)H'(t;)V = (8;)H(t;)P(t;]t; - 6t).

Now return to step one until the end of the data is reached.
The value of —21n likelihood is calculated at the end of the recursion as

€= Y {nrV(E)) + € (5)V 7 (t)e(t)-

It is possible to concentrate one of the unknown variances out of the likelihood
by setting it equal to a constant (usually 1) in the recursion. In this case the
variance set equal to 1 is estimated as

8 = = (VT et

where n is the number of observation times, and —21In likelihood becomes

£=n{1+1n(276*)} + Y In|V(¢;)l.

j
In the nonlinear problem considered in this paper, the state vector is

w0 =[]

and G(t) is a constant lower triangular 2 X 2 matrix with arbitrary elements to be
estimated by nonlinear optimization. The initial values, u(0]0), are assumed to
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be unknown and will also be estimated by nonlinear optimization, and P(0]0) will
be set equal to zero. This states-that the initial conditions are fixed but unknown.
Step 1 in the Kalman recursion is calculated from Equation (2) after linearization
using the transition matrix (3). Step 2 is calculated using the transition matrix
(3). Steps 1 and 2 are repeated until the next observation is reached.

Since the observations are not linear functions of the state variables, Step 3
needs some modification. The actual observation equation is

o] = acomal + ]

It will be assumed that the observational error covariance matrix R = ¢?I. The
female and male population sizes are not known even if the total population for
the age group is known since not everyone in the population is at risk, and the
proportion at risk may vary with time. N; and N; can be thought of as the
effective population at risk and known to be between the number of cases and
the total population. Since the observations are nonlinear functions of the state
variables, an approximation to the innovation covariance matrix can be obtained
by linearization. Again omitting time for convenience, if the observations are

¥i = gi(s) where s denotes the state vector, element ij of the linearized H
matrix is

0
H.'j = a—sjg,'(s).

In our example —Q—Ig = I;(1 — L;); so the linearized H matrix is

3u,~

_[n(-n)N 0
H‘[l 0o 12(1—12)N2]'

4. Results for Non-Adaptive Model

The model as specified has potentially 11 nonlinear parameters, the two
initial incidences, I;(0) and I(0), the two contact rates, A;; and )y, the three
elements of the matrix G, G11, G21, Gaa, the female population size, Ny, the
ratio of females to males, r, and the two mean length of infections, d; and
dy. After some preliminary calculations and using information in Hethcote and
Yorke (1984), the last four parameters were held fixed. The data do contain
information about all eleven parameters, but these can not be estimated with
any precision from the 64 data values. If the entire population were sexually
active and randomly mixing, N; would be 100. Here we set Ny = 20, and the
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ratio of active females to males at r = 0.5. From Hethcote and Yorke, d; was
taken to be 80 days and d3, 20 days. Since the unit of time in the analysis is the

year, d; = 80/365 and d; = 20/365. The final estimates of the other parameters
are

L(0) = .315, L(0)=1.05, Ay =279, Ay =333,
Gn = 291, Gy =.236, G = .574.

The mean square error which estimates the observational error variance is 0.171,
and —2In likelihood = 45.53. The results of the fit are shown in Figure 1. The
top graph shows the actual data with circles for females and triangles for males.
The dashed lines are the one step predictions from the previous time point, so
the difference between each data curve and the corresponding dashed curve gives
the innovations. The bottom curve shows the estimated A2 and A;; which are
assumed to be constant over time.

The top curves in Figure 1 show that the model is not a good fit to the
data. The innovations should be random over time with zero mean and the
curves should not show strong systematic differences. For the females, the in-
fected proportion is being over predicted for the first half of the curve and under
predicted for the second half of the curve. This leaves the possible conclusion
that the A’s may not be constant over time.

5. An Adaptive Model

Wecker and Ansley (1983) developed a method of nonparametric modelling
using a state space model which assumed that the function was an integrated
random walk observed with error. Assuming a noninformative prior for the ini-
tial conditions, this approach generates a smoothing spline fit to the data. The
order of the spline is determined by the number of times the random walk is inte-
grated. A single integration produces a cubic spline. The smoothing parameter
is estimated by maximum likelihood. Anderson et al. (1990) generalized this to
vector processes. The basic model in Section 2 can be generalized to allow the
A’s to vary with time. If the In \’s are assumed to be integrated random walks so
that the A’s remain positive, the state vector contains four additional elements,

u3(t) =In Alz(t), U4(t) =In Agl(t), ‘ll,5(t) = gt-ln An(t), ’U,s(t) = %ln Agl(t).

