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Abstract: In the application of large scale econometric models for forecasting, the
single-equation ordinary least squares (OLS) method is often used to estimate pa-
rameters in each model equation. This paper investigates the properties of the
parameter estimates under single-equation estimation methods. Since the distur-
bance of a time series regression model is seldom a white noise process, it is found
that bias is almost inevitable as long as contemporaneous endogenous variables are
present in a model equation. This paper proposes a model identification method
based on reduced form linear transfer function (LTF) models that can avoid or re-
duce bias of transfer function weight estimates under rather practical assumptions.
It is found that forecasts can be greatly improved if appropriate models are identified
and employed.
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1. Introduction

The development and application of time series analysis in econometric fore-
casting has occurred rapidly during the past two decades. In recent years, the
focus in this area has shifted from univariate or single equation to multivari-
ate and simultaneous equation models. In particular, there has been a great
deal of study on dynamic equation systems (Zellner and Palm (1974)), rational
structural form models (Wall (1976)), and vector autoregressive-moving average
models (Tiao and Box (1981), Jenkins and Alavi (1981)).

Despite vast advancements in the development of econometric time series
modelling, “classical” econometric models are still one of the major tools used
by many commercial economic forecasting firms to provide national economic
forecasts. Here we refer to the “classical” econometric models as the simultane-
ous equation systems originally proposed by Tinbergen (1949, 1951) and Klein
(1950), and studied extensively by a number of econometricians. In typical ap-
plications of classical econometric models, a simultaneous equation system often
consists of a set of linear lag regression equations with white noise disturbances.




504 LON-MU LIU

For typical national economic forecasting systems, the number of variables
and equations included in the systems is often large (e.g., ranging from 350 to
44,000 equations, see Chen (1987)). Therefore it is impossible to perform a
joint parameter estimation of the full system as recommended in modern time
series econometric models. Even though the classical econometric model is often
referred to as a system of equations, it is important to note that in typical
applications of large scale econometric models, the use of “system” or “joint
model” comes in at the forecasting stage, rather than at the model estimation
stage. In terms of model estimation, the ordinary least squares (OLS) method is
usually applied to each equation in the system individually. In such a case, a large
system of equations is merely a collection of single-equation linear regression or
lag regression models as far as model estimation is concerned. Since the single-
equation OLS estimates may have serious bias, the accuracy of forecasts based on
such biased estimates is dubious. A number of bias-reduction methods, such as
2SLS, LIML and FIML, have been studied extensively. However, such methods
in practice can only be applied to a small system of equations with white noise
disturbances.

The usefulness of large scale econometric models has been subject to many
criticisms, particularly, the validity of the models and their forecasting perfor-
mance. In this paper we consider an extension of classical econometric models
that may avoid some pitfalls in modelling and improve the forecasting perfor-
mance of the models. In addition, we investigate the issue of tentative model
identification in econometric time series modelling. In almost any statistical
modelling, one major issue is the tentative identification (specification) of the
model. Since the properties of parameter estimates and the accuracy of forecasts
hinge on the assumption that the form of the model is correctly specified, the
importance of model identification is apparent. In this paper, we propose the use
of linear transfer function (LTF) analysis in the identification of a reduced form
econometric model (Liu and Hanssens (1982), Liu (1987)). In the next section,
we provide an overview of classical econometric models and their extensions. The
LTF method is also briefly described in this section. The theoretical properties
of the reduced form LTF estimates are presented in Section 3. In Section 4,
the LTF analysis is applied to a set of simulated time series and a set of actual
macroeconomic time series.

2. Classical Econometric Models and their Extensions

In this section, we briefly outline the framework of classical econometric
models and their extensions in light of time series models. For notational sim-
plicity, we will consider a system of equations that consists of two variables, Y;
and X, where Y; and X; may be inter-related and both can be endogenous vari-
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ables in the system. A general form of a classical econometric model for such a
system can be expressed as -

Y; = Cy + b1(B) X + uyy, (2.1)
X; = C3 + B2(B)Y: + uaq, (2.2)

where B is the backshift operator with BY; = Y;_;, and the transfer functions
B1(B) and B,(B) are linear polynomials of B with finite orders. In classical econo-
metric models, it is often assumed that u;: and uo; may be contemporaneously
cross correlated, but both disturbance processes individually are serially inde-
pendent, i.e., both u;; and uy, follow white noise processes. Occasionally, a first
or second order adjustment is employed in parameter estimation of the model. In
such situations, it implies that the disturbance process follows a first or second
order autoregressive (AR) model. Since the disturbance processes are seldom
white and the transfer functions (TF) may be in a rational rather than linear
form, the model in (2.1) and (2.2) needs to be generalized to (2.3) and (2.4) to
accommodate more realistic situations,

Y;=C1 + ‘;’:((g))xt +uye, U = legg; ay¢ (2.3)
Xi=C1+ %Yt + uge, U = ZZE];; ase (2.4)

where [a1: a2:]' are independently and identically distributed as multivariate
normal N(0, X)), 6;(B)/¢:(B)’s are the autoregressive-moving average (ARMA)
operators of the disturbance term, and w;(B)/6;(B)’s are the transfer functions
(Box and Jenkins (1976)), where

#(B)=1— B~ ¢B* — ... - ¢,BP, (2.5)
6(B)=1-6,B - 6,B*> —... - 9,B?, (2.6)
w(B) = wo + w1B + w;B? + - + w,BY, (2.7)
6B)=1-6B—§B%~...—§B". (2-8)

Here the subscript #'s are omitted for notational simplicity. The model in (2.3)
and (2.4) is also referred to as a rational structural form (RSF) model (Wall
(1976)), or a simultaneous transfer function (STF) model (Liu and Hudak (1984),
Liu et al. (1986)). In general, a k-equation STF model can be written in a
compact matrix form as shown in the literature mentioned above.

