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A NONLINEAR SMOOTHING METHOD
FOR TIME SERIES ANALYSIS
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The Institute of Statistical Mathematics and University of Tokyo

Abstract: A nonlinear state space approach to the smoothing of time series is
shown. The time series is expressed in state space model form where the system
model or the observation model contains nonlinear functions of the state vector.
Recursive formulas of prediction, filtering and smoothing for the nonlinear state
space model are given. Numerical implementation of the formula is shown based
on numerical approximation to the densities and numerical computation for the
nonlinear transformation of variables, convolution of two densities, Bayes formula,
and normalization. Significant merits of nonlinear state space modeling and of the
proposed smoother are illustrated by two numerical examples. Empirical study on
the numerical accuracy was also performed on one of the examples.
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1. Introduction

A nonlinear smoothing methodology for time series analysis is shown here.
The method is based on the general state space model and is particularly useful
for time series that cannot be analysed satisfactorily by the standard linear time
series models or by various linear approximation techniques.

In the analysis of nonstationary time series, the main issue has been the mod-
eling of a time varying system. The use of a state space model is quite relevant
for this purpose (e.g., Harrison and Stevens (1976), West and Harrison (1989)).
In Kitagawa (1981), it was shown that the problem of modeling a nonstation-
ary time series with drifting mean value, originally treated by a Bayesian linear
model (Akaike (1980)), can be expressed in state space model form and that the
convenient recursive filtering and smoothing methodology can be exploited. This
method can be also applied to time-varying AR coefficient modeling and spectral
estimation of nonstationary covariance time series (Kitagawa and Gersch (1985),
Gersch and Kitagawa (1988) and the references therein).

All of these models can be expressed by linear Gaussian state space models
and hence the conventional filtering and smoothing methods could have been
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successfully applied. However, there are various problems for which linear Gaus-
sian modeling is inadequate. First, in the problem of trend estimation, the trend
sometimes has jumps in addition to smooth and gradual changes. In this case,
the estimate by a simple linear Gaussian model does not reflect the jumps or
becomes extremely bumpy. Second, when the system has significant nonlinear
characteristics, the recursive filtering algorithms based on linear approximation
does not necessarily work well. In Kitagawa (1987), it was shown that filtering
and smoothing formulas for non-Gaussian state space model can be realized by
using a numerical method and are useful for the analysis of various types of non-
stationary time series. It was also shown that this method can be easily extended
to a wider class of general state space models (Kitagawa (1986)). Related papers
on this subject are West et al. (1985) and Harvey and Fernandes (1989).

In this paper, we shall consider nonlinear models with the same setup. Ob-
viously, such a situation is out of range of the well known Kalman filter and
the recursive smoothing algorithms. There have been many attempts to develop
filters for nonlinear systems. The extended Kalman filter, the second order fil-
ter and the Gaussian sum filter (Alspach and Sorenson (1972)) are well known
approaches. All of these filters approximate the non-Gaussian distribution by
one or several Gaussian distributions and are known to be satisfactory in vari-
ous nonlinear problems (Anderson and Moore (1979)). However, these methods
have several drawbacks. The methods based on single Gaussian density such as
the extended Kalman filter may yield disastrous results when the true density is
not unimodal. On the other hand, the Gaussian sum filter has various technical
difficulties in actual implementation. By the numerical examples, we shall show
typical phenomena related to these drawbacks.

It is thus desirable to develop a filtering and smoothing method that can han-
dle general types of density. Here, we first show recursive filtering and smoothing
formulas for a nonlinear state space model. They can be easily derived from the
formulas for a general state space model (Kitagawa (1986)). We then approxi-
mate each of the probability density functions by a step function or a continuous
piecewise linear function and realize the necessary operations on the density
by numerical computations. This kind of direct method was attempted in an
early stage of the development of nonlinear filters (Bucy and Senne (1971), de
Figueiredo and Jan (1971)). Due to the recent development of fast computing
facilities, however, it now becomes practical to rely on such direct numerical
methods at least for lower order systems. In return for the intensive numerical
computations, our method is free from Gaussian or linearity assumptions, and
can also utilize a smoothing algorithm.

The objective of this article is to present a methodology for nonlinear
smoothing. Specifically, we show a non-Gaussian version of filtering and smooth-
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ing formulas and also show numerical implementations of the formulas. Possible
applications of our smoother are exemplified by two numerical results. In Section
2, we show a nonlinear state space model and derive formulas for recursive filter-
ing and smoothing. Numerical implementation of these filter and smoother are
shown in Section 3. The identification problem is briefly considered in Section
4. Section 5 is devoted to numerical examples where two nonlinear smoothing
problems are considered and contrasted with conventional methods.