The continuous time state equation for these four elements is

w()] [0 0 1 07 [us(t) 0
ua(t 00 0 1| |ut 0
d u‘;&% =loo o0 o u§8 d+dw o)
us(t) 0 0 0 0 ‘U.s(t) Wg(t)
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Here W;(t) and W;(t) are correlated Wiener processes and the W's are assumed
to have a general 2 x 2 covariance matrix. Any random errors input to the first
two elements of the state are uncorrelated with these random inputs. Variations
of this model allow the random walks to be integrated any number of times.

The discrete form of the second part of the state equation when integrated
over a small time interval 6t is (Jones and Tryon (1987)),

u3(t + 5t) 1 0 6 0 u3(t) 0
u4(t + Jt) _ 01 0 6t u4(t) dt + 0
u5(t + 6t) 00 1 0 ’U,5(t) nl(t)
’us(t + 6t) 0 0 O 1 ’U.s(t) 72 (t)
The linearized state transition matrix is now
(@17 @12 @13 0 0 07
D P22 0 Py 0 O
0 0 1 0 4 0O
0 0 0 1 0 ét|”°
0 0 0 0 1 0
L 0 0 0 0 0 1.

where ®4,, ®15, ®3; and P, are from Equation (3). The elements ®,3 and ®,4
are obtained by differentiating the first equation of (2) with respect to uz = In Ay3,
and the second equation with respect to uy = In A21, which gives

B13 = 17 Aa(la/I)6t, B34 = rAp(I1/I3)6t.

The calculations for the adaptive method are the same as the non-adaptive
method except that the state vector is larger. The nonlinear parameters Aj; and
A21 in the non-adaptive method are replaced by the initial values of the last four
elements of the state vector. These four parameters are the initial values of the
logs of the contact rates and the initial values of their derivatives. These are
set equal to unknown constants to be estimated by nonlinear optimization. A
question remains as to whether the random input to the state should be on the
first two elements of the state vector, the last two elements of the state vector,
or both. If the random input is on both and it is assumed that the first two are
uncorrelated with the last two, three more nonlinear parameters are introduced.
If no randomness were introduced into the contact rates, they would be straight
lines determined by the initial values and slopes.

6. Results for the Adaptive Model

The parameters Ny, r, d; and d; were fixed at the same values as in the non-
adaptive model. The random input was tried on the first two and the last two
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elements of the state vector. A better fit was obtained with the random input on
the last two elements of the state vector with no significant improvement when
random inputs were applied to both the first two and the last two elements of
the state vector. The final estimates of the parameters are

I,(0) = .332, IL(0)=1.25, A;3(0)=1.25, Ay(0)=70.5,
d d

7 0 212(0) = 355, —1n e (0) = 351,

Gi = .00774, Gy =.0380, Gjy = .0107.

The mean square error is 0.0324, and —21n likelihood = 0.46. The results of the
fit are shown in Figure 2.

While the fit is significantly better than the non-adaptive fit, there are still
systematic errors in the innovations. The improvement in the fit is caused mainly
by a continual decrease of the contact rate between infected females with sus-
ceptible males.
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Table 1. United States gonorrhea rates per 100 population for age group 20-24

Year Females Males Year Females Males
1956 4095 1.2536 1972 1.1130 2.5969
1957 .3824 1.1912 1973 1.3948  2.4452
1958 4114  1.2347 1974 1.5063 2.4707
1959 3972  1.2657 1975 1.6108 2.6122
1960 4560 1.3669 1976 1.5696 2.5213
1961 4273  1.3706 1977 1.5384 2.4247
1962 4081 1.3796 1978 1.5325 2.3447
1963 .3861 1.4102 1979 1.4939 2.2389
1964 3778  1.4743 1980 1.4607 2.2041
1965 4044 1.5125 1981 1.4281 2.1012
1966 4270 1.6945 1982 1.3536 2.1026
1967 4819 1.8806 1983 °'1.3200 1.9237
1968  .5473  2.1692 1984 1.3404 1.8607
1969  .6486  2.3856 1985 1.4206 1.9477
1970 7405 2.5124 1986 1.4610 1.9311
1971 8495  2.5365 1987 1.3063 1.7585
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Figure 1. Non-adaptive model with fixed contact rates. Upper graph shows the observed
gonorrhea rates with circles for females and triangles for males. One step predictions
from the state space model are shown by the dashed lines. The lower graph shows the
estimated contact rates.
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Figure 2. Adaptive model with time varying contact rates.
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