In typical applications of econometric models, a large number of equations
may be considered. Ideally, the parameters in a system of equations should
be estimated by using a joint estimation method such as the full information
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maximum likelihood (FIML) method. However, since the number of equations
is large, the parameters are usually estimated by using the single-equation OLS
method. Depending on the form of the model and the extent of serial correlation,
the single-equation OLS estimates of the parameters can be rather biased. More
details are shown in Section 3.

As will be discussed in the next section, the bias of the single-equation
parameter estimates can be greatly reduced if the contemporaneous endogenous
variables are not included in an equation, i.e., the model equation is in a reduced
form. Even though such a reduced form model may not be immediately useful
in the structural analysis of a system, it can be directly employed in forecasting.
When only reduced form models are considered, the wy parameter in the w;(B)
polynomial in (2.7) is restricted to zero.

Identification of a transfer function model: the LTF method

Determining the appropriate form of the models in (2.3) and (2.4) is cru-
cially important. In classical econometric modelling, the specification of a model
is usually based on economic theory. However, in most practical applications
of econometric time series modelling, theory or a priori knowledge of an equa-
tion system may not be sufficient to completely specify an appropriate model, in
particular, the lag structure in a model. In such cases, empirical model identifica-
tion is important. For reduced form STF models, we find that the linear transfer
function (LTF) method proposed in Liu et al. (1986) and Liu (1987) can be used
for tentative identification of a model. The LTF method and its rationale are
outlined here. For convenience of illustration, we shall consider only the reduced
form equation described in (2.3).

There are two basic concerns in the identification of a transfer function
model: (1) the form of the rational polynomials w;(B)/6§;(B); and (2) the form of
the disturbance process, {6;(B)/#:(B)}a;. The main spirit of the LTF method
is to express the transfer function w(B)/6(B) for each input variable in an ap-
proximate linear form as V(B) = v;B + v;B% + --- + v,B* during the model
identification stage. The linear transfer function V(B) has a finite number of
terms and V(B) = w(B) when §(B) = 1. Conversely, V(B) theoretically has an
infinite number of terms when §(B) # 1. The values v;,v;,... are referred to as
the transfer function weights for the related input series. Thus the reduced form
equation for (2.3) can be written in an approximate linear form as

Yt = C1 + ‘/]_(B)Xt + uy4. (29)

Using the model in (2.9), the transfer function weights can be estimated using the
ordinary least squares method, where the length of lag s for each input variable
can be determined by a stepwise vector autoregression analysis (Tiao and Box
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(1981), Tsay (1985)) or chosen judiciously. However, since the disturbance, u¢,
is seldom a white noise process, the least squares estimates of transfer function
weights may be inefficient. In general, the disturbance should not be assumed to
be white noise. In the case of nonseasonal series, a useful first approximation to
4y, is that of a simple autoregressive process, such as an AR(1) or AR(2) model.
For seasonal time series, an initial approximation of the disturbance term may
be a first-order multiplicative model. It is important to note that these low order
AR models are only used during the estimation of intermediate models. Typically
the estimates of transfer function weights are not sensitive to the choice of AR
models. After the linear transfer functions V;(B) are estimated, we can easily
obtain the corresponding estimated disturbance series %,;, and then identify an
ARMA model for %;;. Furthermore, the form of transfer functions w;(B)/é;(B)
can be determined using the corner method based on the estimated transfer
function weights if the weights have a die-out pattern (Beguin, Gourieroux and
Monfort (1980), Liu and Hanssens (1982), Tsay (1985)). However, if the transfer
function weights have a cut-off pattern, it is not required to employ the corner
method.

3. Properties of the Transfer Function Weight Estimates under the
LTF Method

In this section, we study the properties of the transfer function weight es-
timates under the LTF method. We are particularly interested in the cause of
bias in the single-equation OLS estimation and how it can be avoided or reduced.
Without loss of generality, we assume C; = 0 and C; = 0 in models (2.3) and
(2.4). Since all zeros of §;(B) and §,(B) are restricted to lie outside the unit
circle, the reduced form model of (2.3) and (2.4) can be written approximately
as

Y: = Vi(B)X; + uas, (3.1)
Xt =‘/2(B))ft+'u,2t, t= 1,2,... y (32)
where
W(B) = ’01B + ’02B2 + -4 ’U,B", (33)
V2(B) = w;B + w;B? + -+ - + w,B’, (3.4)

where s and £ are sufficiently large integers. Note that the disturbances u;; and
ug: may be serially and cross correlated. Using Z; = [V; X;]' and w; = [u1¢ u2:],
the reduced form model in (3.1) and (3.2) can be written in vector autoregressive
form as

(I -&B~-&,B* —... - $,B")Z, = u;, p=max{s,£} (3.5)
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where the diagonals of the & matrices are all zeros.