2. General State Space Model and State Estimation
Consider a system described by a nonlinear state space model

Tp = g(zn—l) 4+ v,

Yn = h(zn) + Wn, (1)

where y, and z, are {-dimensional observation and m-dimensional state vec-
tor, respectively. v, and w, are m-dimensional and ¢-dimensional white noise
sequences having densities g(v) and r(w), respectively, which are independent
of the past history of z, and y,. The initial state vector zo is assumed to be
distributed according to the density p(zo). It should be noted that only (2) and
(3) below are the essential requirements of the model for the following argument.
Therefore, the additive error structure in (1) is not essential and the method
presented here can be applied to a wider class of nonlinear models than the one
formulated in (1).

The collections of the states and the observations up to time n are denoted
by X and Y., namely, X, = {zo,21,...,2,} and Y, = {m,... »Yn}. The
conditional density of z,, given X; and Y; is denoted by p(z,|X;,Y;). The prob-
lem considered here is to evaluate p(z,|Y;), the conditional density of z, given
observations Y;. For n > j, n = j and n < j, this formulates the problems of
prediction, filtering and smoothing, respectively.

The above nonlinear system (1) can be expressed in general form as

Yn ~ p(ynlzn)v

for which the conditional densities p(zn|2n—1) and p(yn|z,) are given by

P(zn|zn—1) = Q(zn - g(xn—l))’ p(y,n’mn) = T(y'n - h(mﬂ))
Our general state space model implies that the conditional distributions satisfy
the following Markov properties:
P(2n|Xn-1,Yn1) = p(zn|zn-1)

P(Yn|Xn, Yn1) = p(yn|zn). 3)
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Under these properties, it can be shown that the density of z, conditional on
Zn+1 and the entire observations Yy is reduced to

p(znlxn.H, YN) = p(a:n|a:n+1,Y,,,Y"+1)
_ P(ZalTnt1, Yn)p(Y " 20, Znt1, Yn)
- (Y™ znt1,Y5)
= p(Tn|Tnt+1,Yn)- (4)

Here Y™*! = {yn41,.--,y~n} and the last equality follows from the fact that
given z,41, Y**! and z, are conditionally independent.

In Kitagawa (1986), it was shown that for the general state space model
with (3) and (4), the recursive formulas for obtaining one step ahead prediction,
filtering and smoothing densities are given as follows:

One step ahead prediction

(o o]

p(@n|Ya) = / 2(@nsTn1]Ya1)dzn1

-0

= / p(znlzn—laYn-—l)p(xn—l|Yn—1)dxn—1

- /_ P(Tn|Tn-1)P(Tn-1|Yrn-1)dZn_1. (5)

Filtering

p(yn"-':m Yn—l)p(znlyn—l) — p(?/nl“’n)P(“’n‘Yu—l)
p(yn|Y —1) p('ynlyn—l)

where p(yn|Yn—-1) is obtained by fp(y,,lzn)p(a:n|Yn_1 Ydz,.

p(xnlyn) = P(xnlyn’Yn—l) =

(6)

Smoothing
o0
p(xﬂIYN)=/ p(xn,xn+1|YN)dzn+l
oo
=/ P(Zn41|YN)P(Zn|Trt1, YN)dTn i
—00

[o ]
= [ plannl¥i)p(anlanis Ya)dznss

-0

® P Tn1|YN)P(Tnt1|Zn, Yn
=p(zn|Yn)/ P(Znt1|YN)P(ZTnal )dmw1
—00

p(xn+1|Yn)
® P(Zat1|YN)P(Zn41]Tn)
= p(z,, Yn/
Ponltn) | T panpalYa)

d$n+1. (7)
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These formulas (5), (6) and (7) show a recursive relation between the state
densities. A generalization of the filtering and the smoothing formulas for linear
systems with degenerate system noise density p(zpn|z,-1) is given in Kohn and
Ansley (1987). Intuitively, they might be interpreted as follows. For the additive
noise case such as the model (1), the predictor is given by the (nonlinear) convo-
lution of two densities. The filter is proportional to the product of two densities.
The smoother is much more complicated but has a similar interpretation.

