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1. Introduction

The class of self-exciting, threshold, autoregressive models (SETAR) has
proved to be quite useful in nonlinear time series modelling. This class was
introduced by Tong (1978) and has been studied by various authors (see Tong
(1990) for references). In particular, it has been shown (Chan (1988)) that the
least squares estimators (LSE) of the parameters of the model (including the
thresholds and delay parameters) are strongly consistent. This result, however,
depends crucially on the fact that the model is stationary and ergodic.

In this paper, we shall relax the above stationarity and ergodicity condition

in the case of a simple model. Consider the first order SETAR model with only
one threshold:

{ aXi g +7+e, if Xiq<r,
Xt =

1.1
BXt-1+b6+e, if Xe1>r, (L)

where e; is a sequence of independent identically distributed (i.i.d.) random
variables with zero mean and variance 0. The above model is stationary and
geometrically ergodic if and only if « < 1, 8 < 1 and e < 1, and is transient
(as a Markov chain) if (a, 3) is in the exterior of this region, but the situation is
rather complex when (a, 3) lies on the boundary (see Chan et al. (1985) and Guo
and Petruccelli (1990)). Here, we are interested in the case where ergodicity may
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not hold. To simplify matters we shall assume that the threshold r is known, so
that by simple substraction we:may take r = 0. However, the above 4-parameter
model is still too difficult to analyze (in the non-ergodic case). Therefore we
assume further that the autoregression function is continuous at 0 and its value
at this point is known, i.e. § and v are equal and known). For this simple model
we shall show that the LSE of the parameters are strongly consistent if and only
ifa<1(<1ify<0)and B <1(<1lify>0). The boundary case of a8 = 11is
also considered. This may be called the nonlinear unit root problem by analogy
with the linear case.

2. Strong Consistency of the LSE

The least squares estimators of the parameters a, # of the model based on

a sample X3,...,X,, say, are obtained by minimizing the sum of squares
n
Qn(a,f) = ) [X: — 9(Xi-1,0,8)] (2.1)
t=2

where g(z,a,8) = [od(z < 0) + BI(z > 0)]z + v and I(-) denotes the set
indicator function. Simple computation shows that these estimators are given by

an =[§I(Xt < 0)Xe(Xe41 — ‘Y)] /[ SI(Xt < O)Xt{‘ )

Bn = [ nz_:I(Xt > 0)X¢(Xe41 — 7)] /[ nE-:I(Xt > O)Xf} .
t=1 t=1

Let ao,fo denote the true values of the parameters a, 3. Then from (1.1) with
a=ag, =P,v=206and r =0, we get

an_ao———Mn_/S;a ﬁn_ﬂ0=M:/5:1 (2'2)
where
n-1 n-1
M7 =) I(X: < 0)Xeerq1, S =Y I(X:<0)X?,
t=1 t=1
n-1 n-1
M: = ZI(Xt > O)XteH.l, S.,T = I(X.-,,L > O)Xt2
i=1 t=1

From (2.2), it is clear that the LSE is strongly consistent if and only if the
following conditions hold:

(C0) nlLI%OM;/S; =0, nlergo M} /St =0, almost surely.
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Observe that for » > 1, M,; and M, are martingales adapted to the o-
field a,, generated by X1,... ; X,,. That is, they are a,-measurable and E(M, |
Un-1) = M _;, E(M} | an_1) = M}_,. Now let M,,n > 1, be any martingale
adapted to some o-field a,, and denote by D,, the sum of the conditional variances
Sr o, E[(M:— M;_1)? | a;_1]. Then we have the following result (see e.g. Neveu
(1965), p. 150): On the set {lim, oo Dy = 00},

M, /[D}?(log D,)1/*¢] 0, asn — oo,

almost surely for every € > 0, while on the set {limp oo Dn < 0}, M, converges
almost surely to a finite limit. It is easy to see that the sum of the conditional
variances for the martingales M, and M;} are precisely 02 S, and 025}, respec-
tively. Therefore the conditions (CO0) are equivalent to
(C1) lim §; =00, lim S} =00, almost surely.
n—oo n—o00

We now proceed to study the behaviour of S, and S;. To this end we shall

establish some results concerning the sample path behaviour of the process X;.