Below, we shall focus on the properties of the TF weight estimates for the
first equation of the multivariate model in (3.1) and (3.2). It is well known (see,

e.g., Johnston (1984) and Kmenta (1971)) that the asymptotic bias of the OLS
estimates of the TF weights in (3.1) is

plim(ﬁ - ﬂ) = E;zl Xz ’ (36)
where

B=[nv--v], B=[01% 5],

Yuzr = [714.1:(1) 714.1:(2) . "7141:(3)]’, 7uz(j) = Cov(ult, Xt—j)r (37)

Yo M cee Va1
4! Yo cev Va2
sz = . . .. . y Vi = COV(Xt, Xt—j)‘

Yas-1 Vs-2 ... Yo

Note that in model (3.1), we assumed that it did not include contemporaneous
X: as an input variable. If the contemporaneous X; is included in the model,
the linear transfer function V;(B) in (3.1) can be expressed as

Vi(B) = vo + 1B 4+ v,B? 4+ ... + v,B°. (3.8)

The bias of the single-equation OLS estimates for 3 in (3.8) is similar to that
expressed in (3.6), where

B=[wvivy---v,), B=[B% a5,
Zu:: = ['Yuz(o) 7uz(1) v 7141'(3)]') 7uz(j) = Cov(u1t9 Xt—j)y

and ¥, is an (s 4+ 1) x (s + 1) matrix similar to that in (3.6) except that an
additional v; element is added at the end of each row and column.

From the result in (3.6) and (3.7), it is obvious that if the cross correlations
between u;; and lagged X; can be avoided, then the bias of the TF weight
estimates can be eliminated if a reduced form model is employed. Also, if X, is
in the form of a diagonal matrix (or close to diagonal matrix), then the bias can
be limited to a few isolated lags with cross correlations rather than propagating
themselves to the entire vector of estimates. Below we study the cross covariances
between u;; and X;_;’s.

Expressing the model in (3.5) in its inverted form, we have

(3.9)

Zi=u + Vw1 + Wouy g + -+ (3.10)
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where

V=%, Y=V +P,, ..., and
!pj=Qle‘_l+§2!pj_2+---+¢p!pj_p, if j>2p (W =1).

Using the above results, we can conveniently derive the covariance matrix
E(u:Z;_;) for j = 1,2,...,s. Note that the cross covariances between u;; and
X-;’s are contained in the matrix E(u;Z;_;) where v,5(j) is the (1,2)th ele-
ment of the matrix E(u;Z{_;). If a lagged dependent variable is included in
(3.1), then the cross covariance between u,s and Y;_; is the (1,1)th element of
the matrix E(u:Z;_;).

Now we examine the consistency property of B under certain joint relation-
ships between u;; and uj. First we consider a simple case. Assuming that u;
follows a white noise process with mean 0 and covariance X, we have

E(w:Z;)=X% and E(u;Z;_;)=0 if j>1. (3.11)

By examining (3.7) and (3.9), it is useful to note that (i) B is always consistent
as long as the contemporaneous X; is not included in (3.1); and (ii) if the con-
temporaneous X is included in (3.1), the OLS estimates of the TF weights are
all biased unless o3, = 0.

Reduced form STF models

Under the general formulation of the STF models, it is typically assumed
that u;: and ug; may be serially correlated, but there is no cross-equation rela-
tionships between u;: and uz¢. Assuming that u;; and uz¢ follow ARMA processes
described in (2.3) and (2.4), we can express u; in a special vector MA model as

u;=(I—- AB-A;B? —...— A,B%)a, (3.12)

for sufficiently large ¢, where the A;’s are diagonal matrices containing the psi-
weights of u;¢ and uy; as their diagonal elements. It can be shown that

E(uZ_;)=Y; + YW + Yipa¥h + -+, j=0,1,2,..., (3.13)
where
YA BAL =0 (4o = -T)
Y= E(u_j)={ & T 7= 0t o= (3.14)
0, ji>q.

From the above result we see that serious bias will occur as long as uy; is auto-
correlated. However if uy; follows a white noise process (regardless of the process
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for uy¢), then the A; matrices in (3.12) have the following form

«

0 0 .
Aj=[0- *]’ i=12,...,q, (315)

where “x” represents a nonzero value. Under this special case, the X; matrices
(4 2 1) in (3.14) also have the same form as A;’s. Therefore the first row of the
covariance matrix between u; and Z;_; (j > 1) is a zero vector. Since y,4(J) is
either the (1,2)th or the (1,1)th element of the matrix E(u:Z;_;), it is obvious

that 7,z(j) = 0 for all ;7 > 1 in this special case. Therefore, the estimate ﬁ
is consistent as long as u;; is white noise and the contemporaneous X; is not
included in the linear transfer function model. It is also worth noting that if u;;
is not a white noise process, the seriousness of the bias is dependent upon the
extent to which u;; is autocorrelated.

In general, u;; may not be a white noise process. However, we may filter both
Y: and X; by the disturbance model of the first equation, that is ¢1(B)/61(B).
Thus the models in (3.1) and (3.2) become

¥t = Vi(B)z¢ + axy, (3.16)
z¢ = Va(B)y: + %%—%%%azt, (3.17)

where y: = {¢1(B)/61(B)}Y: and z; = {¢1(B)/61(B)}X:. With this reformula-
tion, the single equation TF weight estimates of (3.16) are unbiased.

From the above results, we demonstrate that filtering all variables in an
equation by the same ARMA model of the disturbance term will result in consis-
tent estimates if no cross-equation MA terms are present or will at least reduce
the bias of the estimates if cross-equation MA terms do exist. In applying the
above result, we need only include an appropriate ARMA model for the distur-
bance in each equation instead of actually prefiltering the series. However since
the true disturbance model for an equation is usually unknown, it is necessary
to begin the analysis with an approximation. As shown in the above derivation,
the LTF method outlined in Section 2 can be employed in the identification of
reduced form STF models.

