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GLOBAL BEHAVIOR OF DECONVOLUTION
KERNEL ESTIMATES
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Abstrdct: The desire to recover an unknown density when the data are contam-
inated with errors leads to nonparametric deconvolution problems. The difficulty
of deconvolution depends on both the smoothness of the error distribution and the
smoothness of the prior. Under certain smoothness constraints, we show that de-
convolution kernel density estimates achieve the best global rates of convergence

k=1

n~ 3(*+A)+1 under an L, (1 < » < oo) norm, where I is the order of the derivative
function of the unknown density to be estimated, k is the degree of smoothness
constraints, and 8 is the degree of the smoothness of the error distribution. The
results indicate that in the presence of errors, the bandwidth should be chosen larger
than the ordinary density estimate. These results also constitute an extension of
the ordinary kernel density estimates.

Key words and phrases: Deconvolution, Fourier transforms, kernel denmsity esti-
mates, L,-norm, global rates of convergence, minimax risks.

1. Introduction

Deconvolution problems arise when direct observations are not possible. The
basic model is as follows. We wish to estimate the unknown density of a random
variable X, but the only data available are observations Yi,... ,Yn, which are
contaminated with independent additive error ¢, from the model

Y=X+e¢. (1.1)

In density function terms, we have realizations Y;,... ,Y, from the density

+o0
)= [ fxtu- 2)aF) (12)
- 00
and wish to estimate the density fx of the random variable X, where F, is the
cumulative distribution function of the random variable e. A
Problems with contaminating error exist in many different fields (e.g., mi-
crofluorimetry, electrophoresis, biostatistics), and this model has been widely
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studied. Interesting applications can be found in Mendelson and Rice (1982),
Wise et al. (1977), etc. In a Bayesian setting, the deconvolution problem is pre-
cisely the same as the empirical Bayesian estimation of a prior (Berger (1986)).
Furthermore, deconvolution is the easiest model to understand the problem of
estimating a mixture density (Zhang (1990)). Other fields of application include
generalized linear measurement-error models (Anderson (1984), Bickel and Ri-
tov (1987), Stefanski and Carroll (1987)) and nonparametric errors-in-variables
regression (Fan, Truong and Wang (1990)), where the covariates are measured
with errors. The deconvolution technique is used to recover the density of the
covariates.

It is also of theoretical interest to discover and understand the “difficulty”
of nonparametric estimation from indirect observations; the convolution model is
perhaps the first simple model to try. Here, the “difficulty” of a nonparametric
problem means roughly the best attainable rate of the problem. See Doncho and
Liu (1987) for the exact meaning of the “difficulty” of a nonparametric problem.

The best local rates and strong consistency have been studied in Carroll and
Hall (1988), Fan (1991), Liu and Taylor (1989), Stefanski and Carroll (1990),
Zhang (1990), etc. Some simulations have been conducted to examine the effec-
tiveness of deconvolution methods (Stefanski and Carroll (1990)). The results
of Fan (1991) indicate clearly that the difficulty of deconvolution depends on
the smoothness of the error distribution: the smoother the error distribution the
harder the deconvolution will be.

In practice, it may be more interesting to understand how to estimate a
whole density function, and how well an estimator behaves globally under certain
global losses. The global loss functions we use here are those induced by a
weighted L,-norm:

1 = ( [ :° If(w)l‘”w(x)dw)llp, (1.3)

where w(-) is a weight function. When w(z) = 1, denote || - [|up by || - [|,- A
similar measure of global loss is used by Bickel and Rosenblatt (1973) and Stone
(1982).

This paper focuses on studying how well a function T o f = E;':o a; f9)(z)
can be estimated, under a smoothness prior

FonsopBoo = {f : [IF™ (@) = (2 + 6)|luwp < BISI*, |fI< B}, (1.4)

where 1 > a > 0. When w(z) = 1, denote Fm,ap,Bw Y Fm,a,p,B- The class
of densities here is larger than that formulated by Stone (1982). It includes
interesting densities which are excluded by Stone (1982). Hence, when ¢ = 0,
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our results are an extension of ordinary density estimates to a wider class of
constraints.