For ease of reading, the proofs are relegated to the Appendix. In the sequel we
shall make the following assumptions:

(A1) P(es+7v>0)>0,
(A2) P(ea+7v<0)>0.

Note that if we exclude the case 0 = 0, which corresponds to a deterministic
process and is without interest, then from E(e;) = 0, we have P(e; > 0) > 0 and
P(ey < 0) > 0. Thus (A1) holds trivially when 4 > 0 and so does (A2) when
v < 0. In particular, for ¥ = 0, both (A1) and (A2) hold. In any case, these
assumptions hold if the distribution of e; has infinite positive and negative tails.
The latter is a mild condition.

Lemma 2.1. Ifag < 1 or ag = 1, v > 0, there ezists a positive number c such
that for all z,

P(X;>c for somet>0|Xo=2)=1,
or equivalently, for any initial distribution on X,, the Markov chain X, enters
the interval [c,00) infinitely often almost surely.

Similarly, if Bo < 1 or By = 1, v < 0, there ezists a negative number d such

that for all z, .

P(X: < d for somet>0|Xg=2)=1,

or equivalently, for any initial distribution on Xp, X; enters (—oo,d)] infinitely
often almost surely.
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Note. Assumptions (A1) and (A2) cannot be relaxed, at least in the case a > 0
and 3 > 0. Indeed, for z < 0,"P(X; < 0| Xy = z) < P(e; ++ < 0). Hence,
if P(ex +7 > 0) = 0, we have P(X; < 0| X¢~; = z) = 1, which implies that
starting at a point < 0, the process remains indefinitely negative. Thus when
a > 0 and (A1) fails, the first conclusion of the Lemma would not hold. Similarly,
P(e1 + v < 0) = 0 implies that starting at a point z > 0, the process remains
indefinitely positive. Therefore when 8 > 0 and (A2) fails, the second conclusion
of the Lemma would not hold.

Lemma 2.2. Ifag > 1orag =1, v < 0, then Jor any z < 0, P(X; <
z for allt > 0| Xo = z) > 0. Similarly, if Bo > 1 or fo = 1, ¥ > 0, then for any
z >0, P(Xthforallt>0|Xo=:c)>0.

Lemma 2.1 shows that if oy, and 7 satisfy the conditions of this Lemma
then (C1) holds since S} > ¢ o7, I(Xy—y 2 c)and S > 2 30, I(Xy_; < d).
Lemmas 2.1 and 2.2 show that if these conditions are not satisfied then (C1)
will not hold. Indeed, when aq,v satisfy the first condition of Lemma 2.2 and
Bo,~ satisfy the second condition of Lemma 2.1, then by Lemma 2.1, X, will
almost surely eventually become negative and by Lemma 2.2, there is a positive
probability that it remains negative indefinitely. Thus with positive probability,
X enters the positive real line finitely often. The same is true when the positive
real line is replaced by the negative one, when Bo,7 satisfy the second condition
of Lemma 2.2 and when ay, 7 satisfy the first condition of Lemma 2.1. If g, Bo
and 7 satisfy the conditions of Lemma 2.2, then depending on the starting value,
there is a positive probability that X, will be always positive or always negative.
Therefore in all cases, at least one of the sequences of random variables S, and
S} is bounded with positive probability. This yields the following Proposition.

Proposition 1. The LSE estimator (6,,5) is strongly consistent if and only if
one of the following sets of conditions holds: (i) ap < 1, g < 1 and v =0, (i)
a9 <1, 8 <1andy<0and(ili) ag <1, By < 1 and v > 0.

We now consider the boundary case, that is when it is known that the point
(@, ) lies on the boundary of the stationary region. This boundary is formed
by three curves: {a <1, =1},{a=1, 8 < 1} and {a = 1/8 < 0}. For the
case o« < 1, B = 1, the LSE of a is the same as in the general case. A similar
remark holds for the case a = 1, 8 < 1. However, 'in case a = 1 /B < 0, the least
squares method would estimate o by minimizing Qn(a,1/a), where Q,, is as in
(2.1), leading to a different estimator. The following Proposition shows that the
resulting estimator is also strongly consistent.