In a more complex situation, u; in (3.5) may follow a vector MA(g) process
to allow for cross-equation MA relationships. Following similar derivations to
those shown above, it is easy to see that bias may occur in such a situation.
However, it can be shown that bias may be reduced if an appropriate ARMA
model is employed in each equation during the estimation of transfer function
weights.

In using the LTF method, it is recommended that simple AR models be used
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to approximate the model of the disturbance term. This is partially due to the
fact that most real-life economic time series are highly autocorrelated; thus AR
filters will improve the diagonality condition of the X, matrix, while MA filters,
in general, will degrade such a condition of this matrix. From the result in (3.6),
we see that X'y, is another contributing factor in the bias. If X, is diagonal
(i-e., X; is white noise), then the bias can be limited to only a few isolated lags
and more desirable estimates will be yielded.

4. Application of the LTF Method on Simulated and Actual Examples

In this section we illustrate the application of the LTF identification method
using simulated and actual data sets. For the simulated data set we intentionally
use a simpler system of equations for the sake of clarity. The actual data set is a
collection of macroeconomic time series of Taiwan, Republic of China (R.0.C.).
We use this set of time series to illustrate the practical use of the LTF method
and the importance of model identification in forecasting.

4.1. Simulated example

In this simulated example, we consider three time series. The first two time
series Yy: and Y3; follow the STF model listed bellow:

},u = 0.8},2“__3) + (1 - 0.6B)a1t (41)
Ya: = 0.7Y3(¢-1) + (1 — 0.7B*)ay; (4.2)

ae 1.00 0.60 _ _
[‘12:] N(o’[0.60 1.44]), t=1,2,...,n and n =100.

In the above model, both Y;; and Y3; are endogenous, and Y;; possesses slight
quarterly seasonality. In addition to Y;; and Y3, an unrelated series Ya; is
simulated according to the following ARMA(1,4) model

(1-0.7B)Y3; = (1 - 0.8B*)as;, aa; ~ N(0,1.00). (4.3)

We are interested in (i) whether the LTF identification method can reveal that
Y3 is an unrelated variable with respect to Y;; and Yy, in both directions; and
(ii) whether the lag structure in each equation can be correctly identified.

Before employing the LTF analysis, it is helpful to know an appropriate max-
imum lag order (s) to use in the LTF models. We may employ vector AR models
and the stepwise autoregression analysis discussed in Tiao and Box (1981), Tsay
(1985) and Liu et al. (1986) to obtain such information. The M(£) statistics
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(Tiao and Box (1981)) for vector AR(1) to AR(8) models are listed below:

Model AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7) AR(8)
M(¢) 66.66 2650 69.65 51.66 30.57 9.07 20.11 10.81
Critical values for x3 : 16.9 for 5%, 21.7 for 1% (upper tail)

The above M(£) statistics suggest that a vector AR model of order 5 to 7 may be
an appropriate approximation of the STF model to be identified. When AR(5),
AR(6) and AR(7) models are fitted, the estimated models clearly indicated the
first two time series are inter-related. However, the estimated models fail to
indicate that Y3; is an unrelated variable in the system since there are non-
zero off-diagonal elements in the third rows and the third columns of the AR
matrices. In general, the usefulness of stepwise autoregression analysis decreases
as the number of series included in the system increases. Extensive discussion of
this topic can be found in Tiao and Tsay (1989) and Tsay (1989).

The LTF Method

Based on the results in stepwise autoregression, we may employ the maxi-
mum lag order of 7 in the LTF analysis. However, since the TF weights at lags
6 and 7 are all insignificant, we shall present the results based on the maximum
lag order of 5. In the first step of the LTF estimation, an AR(1) disturbance
model is used for all three equations. In examining the sample autocorrela-
tion function (ACF) and partial autocorrelation function (PACF) of the dis-
turbances of the above three equations, it is found that the disturbance model
can be better approximated by (1 — ¢, B — ¢3B?)~1a; for the Y;; equation, and
(1 — ¢1B)™1(1 — ¢2B*)1q, for the Ys; and Ya; equations. The estimates of the
TF weights under the revised disturbance models are listed in Step 1 of Table
1. From the estimates and their ¢-values in this table, it is clear that Y5, is not
influenced by Y3, and Y3; is not influenced by Y;;. After eliminating unrelated
variables and insignificant lags from each equation, we obtain the estimates of the
TF weights in Step 2 of Table 1. From the results in Step 2, it is clear that Y;; is
not influenced by Y3, and Y3, is not influenced by Y, also all lag structures in
the Y1; and Y3; equations are correctly identified. Examining the sample ACF,
PACF, and extended autocorrelation function (Tsay and Tiao (1984)) of the dis-
turbance term for each equation, we find that the disturbance models of Y1, Yo
and Y3; equations are the same as those in the simulation models (4.1)-(4.3).