For linear Gaussian systems, the conditional densities p(z,|Yn~1), P(zn|Yn)
and p(z,|Yn) are characterized by the mean vectors and the covariance matrices
and hence (5), (6) and (7) are equivalent to the well known Kalman filter and
the fixed interval smoothing algorithms (Kalman (1960), Anderson and Moore
(1979)). For nonlinear state space models, however, due to the nonlinear trans-
formation of the state variables, the conditional density p(z,|Y;) becomes non-
Gaussian even when both v, and w, are Gaussian and cannot be specified by
using the first two moments. In the following section, we will present a numerical
method for handling non-Gaussian state densities.

3. Numerical Implementation of the Nonlinear Smoothing Formulas

A primitive but flexible method of expressing an arbitrary density func-
tion is to use a numerical approximation. In Kitagawa (1987), each density
function was approximated by a continuous piecewise linear (first order spline)
function. A more efficient numerical integration techniques are developed by
Pole and West (1988). See also West and Harrison (1989). We shall use
here a simple step function approximation, which is specified by the number
of segments, k, location of nodes, z; (i = 0,...,k), and the value of the den-
sity at each segment, p; (1 = 1,...,k). The use of this simpler approxima-
tion was motivated by the following two reasons. Firstly, according to the au-
thor’s experience, the simple step function approximation is numerically stable
and has sufficient accuracy. Secondly, it is quite easy to implement a nonlin-
ear transformation of the state densities. We shall express the approximated
step function by the triple {k,z;,p;}. Specifically, we use the following no-
tations: p(znlYn—l) ~ pn(zn) = {k,z,-,p,-}, p(z'nlYn) ~ fa(zn) = {k, zisfi}7
p(znlYN) ~ sn(2s) = {k, zi,3;}. Similarly, the system noise density ¢(z) is dis-
cretized by using kg segments, i.e., ¢(z) ~ §(z) = {kq, 2¢i,¢;}. In the simplest
implementation, z; = 2z + (2x — 20)i/k, kq = 2k, 2q0 = 20 — 2k, 22k = 2k — Z0,
2q; = z2q0 + (2 — 20)i/k.

To realize the recursive formulas shown in the preceding section, it is neces-
sary to develop a numerical method for the nonlinear transformation of variables,
the convolution of densities, Bayes theorem, and the normalization.

One step ahead prediction
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From (5), p; (: =1,... ,k) is obtained by

pi = Pn(zt‘) o Loo p(ziIzn—l)p(zn—llyn—l)dzn—l
- [ Z B(2419(2n1))P(9(En—1)¥Ya-1)dg(2n-1)
oo k Yj -
= / 4z — Y far(v)dy =) §(zi ~ y) fa—1(v)dy, (8)
- j=1v¥i-1

with y = g(2,—1). The density for the transformed state y, fn_l(y), can be ob-
tained in various ways. If g(z) is a monotone function, the density of the trans-
formed state y is obtained by f(g'l(x,,))%:—l. However, the f,,_l(y) = {k, zi, pi}
can be evaluated numerically by the following algorithm. For simplicity, we as-
sume that the nodes {z;} are equally spaced and that Az = (2x — 2)/k.

1. Fori=1tok

fi=0
2. Fori=1tok

(a) yo = min{g(2i-1),9(z)}

(b) ys = max{g(zi-1),9(2i)}

(c) i = [B52], @ = [B5R]+1

(d)fOI‘j-——io-i-ltOil
o vy = max{yo,% + (j — 1)Az}
* = qﬁn{ya,zo + jAz}
o fi=fi+EzLi

Using this fj, (8) can be evaluated approximately by p; ~ E;;l Gi-j f_-,'.

Filtering
fi i=1,...,k) is obtained by

i = falz) = P ME) 2ty (9)

Here y is the given observation at that time and r; = r(y—h(2;)) can be evaluated
directly from the function r(w). In (9), C is the normalizing constant given by

C= [ pule)rlu—ha)da = Zj? /

Smoothing

zi k
" p(@)r(y—h(@))da = Y pirisz. (10)

i~1 i=1
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s; (1=1,...,k) is obtained by

5= on(ai) = falar) [ et 0)g,

fﬁ+l(y)
k .
(s " snv1(9)d(y — 9(2))
B0 My e el

The integral in the summation is given approximately by s;§;/ fj, where s; =
sn+1(2;), fj = fa+1(2;) and §; can be evaluated either directly or numerically
by a similar way as the one for the prediction.