We now give an estimating procedure for the deconvolution problem. Let
¢x,9Py, . denote respectively the characteristic functions of the random vari-
ables X,Y,e. Then, ¢y(t) = ¢x(t)Pe(t). If ¢y (t) is known, then by Fourier
inversion, fx can be computed by

1 / +oo oy (1)
z)= — exp(—itz dt.
fx(z) = o . p(— )¢‘(t)
Thus, the problem is reduced to estimating ¢y (t), which can be estimated by
the empirical characteristic function:

Bu() = = " exp(—it,;).
i=1

However, ¢,(t) is not a good estimate of &(t) at high frequencies. For this reason
it is usual to incorporate a damping factor ¢x(hnt), where ¢x, with ¢x(0) =1,
is the Fourier transform of a kernel K, and h,, is a sequence tending to 0 (so that
the damping factor ¢x(hnt) — 1). Thus, a deconvoluted kernel density estimate
is defined by

. 1 [t an(t)
= — it th 1.5
e = 5 [ ep(-itm)anehn) G20 (15)
See Fan, Truong and Wang (1990) for a different derivation. The bandwidth
hn can be selected to minimize the risk of the estimator, and depends on the
smoothness prior.

More generally, we define an estimator of f()(z) by

e LR Falt)
@ =5 [ _ exp(—ita)(=it)xlehn) G2 at (1.6)

Note that under some assumptions on integrability, the estimate (1.6) can be
written as a kernel type of estimate:

fO(z) = % ZK,.,-(“’ - Y"), (1.7)
a=1 n

where

oo Y éx(t)

(-4
Kni(@) = — hl —r [ _ en(-it) LSy (1.8)
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Moreover, we shall use (1.6) to construct estimates of 7' o f.

2. Main Results

To discuss the asymptotic behavior of the deconvoluted kernel density esti-

mate (1.6) we need the following assumptions on ¢, and K.
A1) @(t) # 0 for any t.
A2) K(y) is bounded, continuous, and f_+:°° ly|™*o?| K (y)|dy < .

A3) ¢x(t) is a symmetric function satisfying ¢x(t) = 1 + O(|t|™**), as t — 0.
Note that condition A1) is sufficient to make the model (1.1) identifiable.
When this condition fails the model might not be identifiable and the estimator
(1.5) not well defined. Note that assumptions A2) and A3) say essentially that
K is an m + « order kernel. Under these assumptions we have following results

for biases.

Lemma 1. Under assumptions Al) — A3), if

/ T |tk (tha)|
—o  #e(t)]

dt < oo,
then

sup  |EfP(2) - 9 (@)llwp = O(RT**77) (1< p < 00),
.fe]:m,a,p,B,w

where ]:-S‘j) is defined by (1.7) and 0 < j < m + a.
When w(z) = 1, we have the following results under L-loss.

Theorem 1. Under the assumptions Al) — A3) with p =2, and
G1) |@c(t)tP] > dp (as t — 0) for some positive constant dy,
G2) [ 2 1o (®)P|t*P+Vdt < 00 and [*7 |6k ()| [t1*1dt < oo,

with bandwidth h, = dn™ 3¥m+a+5+1 where d > 0, we have

fe-rm,a,ﬁ,B

s E| gajf,(,j)(z) - jz;ajf(j)(z)llz - o),

where l < m + a.

Under a weighted L,-norm, we have the following results.

Theorem 2. Under the assumptions A1) — A3), and
G1) |¢(t)tP| > do, |#L(t)tPF| < d1, as t — oo with dg > 0 and d; > 0,
G2) [T 2 (1ox(®)] + ek (DI dt < oo,

(2.1)
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with h, = dn™ T=+a¥5+1 where d > 0, we have

El:ajf(j)(a:)”wp = O(n_#‘ﬁ’m),l <m+a

fe-rm.a.p,B.u j=0

l
sup B[ a;f(e) -
J=0

(1 £ p < ), provided that the weight function is integrable.

Remark 1. The distributions satisfying G1)’ include the Gamma, symmetric
Gamma, and double exponential distributions, which are called ordinary smooth
distributions of order 3 (see Fan (1991) for a formal definition). Theorems 1 and
2 indicate that, in the presence of errors, we require a larger bandwidth than the
ordinary density estimate (in the absence of errors). The smoother (larger )
the error distribution the larger the bandwidth required in order to balance the
“bias” and “variance”.

