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Abstract: Some of the history of the development of higher-moments and spectra
for random processes, particularly time series and point processes, is presented for
the years preceding 1980. Time-side and frequency-side ideas are contrasted. Some
uses of the concepts and associated techniques are mentioned. So too are some of
the computational procedures that have been employed.
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1. Introduction and Disclaimer

It is not easy to present the history of concepts used in diverse scientific
fields. The material is inevitably limited by the writer’s experience. Still it
seems worth attempting, even if for no other reason than to induce others to
provide their views on the matter. Since the work of the present paper is meant
to be historical rather than review, consideration will be restricted to the pre-
1980 period. Also, focus will be on the general case rather than the particular
cases of the power spectrum, cross spectrum or bispectrum.

There are a variety of “sides” from which one can discuss the matter: theore-
tical-empirical, time-frequency, ordinary series-generalized process, discrete time-
continuous time, computational-distributional, univariate-vector amongst others.
There is insufficient space and time to cover many of these aspects in any detail,
but a variety of comments will be made in attempting this.

One of the purposes of this work is to make available to young researchers
a listing of some of the original sources. In many cases these can be read much
more productively than works that have appeared later.

2. Second-Order Moments and Spectra

There will be minimal discussion of the second-order, that is of the power
spectral or the cross spectral, cases. (The term second-order refers to the fact
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that the basic quantities involved are quadratic.) The principal concern, instead,
is with the higher-order situation. There also exists an extensive commentary
concerning the second-order case in Yaglom (1987b). The bibliography in Wold
(1965) contains a listing of many pre-1960 works.

On the time-side, two early references to empirical work with the autoco-
variance function that will be mentioned as being of more than ordinary interest
are Hooker (1901) and Taylor (1921).

By analysis on the frequency-side is meant making essential use of sinusoids,
bands of (angular) frequency and Fourier transforms in the study of time series
and related processes. On the frequency-side a remarkable reference, turned up
by A. M. Yaglom, is Einstein (1914). This paper was greeted with surprise and
excitement. In it Einstein constructed the first specifically consistent estimate of
the power spectrum, although in 1891 Michaelson (see e.g. Michaelson (1907))
had already proposed a sensible estimate. Commentaries on this paper are given
in Masani (1986) and Yaglom (1987a). Another early reference to frequency-side
analysis, pointed out in Rice (1945), is Kenrick (1929).

3. Higher-Order Moments

The moments employed in the analysis of random processes and time series
are direct extensions of those of ordinary statistics, the main properties of which
are given, for example, in Kendall and Stuart (1969). The moment approach
in statistics is usually identified with the name of Karl Pearson. In anticipation
of later development of time series and random process techniques, we remark
that Pearson’s method of moments has largely been replaced by R. A. Fisher’s
likelihood approach as the years have passed, and this seems likely to continue.

The joint product-moment of the k-variate random variable X = (Xq,...
X k) is

’

E{X1-- Xi}.

The joint cumulant of the variate X is that elementary combination of the joint
product moments of subsets of the components of X, which vanishes if any subset
of the components is statistically independent of the remainder (see Brillinger
(1965)). More simply, it is the coefficient of 8 - - -6 in the Taylor expansion of
the log moment generating function of X. In what follows the joint cumulant
will be written

cum{Xy,... ,Xx}.

It has the property of vanishing for £ > 2 in the case of jointly Gaussian variates.
In essence what has been done in the time series case is simple. The product
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moment function of order k of the process X(-) is defined by
mk(tl,.:. ytk) = E{X(t1)--- X(tx)} (1)
for —00 < t; < 0o while the cumulant function is defined by
ck(ty, ... ,tx) = cum{X(#1),... ,X(tx)}-
In case the process is stationary one has the simplification

me(t+ ug,. .. 0+ ug-1,t) = me(ug,... ,uk-1)
and

Ck(t+‘u1,...,t+’u,k_1,t)=0k('u,1,...,Uk_l) (2)

for —oo <t < 00. That is, one deals with functions of one fewer argument.

In fact it seems that the earliest substantial development of higher-order
moments took place for point (and particle) processes. The point process pa-
rameters may be viewed as resulting from a correspondence X (t) = dN(t). Here
points are scattered along a line and the increment dN(t) takes on the values 0
or 1 depending on whether or not there is a point in the small interval (¢,t + dt]
of the line.