In this simulation example, it is found that we have correctly concluded
that Y3, and Y;; are not influenced by Y3;, and Ya; is not influenced by Y1: and

Y;:. Furthermore, the lag structure and disturbance model in each equation are
correctly identified.
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Table 1. Estimates and t-values of the transfer function weights
using the LTF method: the simulated data

Step 1: Estimation using all lags between 1 and 5

Variables Transfer function weights and their ¢-values (in parentheses)
Output Input C v v v3 V4 vs h &2
Y Y, -.03 .09 -.19* .80* .18*  —-.11 -.60* —.46*
(63) (1.34) (2.62) (12.42) (2.49) (1.70) (6.28) (4.31)

Ys a1 —-.32* .36* -17 —.01

(1.38) (2.65) (3.00) (1.51) (.08)
Y Y .03 .53* -.11 —.02 -.13 .08 .06 —.47*
(.36) (5.64) (1.61) (.32) (1.87) (.95) (.12) (8.57)

Y3 .01 -.20 .13 .01 —-.11

(12) (L74) (1.07) (.07) (1.12)
Ys Y1 —.26 A1 —.16 —.06 -.18 -—-.01 .55%* —.45*
(1.51) (.99) (1.05) (.50) (1.57) (.15) (6.32) (4.80)

Y, .22* .14 .29* -02 -.00

(2.01) (1.18) (2.29) (.11) (.02)

Step 2: Estimation using possibly significant lags only

Variables Transfer function weights and their t-values (in parentheses)
Output Input C v vy vs v4 vs N ¢2
i Y. -~.02 - -.13 .84* 10 —— —.63* —.34°
(.34) (1.97) (11.69) (1.51) (6.44) (3.37)
Ys - -~.07 07 -_ ——
(1.27) (1.19)
Y Yi .05 .65* - - —— —— .06 -.51*
(.57) (11.81) (.60) (5.58)
Ys Y> -~.22 .03 .10 .04 ——  ——  .55* —.42*
(1.18) (.51) (1.40) (.66) (6.37) (4.51)

(*) The asterisk indicates that the estimate is significant at 5% level

1.00
Correlation matrix of the residual series: X = [ 0.32 1.00 ] .
0.14 0.06 1.00

4.2. National economic time series of Taiwan, R.O.C.

In this section, we study a macroeconometric forecasting system employed by
the Directorate General of Budget, Accounting and Statistics (DGBAS), R.0O.C.
We shall use this study to illustrate the problems with the inclusion of contem-
poraneous input variables in the identification of a transfer function model and
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their effects on the forecasting performance of the model.

Following the methods developed by Klein (1950) and Wharton Econometric
Forecasting Associates (WEFA (1986)), a macroeconometric model consisting of
26 behavioral equations and 42 definitional equations has evolved over a period of
20 years. The sixth revision of this forecasting system (DGBAS (1987)) contains
83 variables, including 68 endogenous variables and 15 exogenous variables. The
data used in this study began in the first quarter of 1968 and ended in the
fourth quarter of 1988, a total of 84 observations for each variable. Among the
84 observations in each series, the first 72 observations will be used for model
identification and parameter estimation. The last 12 observations will be used
solely for the comparison of the forecasting performance of the models. One
of the most important applications of this econometric model is to forecast the
quarterly economic time series of Taiwan.

Among the 26 dependent variables in the behavioral equations of the
DGBAS model, we shall only include 12 of them in this study. For the variables
excluded in the study, nine of them are price deflation variables, two of them are
tax variables, and three other variables are not easily interpretable. Since the
wholesale price index (WPI) and consumer price index (CPI) are included in the
study, the behavior of these two variables is representative for other price index
variables excluded from this study. The tax variables are not included in the
study due to the irregular variability of their seasonal patterns, which is mainly
caused by changes of tax regulations. For convenience of reference, the abbrevia-
tions and definitions of the 12 dependent variables and their relevant explanatory
variables are listed below. The time series plots for the 12 dependent variables
(original series) are shown in Figure 1. Note that for the variable D, the data
were available beginning in the first quarter of 1977 (instead of 1968). Also, the
variable CF had a substantial different seasonal pattern prior to the first quarter
of 1976; hence, this portion of the data is not included in the analysis. As shown
in the time series plots, all the series to be studied are nonstationary and possess
strong seasonality (except for WPI and CPI). Since the series CO, IBF, M, X,
and MON have greater variability over time, logarithmic transformed data will
be employed in this study.

Dependent variables

CF Food consumption expenditure, in constant million NT$ (NT$: new
Taiwan dollar)

CcoO Nonfood consumption expenditure, in constant million NT$

IBF Gross fixed capital formation in private sector, in constant million
NT$

D Provision for domestic fixed capital consumption, in constant million
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Figure 1. Plots of DGBAS economic time series (1/1968 — 4/1988)
NT$
DBF Provision for fixed capital consumption in private sector, in constant
million NT$
M Imports of goods and services, in constant million NT$
X Exports of goods and services, in constant million NT$

MON  Money demand, in constant million NT$, defined as:
MON = MON$/PGDP*0.01
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U Unemployment rate

NF Labor force, in million persons

WPI  Wholesale price index in Taiwan area, R.0.C. (1981=100)
CPI Consumer price index in Taiwan area, R.0.C. (1981=100)

Relevant ezplanatory variables
DUM63 Dummy variable for indication of data after 1974
E Foreign exchange rate (NT$/US$)
GDP  Gross domestic product, in constant million NT$
GNP Gross national product, in constant million NT$
IR Rediscount rate of CBC (The Central Bank of China, R.0.C.), aver-
age rate per annum
KBF Fixed capital stock on private sector, in constant million NT$

N Population in Taiwan area, R.0.C., in million persons
PDT  Per capita productivity, defined as: PDT = GDP/NE, NE=NF(1 -
010)