Remark 2. By using the idea of adaptively local 1-dimensional subproblems
(Fan (1989)), the rates given above are optimal under some additional assump-
tions on the tail of ¢, (see Fan (1989) for lower bounds). In particular, for

estimating fg)(z) under the constraint Fp, o p B,w, We have the following rates
of convergence (k = m + a):

€ ~ symmetric Gamma(3)
error distributions |¢ ~ Gamma(f)

B # 2j + 1 (j integer) |8 = 2j + 1 (j integer)
optimal global rates|O(n~ TR ) O(n~ XA ) O(n~ 2z""b;;’%'”)

Thus, the optimal global rate for estimating fx(z) is 0(71."5"=‘5r_5 ), when the error
is double exponential. The best rates above are a little worse than the ordinary
density, but not impractical.

Remark 3. It is extremely difficult to do nonparametric deconvolution when
the error distributions are normal and Cauchy (called supersmooth distributions,
see Fan (1991) for a formal definition). Indeed, based on the traditional pertur-
bation argument (e.g. Farrell (1972)), it has been shown by Fan (1988) and
Zhang (1990) that the optimal global rates are extremely slow: O((log n)m_*f;‘)
for supersmooth error of order 3. In the terminologies of Donoho and Liu (1987),
1-dimensional subproblem is difficult enough to overcome the difficulty of esti-
mating a whole density when the error distributions are supersmooth, whereas it
is not the case when the error distributions are ordinary smooth. Indeed, the
arguments of Fan (1989) indicate that it requires an nTwFa A7 -dimensional
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subproblem in order to overcome the difficulty of estimating a whole density
function.

Remark 4. The ordinary density estimation corresponds to the case § = 0 in
our setting. Thus, our results are applicable to the ordinary density estimation
with an extension to a wider class of constraints. It turns out that the kernel
density estimator can also achieve the optimal rates of convergence under an
Ly-norm (1 < p < o).

3. Proofs

Proof of Lemma 1. Note that
-~ - +w -
Ef@) = [ 19 - hp)K @)y

By using the integral form of the remainder term in the Taylor expansion of
F9(z), we obtain that

f(j) (z - hny)

—]1

(hn'.‘l) (i+34) [ TA=H™IT ] -j
i + St ") (g — thyy)dt| (hny)™ 7,
,2_% N R I Ay 2 A y)dt| (hny)
and using the fact that
+o0 too
K(y)dy =1, / y¥K(y)dy=0, i=1,2,...,m,
-0 -00

we have that for each f € Fn a,p,B,w, the bias term
|EfP(2) - f(j)(z)l

<hm-i / T AT ) thog) — 10 ()] (g™ K (3)d dy.

o (m—j—-1)
3.1)
Let C = ff‘: ! %—tl;.—i).lym JK(y)|dtdy < co. Then, the function
(1 - t)m-— i-1 _J
(m—]—"l—)ﬂy KyI/C (0<t<1,-00<y< o)

is a density function. Thus, by Jensen’s inequality and Fubini’s Theorem, the




i
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Ly-norm of the second factor of (3.1) is

oo l(l"t)m—j_l m~j m m
"C/w s (m—j—1) ly™ = K (y)|/CIf™ (2 - thay) — f¢ )(z)wtdy”wp

<C’{ /+°°/0 S ) _le ~IK(y)ldtdy/C

(m—j-

+oo 1/p
1 e = thay) - FP @) Pu(a)ie

-—00

1-1/pp o oo (1 t)m— —1gep m+ap—j Y
<BC ™ /Ph3 m—7 1) ly K(y)ldtdy,

(3.2)
where, in the last display, the inequality

”f(m)(-"" —thyy) — f(m)(z)”wp < Blthny|*

was used.
It follows from (3.1) and (3.2) that
sup  [|EfD(z) = fO(@)llup = O(RTH).

f€Fm,a,p,B,w

Proof of Theorem 1. With the bandwidth given in Theorem 1, by Lemma 1,
we have the “bias”

sup ||EFD(z) — FO(2)||; = O(n-—*—fz(m"'+a°5,;~+—1). (3.3)

m,x,2, B

Thus, we need to compute the variance term. By Parseval’s identity,

+oo o ]
/ var(fU) (z))dz = % /* M(l — oy (2)*)dt

—c0 N J_o |¢-“-(t)|2
1 [ Pilg(o)l
S e, T (34

where ¢y (t) is the characteristic function of Y = X + €. By assumption G1),
there exists an M such that, when |t| > M,

|6e()2°] > do/2.
Hence, by (3.4),

+°° Ag s co .
/ var(fU)(z))dz < ;#[(2/@)2 /M t20+f’>|¢K(t)|2h;2ﬁdt+0(Mh,,)]

—00 »

= o(n-a’ﬁ"‘ﬁ%—;ﬁ—l). (3.5)
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Thus, by the triangular inequality of the L;-norm,

o2, E S0 Sasse)], o),

and the conclusion follows.
We need the following lemma to prove Theorem 2.

