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ON THE DISTRIBUTION OF THE MULTIPLE
CORRELATION COEFFICIENT AND THE KINKED
CHI-SQUARE RANDOM VARIABLE

John Gurland and Osebekwin Asiribo

University of Wisconsin

Abstract: In a previous article (Gurland (1968)), a relatively simple form of the
distribution of the multiple correlation coefficient R was presented in the form of a
mixture of scaled Beta distributions; and an approximation of the distribution was
suggested in the form of a scaled F distribution. In a subsequent article (Gurland
and Milton (1970)) other representations of the distribution of R were presented and
investigated. In the present article the role of the “kinked x*” distribution in this

problem is emphasized, to yield other possible representations of the distribution
of R.
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modified chi-square distribution.

1. Introduction

Let X be a p-dimensional random vector with non-singular covariance ma-
trix ¥ = [0y;]. With no loss of generality we consider the multiple correlation

coefficient
- SuSnta Y o
R1.23...p = (uTzliz'l) —_-R,
say, where
Y= [211 212] . Tn=on
- ]
X E22 Y12 = [0120’13 ces Ulp].

Let [X;o] be a p X N random sample from the above distribution and

N
S nann] [ 21

a=1

— N
where X,‘ = % E X,‘a, Au = aii and A12 = [a12a13...a1p]. The sa.mple
a=1
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multiple correlation coefficient is defined by

1

Ay A Ay \ M2
Ry23.p = (—-————12 a:i 21) = R, say.

It has been shown (Gurland (1968)) that if X has a p-variate normal dis-
tribution, then U = R?/(1 — R?) is distributed as a ratio Y; /Y, of independent
random variables with characteristic functions

(1 — 24t)*

by, (t) = 0= 2iat)™ by, () = (1 - 2it)™*

where

M = e——— = . = 0: .
g v =T 8 7 TR

Hodgson (1968) has noted that U is distributed as
(‘/5XN_1 +Z¥+ x5,

3
X2k

(1)

where x, x? denote chi, chi-square random variables, respectively, with degrees
of freedom as indicated, and Z is a standard normal random variable. All the
random variables appearing in (1) are independent. It can be shown (Lee (1971))
that the numerator in (1) is distributed as the random variable Y; above with
characteristic function as indicated. A particular case of (1), with p = 2, given

by
T :;l—pQXN—l + z

Vi1 XN—2

was presented by Elfving (1947) and Ruben (1966). Here 7 and p are the sample
and population correlation coefficients, respectively, in a bivariate distribution.

From the characteristic function ¢y, or from the numerator of (1) it is clear
that Y; reduces to a xf,_l random variable when § = 0 (R = 0). Y; is an
interesting random variable per se; and for convenience we shall refer to it here
as a “kinked x2”, in which the kink may be regarded as 6x N_1® When this kink
vanishes (6 = 0) the distribution of Y; is that of x2_;.

The purpose of this paper is to present various expressions for the distribu-
tion of Y7, and hence for that of R.

2. Various Representations of the Distribution of Y; (kinked x?)
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Some forms of the distribution developed by Gurland (1968) and Gurland

and Milton (1970) are recapitulated here for convenience in the following Sections
2.1 and 2.2.

2.1. Finite series representation for the case k a positive integer

As in Gurland (1968) we can write

p=1 k i
by, (1) = (T_l_m;) (%)k J};.% (j) (1 —02iat) ’

Hence, the distribution functions Fy,, Fyy are given by

k
Fy,(z) =Y bjF_142i(z/a) (2)
=0
k
Fy(z) = Eb,-F -1+25,2k(z/a) (3)

where b; is the binomial coefficient

()

Here F, denotes the distribution function of x2 and F,, ., that of a ratio of

independent random variables x2 /x2,. The distribution function Fg is readily
obtained from the relation

Y (fays. @)

z2

Fr(z) = Fpa(z?) = FU(I z zz)' (5)

For the case k a positive integer, Fisher (1928) has also developed a finite
series for the distribution of R. Although the series is finite, each term in it is
a hypergeometric function. For computational purposes the series (3) above, in
conjunction with the relations (5), is much simpler.