For point processes the moment measures are defined via the product-moment
and cumulant expressions

E{dN(t;)---dN(tx)}, cum{dN(t,),...,dN(t)},

respectively. The point process case is notable in that when the points are
isolated, the first quantity here has a naive interpretation as

Prob{point in (¢1,%; + dt,) and - --and point in (¢, tx + dti)}.
This expression often leads to a density function, being equal to

pk(tl,. .e ,tk)dtl --'dtk (3)

in case all the t’s are distinct. The functions pi(-) have appeared in various
guises in the physics literature for many years. In particular the references Ursell
(1927), Yvon (1935), Bogoliubov (1946), Bhabha (1950), Ramakrishnan (1950),
are to be noted. In Yvon (1935) and Born and Green (1949) concern was with
the molecular theory of fluids. Continuing, Rice (1945) set down such density
functions in a study of the crossings of random processes, Ramakrishnan (1950)
set down formal definitions, Kuznetsov and Stratonovich (1956) following the
lead of Bogoliubov developed a set of correlation functions and in particular
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suggested the consideration of cumulant functions. Macchi (1969, 1975) makes
further formal development of product densities. Daley and Milne (1973) provide
a bibliography of the point process literature.

Consideration now turns to the time series case. A central idea here is that
of Kolmogorov (see Shiryaev (1960)) to base analyses on the cumulant functions
rather than the product moment functions. The use of the cumulant functions
in the time series case may be motivated in several ways. Cumulants “remove”
the lower order information in a sense because they vanish if some proper subset
of the X (t)’s is independent of the remainder. In many cases of interest as
functions of ¢ they tend to 0 for large arguments and thus can have convenient
analytic properties, e.g. integrability. They also turn up in investigations of
ergodicity, e.g. Leonov (1960), Brillinger (1965). Cumulant functions provide a
means by which to introduce mixing, leading to the later development of central
limit results useful in suggesting statistical approaches to problems.

In connection with these developments references include Leonov (1960,
1964), Shiryaev (1960, 1963), Sinai (1963a,b) and Brillinger (1965). Shiryaev
(1989) includes the following: “In the late 1950’s and early 1960’s Kolmogorov
suggested to his pupils V. P. Leonov and A. N. Shiryaev a series of problems
related to the issues of nonlinear analysis of random processes (in particular, in
radio technology) which brought about the techniques of calculating cumulants
under nonlinear transformations, and the development of the theory of spectral
analysis of the high-order moments of stationary random processes.” Other East-
ern European work includes Zhurbenko (1970) introducing an alternate form of
mixing condition and Zuev (1973), Statulevicus (1977) developing bounds and
then using them in developing various large sample expressions.

4. Higher-Order Spectra

It often provides greater insight to note that, in the stationary case a process
X (-) has a spectral representation

X(t) = /_ ” e dZ()) (4)

—00 < t < oo involving the random function Z(:). This representation leads
directly to the definition of higher-order spectra, and specifically, when they
exist, the cumulant spectra, fi(-), are given by

cum{dZ(Al), ceay dZ(Ak)} = 6(/\1 + -4 Ak)fk()\l, ceey Ak_l)dAl s dAk (5)

with §(-) the Dirac delta function. (The concentration of the mass on the sub-
space A1 + -+ Ax = 0 results from the stationarity of the process.) The indirect
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definition of the cumulant spectrum fj is as the Fourier transform of the cumu-
lant function of the right hand side of expression (2).

Moments of order k of the dZ are considered in the seminal work of Blanc-
Lapierre and Fortet (1953). It is interesting that in counterdistinction to the
second-order case, the cumulant functions do not necessarily have a representa-
tion as the Fourier transform of a measure (see Kolmogorov (1960) and Sinai
(1963a)), that is fi of (5) may have to be treated as a generalized function of
some type. In many cases of interest, however, the higher-order spectra are
proper functions.

Turning to an empirical aspect, Brillinger and Rosenblatt (1967a,b) develop
the result

cum{d”(A1),... ,dT(Ae)} = (20  TATO + -+ 4+ M) fe(Pay v v 5 A1)

for the case of discrete time, where

T-1 T-1
ATA) =) e and dT(N) =Y e ™MX(1).
t=0 t=0

This result suggests that even had cumulant spectra not been defined in their
own right, researchers would have been led to them as they developed the statis-
tical properties of empirical Fourier transforms. Brillinger (1965) and Brillinger
and Rosenblatt (1967a,b) present estimates of cumulant spectra of general or-
der and develop some properties of those estimates including their asymptotic
independence and normality.