Proposition 2. Suppose that ag = 1/8y < 0; then the estimator of a obtained




CONSISTENCY OF ESTIMATOR FOR THRESHOLD AR MODEL 365

by minimizing Qn(a,1/a) is strongly consistent.
Proof. We have '
Qn(a’ 1/0‘) - Qn(ao, 1/00)
n

= {le: + 9(Xe-1,00,1/a0) — g(Xi-1,0,1/a)]? - €3}
t=2

=(a—ap)’S; —2(a—ao)M; + (1/a—1/ag)SF — 2(1/a — 1/ao) M} .

Let § be an arbitrary positive number. Observe that z? — 2bz > §% — 2|b|é for
|z| > 6 > |b| and |a — ap| > 6 implies |1/a—1/ag| > §/[|ao|(|ao| + §)]- Therefore
when |M,|/S; < & and |[M}|/S} < &/[|aol(|ao] + 6)], we have

inf [Qn(a7 1/a) - Qn(ao, 1/a0)]

azla—ag|>8

> S76% —2IM7 |8 + 536 [lleol(Jol + 6)]* — 2| M6/ (|l (lo] + 6)]-(2.3)

But we have already shown that (C1) holds and hence (CO0) also holds, which
implies that almost surely for nlarge enough, | M, |/S, < 6, |M}|/S} < 6/[| |
(lao] + 8)] and hence (2.3) is satisfied. Further, from (C0) and (C1), the right
hand side of (2.3) tends to infinity almost surely as n goes to infinity. Therefore

lim inf  [Qn(a,1/a) - Qn(ap,1/ap)] = 00, almost surely.

n—0 o:|la—~ag|>6

Thus there exists, for almost all sample paths of the X; process, an integer

N such that for all » > N and for all o satisfying |@ — ag] > §, we have
Qn(a,1/a) — Qn(ag,1/ag) > 0. This implies that for all n > N, the function
@n(a,1/a) cannot attain its minimum outside the closed interval {ag — 8, g + 6);
and since this function is continuous, its restriction on the compact set [ag —
6,09 + 6] always admits a minimum. Thus for all § > 0, there exists, for almost
all sample paths, an integer N such that for all n > N, the function Q.(a,1/a)
admits a minimum which is in the interval [ag — 6,9 + 6]. This completes the
proof of our Proposition.

Remark. A close look at the above proof reveals that the LSE of a, 8 under the
constraints o8 = ¢, @ < 0, f < 0, where ¢ is a given positive number, are also
strongly consistent provided that the true values satisfy the same constraints.
However, there is no reason to consider the constraint a8 = c except for ¢ = 1.

3. Some Open Problems

Our work is still incomplete in that some important questions have not
been addressed. The first one concerns the more general model in which the
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threshold is unknown and/or the autoregression function takes unknown value
at this threshold, with or without discontinuity there. Again, the least squares
method may be used to estimate the model parameters. Strong consistency of the
estimators has been established for the ergodic case provided that the invariant
probability measure of the Markov chain X; admits a strictly positive density (see
Chan (1988)). In the general, not necessarily ergodic case, we conjecture that the
last condition needs to be replaced by a recurrence property of any open interval
for the Markov chain X;. The second open problem concerns the convergence
rate of the estimators. This rate may be faster than the usual rate n=1/2 since,
intuitively, the process would explode or drift to infinity with alternating signs,
according to apfBy > 1 or agfp = 1 (ap < 0, Bp < 0). The third open problem is
the limiting distribution of the estimators.

Appendix : Proof of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. We shall prove only the first part of the Lemma since
the proof for the second part is similar.

We begin by establishing the equivalence between the two statements of the
Lemma. Suppose that X; enters [c,00) infinitely often, regardless of the initial

distribution of X,. Then, taking this distribution to be the Dirac distribution
with mass at z, we get

P(X; > ¢ for some t> 0| X, = z) =1.

Conversely, if the above equality holds for all z, then from the homogeneity of
the Markov chain X}, we also have for all £ > 0 and all z,

P(Xiyt > ¢ forsome t> 0] X;=1z)=1.

By integration with respect to the distribution of X, we get P(X; > ¢ for some

t > k) = 1, and since this is true for all k, this means that the process enters
[¢,00) infinitely often almost surely.