2.2. General family of series expansions for Fy,;(z) in scaled x? distri-
bution functions

According to Gurland and Milton (1970), the characteristic function of the
kinked x? random variable can be expressed as

by (8) = “’z) Zc 2 (6)
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where
1 i oo vri-r, N-podd .
eI o 9T min(j,k) 1=0,1,2,...;
¢ 21-:0 ' '01'6_1'—1'7 N—p even

s (o= ()0

The series in (6) converges for b satisfying 0 < b < 2 and 0 < b/a < 2. Term by
term inversion of this series yields a mixture of scaled x? distributions for the
distribution function of Yi:

-1l oo

b3 ,
Fy,(z) = = Y ciFp_142i(2/b).
i=0

As in Section 2.1, the distribution functions of U and R follow readily. The
effect of various choices of b, in the above series, on computing the distribution
function of R has been examined by Gurland and Milton (1970). For k an integer
the optimal choice is b = a; but for k fractional the optimal choice appears to
be b = a when R < 1/2 but b = 2 when E > 1/2. The case b = 1 is also
interesting in that the coefficients in the series are probabilities of a negative

binomial distribution, but this series converges more slowly than for the above
choices indicated.

2.3. Finite series of confluent hypergeometric functions for fy,(z) when
k fractional (N odd, p even) or (N even, p odd)

The characteristic function of the kinked chi-square random variable Y; can
be written as

¢Yl(t)=(1—2it)k+%( 1 )L;—’( 1 )1/2

1 — 2iat 1 — 2iat 1 -2t
k+3 L p—2
1 it+E= 1 1/2
= b —— 7
> () () g

where b’ is the same as b; in (4) but with k replaced by k + 1/2. Let W; =

ax3_s42; + X3, a weighted sum of independent chi-square random variables as
indicated. Then (7) can be written as

k+1

by, (1) = 3 Bidw, (1) (8
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where ¢W,, is the characteristic function of W;. From Erdélyi (1954)

e~ BT putv—1

1 [ . . :
o /_ By - it) e dt = — o)

1Fa{v,v + p, (8 - 7)z},
z>0, Rey>0, Re(p+1)>n,

where 1 F; is the confluent hypergeometric function. This function has series
representation

— (0); 27 c#-m, (b)j=bb+1)---(b+j-1),
F ba7 = TN
A= L@ meor,

convergent for all z. Consequently the p.d.f. (probability density function) of
W; is given by

1 e —itx
fw;(z) = o= [_oo ¢W,~ (t)e " *dt
1 \i+252 e=2/(20) zi+(p-1)/2 1 .. p-1 a-1
B e e

Thus, by inversion of (8), the p.d.f. of the kinked x? random variable ¥; can be
expressed as

k+3

. 1 -1 a-1
_ E o—T/(20) 1 i+(p—1)/2 2o P
le(x)— d]e z 1F1{27.7+ 9 2% z}

j=0
where d; = b_',-(2a)‘(j+r;_2) [vV2r(; + L;l)]_l'

2.4. Expression for fy;(z) in terms of a single confluent hypergeometric
function

The Laplace transform of Y; can be written as

g _ Q+2p)F
[) e’ P fyl(.'t)dit— (1—+2—&‘1-)—)—h'

From Erdélyi (1954) the inversion of the Laplace transform

/oo f(2)e™P?dz = T(2v - 2X)(p — @) (p — B)™%", Re(v-— 1) > 0,
0
yields

f(z) = 2?12, |1 {20,20 — 2),(8 — a)z}, z > 0.
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Thus

A a-1
—- 2 = ph—k-1_,-z/2 —f — =
fri(z) = T(h = k)z e 1F1{h,h k, 52 z}, z > 0.

Application of Kummer’s relation 1 Fy(c,d, 2) = e*1 Fi(d — ¢,d,—z) and further
simplification results in the representation

~1
%a,—h

fri(z) = 2—;(—L__T

z(p—3)/2e—$/(2a)1Fl{ —k,h—k, —22—;—11:}, z>0.
2

For k a positive integer this yields a finite series of scaled x? distributions, and for
k fractional, an infinite such series. This leads accordingly to a finite or infinite
series of scaled Beta distributions for the distribution of R.

3. An Approximation to the Distribution of R Based on Moments of Y;

In Gurland (1968) the approximation Y; & gx?. was suggested, by equating
the first two moments of both sides. Thus

ha® — k 2(ha — k)?
" ha-k’ f= ha? —k ° )
Then the approximation
2
v~ 22 (10)
X2k

is applied to compute approximate values of Fr(z) by utilizing the relation in (5).
This approximation apparently works rather well as evident from the numerical
investigation by Gurland and Milton (1970).