The case of k = 3 has been studied in some detail. In particular one may
mention the works of Tukey (1953, 1959), MacDonald (1963), Hasselman et al.
(1963), Godfrey (1965), Rosenblatt and Van Ness (1965), Van Ness (1966a),
Shaman (1966), Hinich and Clay (1968), Kleiner (1971) and Subba Rao and
Gabr (1980). For example Tukey (1953) constructs a process with a general
function as bispectrum. A bibliography for the case k = 3 has been prepared by
Tryon (1981).

In the case of a stationary point process there is a spectral representation
analogous to (4) above, namely

eith _ |
N(t) = / = 2az(). 6)

i

The cumulant spectra are again given by (5) and the spectral representation is
seen to provide a unifying treatment of the time series and point process cases.
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5. Terminology

J. W. Tukey has introduced many of the terms of spectral analysis. In
particular he called the spectra of a single series for k = 3,4 the bi- and tri-
spectra respectively. He introduced the general term-polyspectrum. Other terms
commonly employed for the concept are cumulant spectrum and higher- or kth
order spectrum. Tukey seems also to have introduced the terms bifrequency and
bicoherence in the case k = 3 for (A1, Az) and [f3(A1, A2)2/[f2(M1)f2(A2) f2 (M1 +
A2)] respectively.

There has been some difference of opinion over whether, for example, the
bispectral case (k = 3) should be referred to as second-order because of the
essential dependence on just two arguments. This shows itself, for example in
the use of the prefix “bi”.

The moment functions (1) and (3) are often called correlation functions in

the physical sciences literature, even in the case of general k (see e.g. Glauber
(1963)).

6. Some Uses

Single series

Brillinger (1965) points out several uses of higher-order cumulant spectra.
For example, they may be used to examine a process for Gaussianity and they
may be used to examine a process for linearity. The latter use is investigated
in some detail for the case k = 3 by Subba Rao and Gabr (1980). Brillinger
(1965) also indicates how higher-order spectra might be employed in looking
back at the genesis of an observed series from more elementary series. Peaks in
the second-order spectrum at frequencies in elementary relation are suggestive
of the operation of a nonlinearity at some earlier stage as follows, for example,
from the result that if X(-) is Gaussian with mean 0 and second-order spectrum
f(+) then the process X(t)? has power spectrum

2 / " f(A - 0)f(0)da

which will show a peak at 8 + v if f(-) has peaks at § and 7.

Van Ness (1966b) mentions how polynomial functional expansions may be
employed for prediction. Lii et al. (1976) and Rosenblatt (1978) show how bis-
pectra occur in connection with energy transfer between distinct frequencies ~ a
phenomenon not possible with linear systems. Rosenblatt (1979) studies how the
bispectrum may be employed to estimate the phase function of a nonGaussian
linear process. Lumley and Takeuchi (1976) investigate the higher-order spectra
of turbulent flows. Higher-order spectra of Gaussian series vanish. Hence by
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working with higher-order spectra, additive Gaussian noise is “removed”. Their
use in studying nonGaussian series is likewise apparent. Higher-order spectra
are useful for detecting nonlinearities.

As a further use, one can note that higher-order spectra appear in the vari-
ances of estimates of lower-order moment and cumulant functions and so must
be estimated to provide indications of the latter’s uncertainty.

System identification

In his book, Wiener (1958) sets down a “polynomial” representation for a
system with Gaussian white noise input and discusses the analysis and synthesis
of the system. Such representations are often called Volterra expansions.

Tick (1961) considers the particular case of the identification of a quadratic
system with Gaussian process input. Specifically he considers a system

Y(t)=ao+ ) ar(w)X(t—u)+ ) > as(u,0)X(t ~ w)X(t - v) + ()

with X (-) stationary Gaussian and with £(-) a noise series independent of X. For

such a system it may be shown that the second- and third-order cross-spectra
are given by

frx(A) = Aa(A) fxx(X) (7)

and
Fxxy(Ap) = 2A2(=X, —p) fx x(A) fxx(p) (8)

respectively. Here A; and A; are the Fourier transforms of a; and a;. In doc-
toral theses, Feuerverger (1972) and Gasser (1972) develop further aspects of the
identification of quadratic systems. In particular, Feuerverger determines some
statistical properties of estimates of A;, A; developed from (7) and (8).