We now show the validity of the Lemma. Let ¢ be a positive number. We
have for all z € (0,c¢)

P(X;2>2c|Xo=2)=P(foz+e1+7>c)=Ple1 +7 > ¢~ fox)
> P{er +7 2 ¢(1+|6ol)}

Choose ¢ small enough such that P{e; + v > (1 + |Bo|)c} > 0, which is possible
because of (A1). Then

inf P(X;> cforsomet>0|Xy=2z)>0.
z€[0,c)
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Hence, by Proposition 5.1 in Orey (1971), for any initial distribution on Xo,
{X: € [0,c) infinitely often} C {X; > ¢ infinitely often}
almost surely. But clearly,

{X: > 0 infinitely often}
={X: € [0,c) infinitely often} U {X; > ¢ infinitely often}.

Therefore we get the result of the Lemma: P{X; > ¢ inﬁnitély often} = 1, if
we can prove that the event on the above left hand side has probability one, or
equivalently (by the same argument as the beginning of this proof)

P(Xt<0fora,llt>0|X0=z)=0,
for all z. For this purpose, it is enough to show that for all y < 0,
P(Xt<0fora.]lt> 1|X1 =y)=0,

which would yield the desired result by integration with respect to the conditional
distribution of X, given X = z.

We now prove the last equality. Note that the left hand side of this equality
is the same as the probability that a first order autoregressive process with pa-
rameter ap and constant term 7, starting at y < 0, remains indefinitely negative.
For ap = 1, this process reduces to a random walk with increments having mean
7 and hence the corresponding probability, for vy > 0, is zero (see Feller (1966),
pp- 395, 396). The same is true for 0 < ag < 1, since then the above process
is a stationary Markov chain with invariant probability measure having support
not contained in (~00,0]. To see this, note that this measure is the probabil-
ity distribution of }7;7 jaf(e—x + 7). By (A1) there exists ¢ > 0 such that
P(e—k+7 > ¢€) > 0. Thus 3=, ak(e—k + 7) is greater than €1-af)/(1—ap)
with positive probability. Now, choose n large enough such that (1~ af)e+aly
is positive (if ¥ > 0, any value of n would do). Then the random variable

oo

> abe—k +7) + (1 - of)/(1 - @)

k=n

is positive with positive probability since it has positive expectation. Thus Y ;2
af(e—x +7) can be expressed as the sum of two random variables greater than
€(1-ag)/(1-ao) and —e(1 - af)/(1 - ap) with positive probability, respectively,
yielding the desired result.
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Finally, for ap < 0, one obtains the conclusion of the Lemma by taking the
limit, as k goes to infinity, of the extreme sides of

P(Xt <0,t=2,... ,lel = y)s P(et+7< 0,t=2,... ,k)
= [P(er +7v < 0)]* 7,

and noting that P(e; + v < 0) < 1 by (Al).

Proof of Lemma 2.2. Again, we prove only the first part of the Lemma since
the proof for the second part is similar.

Suppose that ap > 1. Then X;_; < z < 0 implies

Xi—z=ap(Xi—1—2)ter+ v+ (ap -1z
<Xic1—z+er+v+ (ap —1)z.

Define the random walk Y; by Yy = Xo — 2, Y = Vi1 + et + 7+ (a0 — 1)z.
Then by induction, it is easily seen that Y; < 0 for all ¢ > 0 implies X; — z < Y;.
For ap = 1and v < 0,0r ap > 1 and z < —y/(ap — 1), the random variable
(ap — 1)z + e; + v has negative expectation, which implies that the random walk
Y; drifts to minus infinity (Feller (1966), pp. 395, 396) or equivalently

P(Y;<Oforallt>0|Yp=0)>0,
giving
P(X¢<zforallt>0|Xo=2)>0.

To complete the proof of the Lemma, we need only show that for ag > 1, there is
a positive probability that starting at Xy = z < 0, the X; process becomes less
than —v/(ap — 1) after a finite number of steps. (Here v > 0, otherwise there is
nothing to prove.) That this is true follows from the fact that for all y < 0,

P(X: <y|Xt-1=y) = P{(co - )y + e +7 < 0}
ZP(61+7<0)>0.
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