PGDP* Changes in implicit price deflator of GDP, defined as
PGDP* = (PGDP — PGDP(-4))/PGDP*100%
PM Implicit price deflator for imports of goods and services
PWM Index of average monthly earnings per manufacturing employee
PX Implicit price deflator for exports

Q1 Dummy variable for the first quarter of each year
Q2 Dummy variable for the second quarter of each year
Q3 Dummy variable for the third quarter of each year

QF Potential GDP estimated by trend-through-peak method
T™W World trade quantity index
YDD  Disposable income, in constant million NT$

The regression models to be considered in this study are based on the sixth
revision of the DGBAS quarterly macroeconometric models (DGBAS (1987)).
Similar to most macroeconometric models, the variables included in each equa-
tion are mainly based on economic theory rather than empirical evidence. The
validity of these regression equations remains to be examined; however, this is
not the main focus of this study and we shall assume that the variables included
in each equation are appropriate. In the following analyses, we shall examine
whether the explanatory variables in each equation are useful in improving the
forecasting accuracy. The 12 regression models to be studied are listed below.
In the original formulation, all these regression models are in simple linear form
with white noise disturbance. It is important to note that most of the regression
models include a number of contemporaneous explanatory variables which may
cause biases in single-equation model estimation, as discussed in Section 3.
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(1) Food consumption expenditure (CF)
El: CF = f(YDD,CF_4,Q1, Q2, Q3)

(2) Nonfood consumption expenditure (CO)
E2: £n(CO) = f(£n(YDD),£n(CO_-;),Q1, Q2, Q3)

(3) Gross fixed capital formation in private sector (IBF)
E3: £n(IBF) = f@n(X_1),€n(X_s), n(GDP/QF), tn(IR—PGDP*), Q1,Q2,Q3)

(4) Provision for domestic fixed capital consumption (D)
E5: D = f(GDP)

(5) Provision for fixed capital consumption in private sector (DBF)
EG6: DBF = f([KBF_y + KBF_,]/2,Qs, Qz,Qs)

(6) Imports of goods and services (M)
E7: in(M) = f(£n(X),€n(X_1),¢n(E),fn(E_;), n(PM/WPI))

(7) Exports of goods and services
E8: £n(X) = f(£n(TW),{n(E), {n(PX/WPI), In(M_;),£n(X_4))

(8) Money demand (MON)
E9: £n(MON) = f(¢n(GNP), £n(IR))

(9) Unemployment rate (U)
E10: U = f(GDP/QF,PWM/PDT,U_,Q1, Q2, Q3)

(10) Labor force
Ell: NF = f(N,PWM/PDT)

(11) Wholesale price index (WPI)
E15: WPI= f(PM,PWM/PDT, DUMS63)

(12) Consumer price index (CPI)
E16: CPI = f(WPI_,,GDP/QF,MON_, /GDP)

Criterion of Model Performance
To evaluate the performance of different models, we shall employ the root
mean squared error (RSME) for within-sample and post-sample of each equation.
The RMSE is defined as
1« o 211/
RMSE = {; Y (v - Y } (4.4)

t=1

where Yt is the fitted or predicted value of Y; based on an estimated model,
and m is the number of observations used in the computation. According to
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the definition of RMSE, the within-sample RMSE is an estimate of the standard
deviation of random errors if the parameter estimates of the model are unbi-
ased, and the post-sample RMSE is a measure of forecast performance using the
estimated model.

Results of the analysis

In this study, we shall examine the model performance of classical regression
models, structural form transfer function models, and reduced form transfer func-
tion models. We shall also employ univariate autoregressive-integrated moving
average (ARIMA) models for the analysis of each dependent variable. The anal-
ysis based on ARIMA models is useful since ARIMA models can be regarded as
baseline models to which other more complicated models can be compared with.
The results of model performance for different classes of models are summarized
in Table 2. In this table, the term “relative RMSE” represents the RMSE of
a particular model divided by the RMSE of its corresponding ARIMA model
for the same sampling period. Therefore, if the relative RMSE is less than 1,
it implies that the model has a smaller RMSE than its corresponding ARIMA
model, and vice versa. Below we list the ARIMA models that we have developed
for the 12 dependent variables (the values within the parentheses are t-values,
and the operators V=1-B and V,=1-B*%).

(1) (1 -.700B)V,CF; = 1214.893 + a4, Gs = 1053.90
(5.84) (2.42)

(2) (1-.799B)V{n(CO;) = .0172 + ay, 5. = .0168
(10.58) 2.48

(3) (1 — .432B)V, ¢n(IBF;) = .0479 4 (1 — .586B%)a,, G, = .1437
(3.77) (3.85) (5.58)

(4) VV4D; = (1 — 414B%)ay, 7, = 842.65

(3.77)
(5) VV4DBF; = (1 - .937B%)a;, G, = 827.53
(10.38)

(6) (1—.742B)V4fn(M;) = .0269 + (1 — .444B*)a,, G, = .1036
(8.56) (2.23) (4.44)

(7) VValn(X;) = (1 - .268B)(1 - .787B%)a;, G, = .1059

(2.27) (12.07)

(8) (1 —1.372B + .520B%)V4£n(MON;) = .0192 + (1 — .587B*)a;, 5, = .0394
(13.02) (—4.76) (2.80) (5.14)

(9) (1 - .813B)V,U, = (1 - .713B%)a,, G, = .3575
(10.15) (7.45)
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(10) (1 — .699B)V4NF, = .0596 + (1 — .640B*)a,, G, = .0712
(7.96) (3.32) (6.54)