A further approximation can be obtained by applying the Wilson-Hilferty
transformation of a x% random variable as in Kendall and Stuart (1969). From
(10) write

20 _ X3 2% _ o
fo X f f.2k:
Then

1/3
oy U= B i = (1 3)
1 2/3 + 2
9k " f,2k 9f

(11)
is distributed approximately as a standard normal random variable. Thus

Fu(z) ~ ¢{t(3f’%)} (12)
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where ¢ is the distribution function of a standard normal random variable. Then
Fg(z) is obtained through relations (5).

This approximation is attractive from a practical standpoint as it is based
on the normal distribution. Its behavior is similar to that of the approximation
based on (10), as can be seen from the illustrative Tables 1 and 2. These ta-
bles correspond to p = 6,10 respectively, with N = 10,20,40 in Table 1 and
N = 14,20,40 in Table 2. The grid of parameter values is R = 0, .1(.2).9 and of
z values is z = .1(.2).9. The exact values of Fg(z) are given, along with errors
(x10%) of approximate values. For comparison, the errors based on using approx-
imation (10) are also included. It is evident from these tables that sometimes
the absolute errors based on approximation (12) are greater, sometimes less, but
for the most part both approximations are quite similar, as expected. The ap-
proximation based on (12), however, has the advantage of being obtainable from
tables of the standard normal distribution.

4. Conclusion

Although the distribution of the multiple correlation coefficient is expressible
in finite series for integral values of k¥ and in convergent infinite series for k
fractional, simple approximations are desirable from a practical standpoint. It
is seen that the kinked x? distribution plays a key role in the distribution of R,
and in the development of approximations for the distribution of U and hence

of R. This leads to some suggested approximations, some of which are based on
the normal distribution.

Acknowledgments

This research was supported in part by the Wisconsin Alumni Research
Foundation, Project # 140410. We are also grateful for preliminary computations
by Michael Wincek in examining some of the suggested approximations.




JOHN GURLAND AND OSEBEKWIN ASIRIBO

500

8— 9- 12280 T I 8860 I O 0000T T O 0000T T O 0000T O O 00001 OF
€ ¢ TI6¥20 I 0 TSP60 ¢ T L9660 T O 86660 T O 66660 0 0 66660 0%
02 1% 010 ¥— €I— 89990 C— TI— 62620 O T— G880 0 € 92980 0 €&  OI.80 01
0 0 00000 ZI— 8— 6¥620 9— 6— 68680 ¥ ¥ I¥660 T O 96660 0O O 86660 OF
¥ € 01000 & 1§ L9020 €€— TE— SLZ90 9— OI— 1I€S8°0 O 2— 99260 0 2Z— 6€86°0 0%
6 ¢ 9€000 9¢ €¢ 86800 ST LT 2SIZ0 T S L0280 T T 6880 O I ¥28€0 01
0 0 00000 €2 0Z 09000 61 2% LS€20 6€— Zh— €€0L0 0 9— 60160 O S— 10860 OF
0 0 00000 TF S L8100 68 09 O09ET0 S ST €9%€0 0 . OI #16¥0 O 6  OIISO0 0%
T 0 0000 6T OT 16000 ST 9 SS200 S - ¥— 69900 T S— 12800 0 G— 86800 OI
0 o0 00000 ¥ O 00000 IF <S€ S6000 €9 %9 96110  && G910 O  OZ 0€SE0 OF
0 0 00000 € ¢ %0000 1€ 0Z €6000 € L 80%00 T L— 19200 0 9— 8I80°0 027
0 -0 00000 0 O S0000 ¥ ¥— S2000 ¢ OI— SS000 T  €I— 92000 0 €I— 08000 OT
0 0 00000 0 O 00000 O O 00000 % O 90000 T €I— 02000 O  SI— 9£000 OF
0 0 00000 0 O 00000 O O 00000 T &— 20000 T S— #0000 O 9— <S0000 0%
0 0 00000 0 O 00000 O O 00000 O TI— 00000 O T— 00000 O T— 00000 Ol
(01) (z1) 'qoad (o1) (21) 'qoxg (o01) (21) qead (o1) (21) "qoid (o1) (21) 'qoag (o1) (31) 'q0id N
Suisn Juisn Buisn Fuisn Bursn Juisn Bursn Juisn Bursn Juisn Suisn Suisn

uo.uum uo.znm 1011 1011 ugum uOuum uo.manm uo.:m loxiy uo.mu@ uo.—nm_” o1y

60 L0 <0 £0 10 00 ¥

(srewrrxozdde — joexs = ouq) 0% ‘02 ‘0T = N

pue 9 = d 1o0j sonrea ajewrxoidde jo (,01X) sioisd pue (z)¥g Jo sonfea joexy ‘T d[qe]




