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Abstract: In non-linear autoregressive models, minimum variance multi-step ahead
predictors involve knowledge of both the system parameters and the probability
distribution of the unobservable random disturbances. Herein we study adaptive
versions of these optimal predictors when neither the system parameters nor the
underlying error distribution are known in advance and have to be estimated from
the data. Under certain assumptions, we show that the cumulative squared difference
Yitang(Fe4a =1 +4)? between the optimal predictors § 44 and their adaptive versions
9§44 is of the order of log n, generalizing previous results on least squares adaptive
prediction in linear stochastic systems.
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strong comsistency, linear and non-linear stochastic regression.

1. Introduction

A widely studied model in the time series and control systems literature is

the linear ARX model (autoregressive model with exogenous inputs) defined by
the linear stochastic difference equation

Yn =@ Yn-1+ -+ QpYn-p + botn—-a + -+ bpUn_a—k + €n, (Ll)

where {y,}, {u.} and {e,} denote the output, input and disturbance sequences,
respectively, and A > 1 represents the delay. When the input terms u; are
absent, (1.1) reduces to the classical autoregressive AR(p) model. The random
disturbances ¢, are often assumed to be i.i.d. with mean 0 and variance o2. We
shall also assume throughout the sequel that E|e;|* < oo for some o > 2 and
that for every n, €, is independent of y,,uy,... ,y1,%;. Let 1 < d < A, and
let , denote the o-field generated by the current and past outputs and inputs
YnrUn,... ,Y1,u1. When the parameter vector 8 = (ay,...,ap,bp,... ,b) is
known, the minimum variance d-step ahead predictor Un+d = E(Ynta]|Fn) can
be determined as follows. Define f1,..., fa_1,61,..., gp by the identity

(1-a1z—---—apzP)(1+fiz+ - +fa12° )+ 2%(g1 + g2 24 - +g,2771) = 1. (1.2)
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Forj=0,...,k+d-1,letv; = 3, . fibs (fo = 1),50 70 = bo, 71 = b1 +bo f1,
etc. Then (1.1) can be written as yn4+d = Yn+d + Mn+d, Where

Untd = 91Yn + -+ + GpYn—p+1 + Voln-a+d + -+ + Vhtd—1Un—a—k+1, (1.3)
Mn+d = €ntd + f1€n+d—1 i fd—len-l-la (14)

cf. Astrom (1970). In practice, the parameter vector # is usually unknown,
and one has to “adapt” the optimal predictor (1.3) by substituting the unknown
entities in (1.3) by their estimates, leading to an adaptive predictor Yp44. A
review of the adaptive prediction problem in linear stochastic systems and some
new unifying results have recently been given by Lai and Ying (1991).

The linear stochastic difference equation (1.1) is a special case of the general
ARX model of the form

Yn = fa(yn—la oo yYn—pyUn-A,-.- 7un—A—k) + €y, (15)

where 6 is a v-dimensional parameter. Even when 6 is known, the minimum
variance d-step ahead predictor ¥n44 for non-linear ARX models is much more
complicated than (1.3) for the linear case when d > 1. For j = 1,... ,d (£ A),
define inductively

Yn,1(W;0) =fo(Uny- -+ yUn—p+1sUn—At1s--- yUn—a—k+1) + W,
Un,j(W1,y. .., w550) =fo(Yn, j-1(wry. .. ,wj=130)y. .. s Yn,j—p(Wi,. . ., Wj—p3h),
Un—A4jsers ,u,,_A_k+j)+wj, if 7>p, (1.6)
= fo(Yn,j-1(W1ye - -, Wj=1;0)5- - ;Yn,1 (w15 0), Ynse - s Yn—p+js
Un—Atjs- -+ Un-a—ktj) +wj, i J<p.

Note that yn4+1 = ¥n,1(€n+1;0), Yn+2 = Yn 2(€n+1,€n+2;0), etc. Letting H denote
the common distribution function of the i.i.d. ¢; and noting that f wqedH(wq) =0,

it then follows that the minimum variance d-step ahead predictor ¥n4d4 of Yn4d
is given by

gn-{-d = fO(yn)' vy UYn—pt1yUn—-A+41,--- ’un—A—k-{-l), d= 17

1.7
= /'“/yn,d('wl,--' awd—laO;e)dH(wl)"'dH(wd~1), d?. 2. ( )
For the linear ARX model (1.1), since fo(Yyn—1y+-+ sYn—prUn—Ay--- sUn—A—k) i8
a linear function of (¢, ¥n—1,- - -» Yn—ps Yn—a - - -» Yn-a—k), and since [ wdH(w) =0,
(1.7) reduces to the form (1.3) which does not involve H. However, for d > 2
in non-linear ARX models, the minimum variance d-step ahead predictor (1.7)
requires knowledge of both 8 and H and involves multiple integration.
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In practice § and H are usually unknown. For d > 2 in non-linear ARX
models, an obvious way to “adapt” the optimal predictor (1.7) is to first re-
place @ by a consistent estimator 5,, based on the current and past observations
YnyUnyYn—1,Un—1,--. ,Y1,U;, and then to replace

dF(wy,... ,wg—1) = dH(wy)---dH(wq—1)
by df'n(wl, ... yW4_1), where fn is the empirical distribution function of