(11) (1 — .494B)VWPI; = a;, Gs = 2.1532
4.74

(12) (1 — .644B)VCPI, = a,. G, = 1.5990
(7.09)

Table 2. The within-sample and post-sample RMSE’s for ARIMA,
white-noise regression and transfer function models

Relative RMSE’s
Del_)endent ARlixiEltlooc:els . Reduced form Structural form
variable Regression models TF models TF models
Within- Post-samplelWithin- Post-samplejWithin- Post-sample/Within- Post-sample
sample (1/86-4/88)|sample (1/86-4/88) [sample (1/86-4/88)|sample (1/86-4/88)
1.CF 1053.9004 1283.0806 .99 1.98 1.00(a) 1.00 17 3.02
2.6n(CO) .0168 0176 1.44 211 [1.00(a) 1.00 [1.00(a) 1.00
3.Ln(IBF) .1437 0774 121 7.83 |1.00(a) 1.00 .84 5.26
4.D 842.6536 721.1655] 2.86 3.95 1.00(a) 1.00 1.00(a) 1.00
5.DBF 827.5281 1284.3933 .94 3.77 1.00(a) 1.00 1.00(a) 1.00
6.4n(M) .1036 .0607 .70 3.87 .83 1.26 .66 2.10
7.8n(X) .1059 .0556 1.05 9.85 1.00(a) 1.00 .69 3.05
8.£n(MON) .0394 .0459 1.63 4.97 1.01 1.20 .78 1.21
9.U .3575 .2556 .90 .74 .93 1.08 .93(b) 1.08
10.NF .0712 .0592 1.66 3.86 [1.00(a) 1.00 [1.00(a) 1.00
11.WPI 2.1532 .8713 .94 5.60 1.00(a) 1.00 .59 2.68
12.CPI 1.5990 1.7323 1.79 2.68 .87 .88 .69 .99

(a) The model is the same as the ARIMA model for the dependent variable.
(b) The model is the same as the corresponding reduced form transfer function model.

Based on the results in Table 2, we find that classical regression models have
rather poor performance for both within-sample and post-sample periods, despite
the fact most of their regression coefficients are highly significant. This is not
surprising since the disturbances of these models are assumed to be white noise,
though in fact they are highly serially correlated (Box and Newbold (1971)).
This result confirms the point we showed in Section 3 that the potential bias
for the regression coefficients of contemporaneous explanatory variables can be
great if the disturbance term is serially correlated and contemporaneous terms are
included in the model. To alleviate the serial correlation, we include an AR(1) x
AR(1), disturbance model (or an AR(1) model if the variable does not have
seasonality) in each regression model. With such a modification, the performance
of the regression models is improved, but it is still substantially worse than that
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of their corresponding ARIMA models, particularly if we compare the RMSE’s
for the post-sample period.

Model identification using the LTF method

To obtain more appropriate transfer function models for each dependent
variable, we employ the LTF method outlined in Section 2 in the identification
of transfer function models. Both the reduced form and structural form models
are studied for each equation. In the application of the LTF analysis, we find it
is necessary to seasonally difference (V4) most of the variables, except for WPI
and CPI The variables WPI and CPI require regular differencing. If appropriate
differencing is not employed during model identification, we find that the final
models tend to include spurious explanatory variables, particularly for the struc-
tural form models. In the application of the LTF analysis, the maximum order
of lags for each explanatory variable is typically set to 5, and reduced to lower
orders as the analysis proceeds. Based on the LTF analysis, we find a number
of transfer function models degenerate to ARIMA models. Below we list the
equations that have either the reduced form or structural form models that are
different from ARIMA models. The models listed under (a) are reduced form
models, and those under (b) are structural form models. The relative RMSE’s
for within-sample and post-sample are also listed in Table 2.

(1) Food consumption expenditures (CF)
(a) Same as the ARIMA model
(b) V4CF¢ = (107 + 056B)V4YDDt + a; Ga = 810.46
(6.89) (3.56)

(3) Gross fixed capital formation on private sector (IBF)
(a) Same as the ARIMA model

(b) V4ln(IBF;) = .1785 + (—.000006)V4fn(X;) + 2.517V4£n(GDP,/QF)

(8:20)  (—4.63) (4.80)
+(.614 — .629B)V¢n(IR; — PGDP}) + (1 — .549B%)a;, 5, = .1202
(2.62) (~2.41) (4.96)

(6) Imports of goods and services (M)
(a) Vatn(M;) = .731B*V,fn(X,) + (1 - .762B*)/(1 — .502B)ay, 5, = .0857
(16.98) (8.85) (4.54)
(b) Viln(M;) = .724V4€n(X,) + (~1.704B)V,en(E,)
(24.45) (=5.17)
+(1 - .637B4)/(1 — .256B)as, 5q = .0681
(6.59) (2.52)

(7) Exports of goods and services (X)
(a) Same as the ARIMA model
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(b) Vibn(X:) = .0256 + .554V4£n(TW,) + (1.872B)V4ln(E,)
(2.61) (3.44) (4.19)
+(.482B)V 4£n(PX;/WPL,) + 908V 4fn(M,)
(2.30) (9.33)
+(1 - .716B4)/(1 — .244B)a, 6, = .0735
(7.18) (2.38)

(8) Money supply (MON)
(a) Viln(MON;) = 1202 + (—.320B)Vln(IR:)
(4.89) (~4.55)

+(1 — .610B%)/(1 — .913B)a,, G, = .0398
(5.11) (15.03)

(1.28) (4.72) (—7.40)