Lee and Schetzen (1965) set down a way to estimate the kernels of Wiener’s
polynomial expansion by cross-correlating Gaussian white noise input with the
output. An early computation of a second-order kernel is given in Stark (1963).
The book by Marmarelis and Marmarelis (1978) presents details and many ex-
amples of the use of the Lee-Schetzen method. Priestley (1978) gives expressions

for the transfer functions which arise in the Volterra expansions of a bilinear
model.

Point processes .

In the case of a point process, Davies (1977) makes use of the product den-
sities to examine a point process for Poissonness. Fourth-order product densities
are estimated systematically for seismic and astronomical data in Kagan (1981)

and Fry and Peebles (1978) respectively. Ogura (1972) introduces a Volterra
expansion based on the Poisson process.
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7. Computational Procedures

Higher-order spectra may be estimated in a variety of fashions and higher-
order cumulant function estimates may be computed in at least two.

The product moments may be estimated directly by the method of moments
i.e. by equating sample and population moments. Then one way to estimate the
cumulant functions is to simply substitute into the formula giving cumulants in
terms of product-moments. An indirect fashion is to inverse-Fourier transform
the periodogram of order k avoiding the submanifolds in which proper subsets
of frequencies sum to 0 or in the discrete time case sum to a multiple of 27.

Brillinger (1965) suggests estimating higher-order spectra by complex de-
modulation, by narrow-band filtering, or by computing windowed Fourier trans-
forms of empirical cumulants. Brillinger and Rosenblatt (1967b) suggest esti-
mating cumulant spectra by smoothing higher-order periodograms avoiding the
submanifolds on which the lower order spectra were concentrated. Lii et al.
(1976) in the case of k = 3 suggest estimating the bispectrum by averaging
third-order periodograms based on separate time stretches of the series. This
technique has the further advantage of allowing one to estimate the variability
of the estimate directly.

It may be remarked that for the last form of estimate, tapering the data
before computing the Fourier transform can be quite crucial. It goes almost
without remarking that a fast Fourier transform (FFT) can be central to the
computations required. As this is a historical paper it would be remiss not to
point out the reference Heideman et al. (1984) which makes the case that Gauss
knew about an FFT in 1805.

Another issue arising in the computations is how the fundamental domain
of computation is restricted via the periodicities and symmetries present. A
related idea is that of aliasing. Meaningful research seems to have been done on
this topic, so far, only for the cases of k = 2,3,4.

8. Extensions

There are near-immediate extensions of the concepts of higher-order mo-
ments and spectra to spatial, particle, generalized and stationary increment pro-
cesses. Streater and Wightman (1964) consider higher-order moments in a quan-
tum mechanical situation. There are further generalizations to hybrid processes
of the type X (7;) where X(-) is an ordinary process and 7; a point process. Other
types of nonlinear systems, e.g. those containing an instantaneous nonlinearity
or bilinear systems, may be studied by higher-order spectra. The second-order
procedure that Whittle (1953) introduces for estimating finite-dimensional pa-
rameters may be extended to the higher-order case.
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9. Discussion

Availability of large samp;les has allowed higher-order spectra to enter prac-
tice. One sees engineers putting the ideas into practice. At the same time
theoreticians have continued to develop the formalism.

Key ideas that may be recognized on the time-side are the suggestion of
Kuznetsov-Stratonovich-Kolmogorov that cumulant functions be the basic en-
tities employed (many had considered product moment functions) and that of
Wiener-Lee-Schetzen that polynomial systems may be identified via Gaussian
white noise input and cross-correlation. A key idea on the frequency-side is that
of Blanc-Lapierre and Fortet of considering moments of the dZ(-) variates.

It is interesting to note the parallel development of the ideas for the time
series and point process cases. It is also interesting to see some of the ideas
coming out of practical engineering problems while others result from strictly
mathematical development. It is further interesting to note the corresponding
Eastern European and North American work on the topic.

Given the history, one can speculate on future developments. These would
seem to include discovery and study of special stochastic processes, concern for
efficient procedures, robust-resistant techniques, and more subtle estimation of
the uncertainty of estimates. Undoubtedly there will be syntheses of concepts
that at this point seem distinct.
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