4. Identification

The nonlinear model presented in the previous section usually has several
unknown parameters. The maximum likelihood estimates of the parameters can
be obtained by maximizing the log likelihood defined by

N N
£(0) =logp(v1,-.- ,yn) = Y _1logp(¥nltr, .- s¥n-1) = Y _10g p(yn|Yn-1)-

n=1 n=1

It is interesting to note that each p(y,|Y,-1) is the quantity appearing in (6) and
can be evaluated by (10). Therefore the log likelihood of the nonlinear model is
obtained as a by-product of the nonlinear filter.

If we have several candidate models, the goodness of fit of the model can be
evaluated by the value of AIC defined by (Sakamoto et al. (1986))

AIC = —2max £(6) + 2(number of free parameters).

Thus the best choice of the model can be found by simply picking out the one with
the smallest value of AIC. A large number of nonlinear models can be expressed
in the nonlinear state space model form (1). Therefore, the log-likelihood and
the AIC shown above provide a unified tool for parameter estimation and model
identification.

5. Numerical Examples and Discussion
5.1. Comparison with the extended Kalman filter

We consider the data artificially generated by the following nonlinear model
which was originally considered by Andrade Netto et al. (1978) and discussed in
the rejoinder of Kitagawa (1987):
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Ty = l:c:,,_l + —%L";I— + 8 cos(1.2n) + v,
2 1422 4
. (11)
_%
Yn 20 n

The z,, and y,, shown in Figure 1 are generated by Gaussian random numbers
zo ~ N(0,5), v, ~ N(0,1) and w,, ~ N(0,10). The problem is to estimate the
true signal z,, from the sequence of observations {y,} assuming that the model
(11) is known. Our nonlinear filter and smoother were applied to the problem.
For comparison, the well-known extended Kalman filter, the second order filter
and the linearized fixed interval smoother associated with these filters were also
applied (Sage and Melsa (1971)). In the filtering and the smoothing, the following
discretization is arbitrarily used: k = 400, zp = —30, 2z = 30 and p(zo) =
N((20+ 2£)/2,(2x ~ 20)?/16). Figure 2 shows the posterior densities P(17|Ym),
m = 16,...,20 and 100. From the left to the right each column of the figure show
the results obtained by the extended Kalman filter, by the second order filter and
by our nonlinear filter and smoother, respectively. This figure shows a typical
situation where these algorithms yield quite different results. By our nonlinear
filter, the one step ahead predictive density p(z17|Y;6) is very broad and bimodal,
and this bimodality extends to the filtered density p(z17|Y17) and to the smoothed
density p(217/Y18). On the other hand, the extended Kalman filter approximates
each density p(z17|Y;) by a single Gaussian density. Although for m > 19 the
smoothed density obtained by our nonlinear smoother, p(z17|Y;,), also becomes
unimodal and resembles a Gaussian density, its location is completely different
from the one of the linearized smoother and is actually on the other side of the
origin. The second order filter shown in the middle column also approximates
the posterior density by a single Gaussian density. However, the estimates by
the filter are very conservative and have large variances.

Figure 3 shows the trace of time n versus the smoothed posterior density
P(zn|Yn) obtained by our nonlinear smoother. In the figure the bold curve shows
the 50% point of the posterior density and two fine curves express the 2.3% and
97.7% points which correspond to the two standard error interval of the Gaussian
densities. + indicates the true value of z,. It can be seen that remarkably good
results were obtained by our smoother. Figure 4 shows the plot of the smoothed
median of z,, minus true z,, with two standard error interval. Comparing this
with Figure 5, which shows the results by the extended Kalman filter based
linearized smoother, the significant merit of the nonlinear smoother can be seen.

An empirical study on the effect of the selection of the number of nodes was
also performed with the same example. Table 1 shows the effect of the number of
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nodes, k, on the computing time and on the accuracy of the obtained posterior
densities. The first column of the table shows the CPU-time in seconds spent for
the computation by a main frame computer, HITAC-M682H with internal array
processors (about 60MFLOPS). From this table, it can be seen that the necessary
CPU-time is less than the order of k*. The convergence of the nonlinear filter
and the smoother as the number of nodes increases was checked by four criteria
defined as follows:

N N
AF(k) = Zlogpk(ynlyn—l) - Zlogp4096(ynlyn—-l)

n=1 n=1

N
Ey(k) = E I(p4096(Z4|Y0); Pk(2n|Yn))