+(1 — .547B*)/(1 — .929B)a., 7, = .0306
(4.49) (15.93)

(9) Unemployment rate (U)
(a) V4Ut = (—7.741B2)V4(GDPt/QFt) + (1 - 518B4)/(1 - .753B)at,
(—3.65) (4.02) (8.05)
o, = .3338
(b) Same as the model in (a)

(11) Wholesale price index in Taiwan area (WPI)
(a) Same as the ARIMA model
(b) VWP, = (6350.78 + 7954.04B + 3968.81B2)V(PWM,/PDT,)

(3.27)  (3.07) (2.03)
+11.551VDUM63; + 1/(1 — .620B)a;, .= 1.2669
(10.30) (6.11)

(12) Consumer price index in Taiwan area (CPI)
(a) VCPI, = (.336B + .138B2 + .305B3)VWPI,
(4.34) (L61) (3.75)

+(7.243B%)V(MON,_; /GDP;) + aq, 5, = 1.3759
(3.52) ,
(b) VCPI; = .552VWPI, + 1/(1 — .518B)a;. G, = 1.1059
(8.99) (5.09)

The analyses shown above reveal several interesting points that are worth
further discussion:
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(1)

(2)

(3)

(4)
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When the LTF analysis is employed, a number of transfer function models
degenerate to ARIMA models. In particular, this is true when reduced form
models are employed. This result indicates that the association between
the explanatory variables and the dependent variable is not as strong as the
original hypotheses of the models suggested (or what the classical regres-
sion models indicated). This is not too surprising if we take the economic
environment of Taiwan into consideration. Taiwan has a highly regulated
economy. However, due to its tremendous foreign trade and exports, Tai-
wan has very high but volatile growth in its economy. A number of foreign
and domestic events also have had important impacts on Taiwan’s economy.
All these factors contribute to major disturbances which might weaken the
potential relationships between the dependent variables and their explana-
tory variables. As the free economic environment becomes more mature and
the political situation becomes more stable, we may find transfer function
models more useful in modelling Taiwan’s economic time series.

For a few of the reduced form transfer function models that are different from
ARIMA models, we find the post-sample RMSE’s of these models are slightly
larger than the RMSE’s of their corresponding ARIMA models (except for
CPI), despite the within-sample RMSE’s for these models are smaller than
the ARIMA models (see Table 2). This is probably due to the fact that the
economic and political conditions changed greatly during the post-sample
period (1986-1988) and the historical relationships between a dependent
variable and its explanatory variables may not be directly extendable to
the evolving environment. Unlike transfer function models, ARIMA models
seem to be more adaptive and are able to track the short term behavior of
the time series better.

By comparing the within-sample and post-sample RMSE’s between the
structural form and reduced form TF models shown in Table 2, we find that
even though we are able to obtain structural form TF models with smaller
within-sample RMSE’s, their post-sample RMSE’s are much worse than
their corresponding reduced form TF models. This phenomenon demon-
strates that the bias caused by serially correlations and the inclusion of
contemporaneous explanatory variables is probably quite substantial. This
result confirms the theoretical proof in Section 3 and demonstrates the use-
fulness of the reduced form TF models in forecasting practice.

In model building we often focus on the reduction of the within-sample
RMSE in model selection. In this study, we find that a model with smaller
within-sample RMSE does not always yield smaller post-sample RMSE. As
pointed out in (3), bias in the estimates of model parameters may produce
an under-estimated standard error for the model. This biased standard error
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can be misleading in model selection and forecasting.

5. Summary and Discussion

In this paper, we propose the use of the LTF analysis in the identification of
a reduced form transfer function model. By using the reduced form LTF mod-
els, we demonstrate that consistent estimates of the transfer function weights
can be obtained under rather practical assumptions. On the other hand, when
contemporaneous endogenous variables are included in the models (i.e., under
structural form models), it is rather difficult to avoid bias in parameter esti-
mates using single-equation estimation methods. However, many well-known
econometric models are formulated based on structural form models. Estimation
of such models using single-equation methods undoubtedly will result in models
with rather poor performance. The analysis of the DGBAS macroeconomic time
series provides rather insightful evidence for such problems.

There are a number of basic issues that need to be addressed in the appli-
cation of large scale econometric models. One of the basic issues is the purpose
of modelling. Traditionally, an econometric model is expected to serve two pur-
poses: (1) to represent the underlying relationships among the variables in an
economic system, and (2) to provide accurate forecasts. It is important to realize
that typically it is much more difficult to address the first goal than the second
one. In order to address the first goal, it is necessary to employ an equation
model that may contain contemporaneous endogenous variables. Since it is diffi-
cult to avoid biased estimates as long as contemporaneous endogenous variables
are included in a model and single-equation estimation methods are used, it is
advisable to separate the goal of structural analysis from forecasting. In terms
of forecasting, a reduced form model is appropriate to use. In a reduced form
model, we intentionally avoid the use of contemporaneous endogenous variables
and thus avoid bias if serial correlations in disturbance terms are appropriately
taken care of.

In addition to the bias problem, another common pitfall in classical econo-
metric modelling is the mis-specification of models, for example, the inclusion
of an incorrect lag structure or wrong variables. Careful analysis of the reduced
form models of the system can help eliminate such problems. Thus, building
a reduced form model does not only produce a sound model for forecasting, it
can also serve as an intermediate step toward structural form modelling. More
details are discussed in Hanssens and Liu (1983) and Liu and Hudak (1984).
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