501

MULTIPLE CORRELATION AND KINKED CHI-SQUARE

£ 4 06610 ¢ £ €660 1 0 0000T T O 0000°T T 0 0000'T 0 0 0000'T OF
€1 6T L0600 8— ZI— 18,0 0 1 98€60 1T ¥ 0860 1 14 GL86'0 0 i 4 ¥886'0 07
8 L 7800 2 0 GL¥80 0 ST— 98980 0 AT— 710,90 0O 91— 98120 0 91— L81L0 ¥1
1 0 000000 %2 €2 69¥1°0 ¥3— LT— S¥8L0 T O 09660 1 0 1066°0 0 0 2266°0 0¥
T 0 100000 S¢ 2z 68%00 L 1T €860 0 1 L6T¥0 0 0 01¢S'0 0 0 9¢¥¢°0 02
0 0 10000 . ¥ 1€100 ¢ 14 600 1 ¢ 01010 1 £ 26210 O g 06sT°0 ¥1
0 0 00000 9 ¥ 110000 1# OF 1900 ¢€— ¥ ¥se0 0 I 1¥89°0 0 0 6¥19°0 0¥
0 0 00000 ¥ (4 01000 1T ¢ ¥eroo v 0 0¥%0'0 1 I— 2ZIL00 0 I— €600 02
0 0 00000 1 0 €0000 2 I- 22000 1 Z— 99000 1 €— 28000 O €— 68000 V1
0 0 00000 0O 0 00000 ¥ (4 90000 0T ¢ €1100 1 G— 29800 0 S— 61300 0¥
0 0 00000 0 0 00000 1 0 10000 T T— 90000 1 ¢— €1000 0 ¢— P1000 0%
0 0 00000 0 0 00000 0 0 00000 T O 10000 1 0 10000 0 0 10000 ¥1
0 0 00000 0 0 00000 0 0 00000 0 O 00000 0 0 00000 0 0 00000 0¥
0 0 00000 0 0 00000 0 0 00000 0 O 00000 0 0 00000 0 0 00000 02
0 0 00000 0 0 00000 0 0 00000 0 O 00000 0 0 00000 0 0 00000 ¥1
(01) (31) "qoad  (o1) (21) "qoad (01) (21) "qoad (01) (z1) 'qoad (01) (31) qoxd (o01) (21) 'q0ad N
Susn Suisn Buisn Juisn Suisn Busn Buisn Buisn Busn Bursn Busn Sursn

1011y 1011y Ioly 1011 10117 1011 1011 1011 loury 1011y Iolq 1011

60 Lo g0 £0 10 00 ¥

(ereurrxozdde — joexes = 1011q) 0% ‘0% ‘VI = N
pue (1 = d 10} sanfea ajewrxoidde jo Avoﬁxv 810112 pue (Z)¥ g jo son[eA joexy g d[qe],




502 JOHN GURLAND AND OSEBEKWIN ASIRIBO

References

Elfving, G. (1947). A simple method of deducing certain distributions connected with multi-
variate sampling. Skand. Aktuarietidskrift 30, 56-T4.

Erdélyi, A. (1954). Tables of Integral Transforms. McGraw-Hill, New York.

Fisher, R. A. (1928). The general sampling distribution of the multiple correlation coefficient.
Proc. Roy. Soc. London Ser.A 121, 654-673.

Gurland, J. (1968). A relatively simple form of the distribution of the multiple correlation
coefficient. J. Roy. Statist. Soc. Ser.B 30, 276-283.

Gurland, J. and Milton, R. (1970). Further consideration of the distribution of the multiple
correlation coefficient. J. Roy. Statist. Soc. Ser.B 82, 381-394.

Hodgson, V. (1968). On the sampling distribution of the multiple correlation coefficient (ab-
stract). Ann. Math. Statist. 39, 307.

Kendall, M. G. and Stuart, A. (1969). Distribution Theory. Griffin, London.

Lee, Y.-S. (1971). Some results on the sampling distribution of the multiple correlation coeffi-
cient. J. Roy. Statist. Soc. Ser.B 33, 117-129.

Ruben, H. (1966). Some new results on the distribution of the sample correlation coefficient.
J. Roy. Statist. Soc. Ser.B 28, 513-525.

Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.

(Received November 1989; accepted January 1991)