N
Ey(k) =) I(paoss(zn|Yn); Pr(zn|Yn))

n=1

N
Es(k) = ) I(p109s(zn|YN); Pr(2alYn))-

n=1

Here pr(z,|Y;) denotes the posterior density of z, given the observation Y; ob-
tained by using the approximation with k nodes, and I(p(z); ¢(x)) is the Kullback-
Leibler information number of the density p(z) with respect to the density g(z)
defined by I(p(z);4(z)) = [log g—g%p(x)dz. Since the true density is unknown,
the one obtained by the finest mesh (k = 4096) is used as the “true” density.
AF(k) is the difference of the log-likelihood values between the approximation
and the “true” density. Ey(k) and E3(k) are the summation over time interval of
the information numbers of the filtered and the smoothed densities, respectively.
E3(k) measures the difference between the “true” smoother and the approxi-
mated filter.

From the table, it can be seen that the difference of the log-likelihood is
less than 0.1 for £ > 512. However, in view of the experience that in comparing
several models, the approximated log likelihood fluctuates similarly, a coarser
mesh with k¥ = 128 might be sufficient for model identification. Ey(k) and E,(k)
both converge to zero apparently with order O(k?). On the other hand, the E;(k)
seems to converge to a constant. This value shows a significant advantage of the
smoothing over the filtering formula. It is worth mentioning that the estimates
by the smoothing formula with coarse mesh (k = 64) has an accuracy equivalent
to that of estimation by the filtering formula. In the table, the extended Kalman
filter is also evaluated. It can be seen that the extended Kalman filer is by far
worse than our nonlinear filter or smoother with the coarsest mesh.
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In summary, this example reveals two important points in the nonlinear
filtering problem: ‘

1. The extended Kalman filter and any other filter that approximate the density
by a single Gaussian density may produce disastrous results when the true
density is not unimodal.

2. The information from future observations is quite important to single out
the location of the state. The difference of p(z17|Y19) and p(z17|Y17) and
the value of E3(k) clearly demonstrate this. Thus the use of smoother is
essential to get a good estimate of the state.

5.2. Two-dimensional problem

The second example is a passive receiver problem. A similar problem was
considered by Bucy and Senne (1971) and Alspach and Sorenson (1972). In this
example, the problem is to locate a target in two-dimensional space which is
gradually moving.

This target is observed according to the scalar nonlinear measurement model

Yn = h(zl,22) + w, (12)
where
h(zl,z2) =t —I{M} Brn =p A 13)
z,,Z,) = tan 2l “cosp, )’ Pr=Pnm1 + AB. (

Here 3y and A are given constants and wy, is a Gaussian white noise with known
variance o2. This is a simple example of the vector tracking problem of locating a
moving object by observing the relative angle observed on a rotating observatory.
Figure 6 shows two examples of the trajectory. (For Case 1, z1 = 22cost, — 9,
z2 = 30sint, — 11, and for Case 2, z1 =1.5cos s,,+22 cos t,, — 9, z2=1.5sins, +
30sint, — 11 with ¢, = (30 + 0.08)/1807, s, = (30 + 6n)/180x). Figure 7
shows two artificially generated series y, which are obtained by observing these
trajectories according to the measurement model (12) and (13) with By = 0,
AB = 1, w, ~ N(0,0.02%) for Case 1 and w, ~ N(0,0.01?) for Case 2. For
the estimation of this moving object, we consider the following smoothness prior
model (Kitagawa and Gersch (1984), Gersch and Kitagawa (1988)):

a1 _ 1
A%z, = v,

d 2 _ ,2
A%z, = ).

(14)

Here the difference order d is either 1 or 2 and v}, and v? are mutually independent
Gaussian white noise sequence with variances, ¢ and 72, respectively. The
smoothness prior model (14) with the observation model (12) constitutes our
nonlinear state space model for estimating the location of the object. It should
be noted that the Gaussianity of neither v,, nor w, are essential in our model. The
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value of 7¥ and 7 are estimated by maximizing the log-likelihood defined by (11).
For simplicity in maximizing likelihood, we assumed that ¥ = 77 = 72 for the
second order model. Table 2 shows the maximum likelihood estimates of 72, 77
and 77 and the associated log-likelihoods and the AICs. The discretization used
in the computation are summarized in Table 3. The initial state density, p(zo),
was arbitrarily set to the two- or four-dimensional Gaussian density with the
ith mean (2§ + z},)/2 and the diagonal covariance matrix with the ith diagonal
element given by (z;. — z)?/16. Figure 8 shows the contour of the posterior
density p(z},z2|Yn) for n = 20, 40, 60 and 80 for Case 2. Figure 9 shows
the trace of (p],,p},), where pi, and pi_ (j = 1,...,7) are the 0.13%, 2.27%,
15.87%, 50%, 84.13%, 97.73%, 99.87% points of the marginal posterior density of
p(z1|Yn) and p(z2|Yn), respectively. In non-Gaussian case, except for the 50%
point (namely j = 4), these points do not have particular meaning. However,
having the contour lines in Figure 8 in mind, we can imagine the move of the
posterior density on 2-D space.