Lemma 2. Under the assumptions of Theorem 2

r

(- h (TN _ 5p-rli+B+1)+1
e e o
r=23,..., j=1,...,1, (3.6)
where K, ;(-) is defined by (1.8).
Proof. Note that
T — Yl T — }’1 T r ) T — Yl "
BlKni () = BEws (57| < 2| (57)

Let fy be the density of Y. Then fy is bounded by the constant B for any
f € Fin,a,p,B,w- By the definition of K,;

z-Y\|" +00
Kni(52)| = [ IKas@) (e = By
n -00

B lyl<1 21 J_oo h'zt+1|¢c(t/hn)|

Arguing as in (3.4) and (3.5), it follows that the first term of (3.7) is of order
O(hn r(_1+1+p)+1)' Integration by parts yields

E

| Kni(9)|"dy. (3.7)
fy|>1

PN T ol it L (i) oK (1)
Kn}(y)_ 27l'h7p11,+1(3y) ./—oo exP( ty)dt( ¢z(t/hn) )dt

Thus, arguing again as in (3.4) and (3.5), it follows that

, 1 TR k(1) + Ui (t)  or()8(t/ha)
| Knj(y)| < 2rhit |y /_oo be(t/hn) hn@2(t/hy)
D

<
h.’11+l+ﬂly|

dt

for some constant D. Consequently, the second term of (3.7) is of order
O(h;"UH4A*1y The result follows from (3.7).
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Proof of Theorem 2. We need only to prove that
E[If(2) = f9(2)llup = O(n~ Tmse5837).

By Jensen’s inequality,

L : too , 1/p
BN @) - 19 < [ B @) - 19 @)Pue)ie)

—00

+oo . +oo . 1/p
52[ / E|f(z) — EfV)(z)Pw(z)dz + / |EfU)(z) - f(’)(a:)l”w(a:)d:c] )
- e (3.8)

By Lemma 1
+w LY 33 I3 . m4$o— 3
[ B @) - 19 @)Pu(e)ds = 0(r+omi7) = o(n=i5ETHR) (39)

uniformly in f € Fpn,a,p,B,u. Thus, we need to calculate the first term of (3.8).
By applying Jensen’s inequality again,

Elf(z) - fO@)P < (B - fO@M)™,  (3.10)

where k is the smallest integer such that 2k > p. Let

z-Y; z-Y;
Zm-(a:) = Knj(h_) - EKnj( h )

n n

Then, EZ,;(z) = 0. By (1.7) and (1.8),
s ) 1 & n
Elf,(,’)(a:) - f(J)(z)Pk = ik E e E EZnm,(2) - Znma (2)
m1=1 mg,,=l

= g [nn = 1) (n - k4 (B2 @) 4 -]
-0 (n-—k hﬁ[-2(j+ﬁ+1’)+11) (3.11)

uniformly in f € Fp a,p,B,w and z. The last expression follows from Lemma 2.
For example, if

I = {(m1,...,mq;) : miy = miz,mi3 = miy = ms, the rest are equal} (k 2> 1),
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then, by Lemma 2,

1
2k E Ezﬂmx(z)"’znmzk(z)

n
(ml yeoo s M2k )GI
e 2 3 2k—5
Sﬁ[Ean(a:)ElZ'n,l(m)l Elan(z)l ]

p=k2(+0)+1]
o tatay-2)

=o(nkh;k[2w+:’)+11) (3.12)
uniformly in z and f € F o,p,B,w, a8 nhy, — 0o0. Thus, by (3.10) and (3.11),

6] ] . /2
sup  sup E|f{)(z) - fO ()P = 0([n‘lh;2"”’"‘]p )

feFm,d,p.B,w z
The result follows from (3.9) and the choice of the bandwidth.
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