For the first order trend model (m=2, ky = k; =200,n=100), the necessary
CPU-time was 66 seconds. On the other hand, for the second order trend model
(m = 4), the filtering with a coarse mesh (k1 =k3 =50,ky =ks=7), (ky = k3 =
70,ky =k4=11), and (k3 =k3 =100, k; = k4 =15), took 98, 590 and 2617 seconds,
respectively.
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Table 1. Monte Carlo study on the effect of the number of nodes (k), to the CPU time
and the accuracy

Table 2. Summary statistics of the fitted models to the 2-D tracking problem

Table 1 Table 2
k| CPU AF Eq Ey E3 Case| 2D model 4D model
32| 0.10 58.4 80.7 144.0 483.9 LL=223.36 LL=231.69
64] 0.20 6.21 16.1 46.8 64.6 1 |AIC=-442.71| AIC=-461.39
128| 0.42 359 426 125 517 2 =0.032 [r2=0.12x10"°
256 094 142 1.02 330 475 1'22 =0.014
512] 2.33 0.39 .234 .758 43.9 LL=239.39 LL=260.65
1024| 6.55 0.21 .048 .152 423 2 |AIC=—474.78| AIC=-518.30
2048| 20.69 0.02 .007 .022 41.7 2 = 0.041 2 — 0.0013
4096 | 71.80 — — — — - 12 =0.031
EK| .005 650.5 2114.7 2572.9 2238.1
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Table 3. Summary of the discretizing parameters used the nonlinear filter and smoother

Case 2D mo;iel 4D model
k1 = k2 = 200 k1 = k3 =100
ky =kg =15
1 |2z3=6, 2z} =14 =6, zl =14
$=2 ,=10|28=-0013, 22 =-0.021
zg =2, 223 =10
25 =0.031, =z} =0.039
k1 = ko =200 k1 = k3 =100
ko =kq4 =15
2 [z3=5, z},=15 75 =5, 2z}, =15
=2 =12 22Z=-02 22 =02
=2 2, =12
75 =~02, 7z}, =02
Tn
@ 207
K]
2
T
2 04
&
2
o]
=]
o
-20 T T
0 25 SO 75 100
Time
Yn
20 -
5=
g
bt
g o-
£
o
-20 T | T ]
0 25 S0 15 100
Time

Figure 1. True signal z,, n =1,...,100, and the observations y,, n = 1,...,100.
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Figure 2. Posterior densities p(z17|Ym), m = 16,...,20 and 100 obtained by the
extended Kalman filter based smoother (left), the second order filter based smoother
(middle) and our nonlinear smoother (right).
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Figure 3. Posterior density p(z»|Yn) obtained by our nonlinear smoother. The bold

curve shows the median and the fine curves show two standard error interval. + indi-

cates the true value.
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Time

Figure 4. Posterior medians minus true values with two standard error intervals for the

nonlinear smoother.
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Figure 5. Posterior medians minus true values with two standard error intervals for the
extended Kalman filter/smoother.
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Case 1

Figure 6. Trajectory of the moving object and the receiver: Case 1 and Case 2.
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Figure 7. Observed angle y,: Case 1 and Case 2.




386

12.0

10.0

12.0

10.0

8.0

n

6.0

4.0

2.0

5.0

7.0

13.0

15.0

GENSHIRO KITAGAWA

12.0

10.0

8.0

6.0

4.0

2.0

12.0

10.0

8.0

6.0 4

4.0

2.0
5.0

7.0

9.0

N

11.0

13.0

15.0

Figure 8. Contour of the posterior densities, p(z,l.,:c?, |Y~), n = 20,40,60 and 80 for

Case 2.
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Figure 9. Trace of (p,,,p),,) where p}, and p/, are 0.13, 2.27, 15.87, 50, 84.13, 97.73
and 99.87 percentile points of the marginal posterior density of p(z}|Yx) and p(z2|Ywn).
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