{(€nit1s-+ 1Enitd—1) in—d+ 12> ¢ > m=max(p,k+ A)}

and €, = ¥i — fa, (Yi-1y-++ »Yi-pyUi—A,... ,Ui—A—k) denote the residuals. This
leads to the adaptive d-step ahead predictor
n—d+1 -
Unta=(n-d-m+2)7! Z Yn,d(€n,it1s -+« > €n itd—1,0;05). (1.8)
i=m

A commonly used estimator a,, in the non-linear time series literature is the
least squares estimate, which does not require knowledge of H for its implemen-
tation. In Section 2 we first review several basic results on the strong consistency
of least squares estimates in linear and non-linear regression models in which the
regressors are sequentially determined random vectors. In this connection, the
results of Lai and Wei (1982a) on adaptive one-step ahead prediction based on
least squares estimates in linear stochastic regression models will be extended to
the case of non-linear ARX models.

Section 3 studies d-step ahead prediction in the non-linear ARX model (1.5)
with d > 2. Numerical results on the performance of these adaptive predictors
are presented for some non-linear time series, including first-order exponential
autoregressive models for which d-step ahead prediction assuming known sys-
tem parameters has recently been studied by Al-Qassam and Lane (1989). We
provide a numerical comparison of the adaptive predictor (1.8) with the optimal
predictor (1.7) evaluated by direct numerical integration and with some simple
approximations thereof considered by Al-Qassam and Lane (1989). We also de-
velop a partial generalization of the asymptotic theory of adaptive predictors in
linear stochastic system, cf. Lai and Ying (1991), for the d-step ahead prediction
problem in a non-linear ARX model with unknown parameter vector # and error
distribution H. .

In Section 4 we extend the ideas underlying the construction of the adaptive
predictors (1.8) to develop strongly consistent estimators of the variance and
other functionals of the conditional distribution of yn4+q given F, (i.e., the d-
step ahead predictive distribution of y,4q). Note that (1.7) is simply the mean
of the predictive distribution.
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2. Least Squares Estimates and the Associated Adaptive One-Step
Ahead Predictors ‘

The ARX model (1.5) can be written as a regression model of the form
Yn = fo(xn) + €, where x, = (yn—ly cor sy Yn—prylUn—Ay.--y “n—A—k)'- (2-1)

The regressors X, in (2.1) are F,_;-measurable random vectors. In the case of
a linear function fy(x,) = 6'X,, (2.1) reduces to the linear ARX model (1.1).
More generally, if fy(x,) can be expressed as a linear function of 6, i.e., if there
exists a vector-valued function 9 of x, such that

fO(xn) = ol'd)n with 9, = d’(xn)v (22)

then (2.1) can be expressed in the form of a linear stochastic regression model
Yn = 0'Yn + € (2.3)

studied by Lai and Wei (1982a), who proved that 8, = (X7 ¢:})~ (I} ¥iv:)s
the least squares estimate, converges to 0 a.s. if

— i $it,) — 00 and { 1og Amax ( }?: $i) } [ Amin zn: $i¥}) > 0 as,
1 1 1

(2.4)
under the assumptions that {¢,} is a martingale difference sequence with respect
to {Fn} such that sup, E(|es|*|Fn-1) < o© a.s. for some a > 2 and that 9, is
Fn—1-measurable for every n. Here and in the sequel we use Apax(A) and Apin(A)
to denote the maximum and minimum eigenvalues of a symmetric matrix A.

As pointed out by Lai and Wei (1982a), the assumption (2.4) on the stochas-
tic regressors 9; in the linear stochastic regression model (2.3) is in some sense
weakest possible. In the case of the linear ARX model (1.1), since 9; = x;, (2.4)
holds if

y2 + 4% = O(n®) a.s. for some b > 0 and z\min(Zx;xﬁ)/logn — 00 a.s.
1
(2.5)

This is much weaker than the usual “persistent excitation” condition in the
control systems literature:

n
n~! ngxﬂ converges a.s. to a positive definite matrix. (2.6)
1
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More generally, if fo(x,) = 6'9(x,) and ¥, = ¥(x,), then (2.4) holds if

l%(xa)||? = O(n®) a.s. for some b > 0 and )\min(zw,-ibf)/logn — 00 a.s.
1

(2.7)

For an example of such non-linear stochastic systems that are linear in the pa-
rameter vector, consider the open loop threshold autoregressive system

Yn =00+ a1Yn—-1+ -+ apYn—p+ bup—n+€, if u_aA €S (2 8)

=g+ a1Yn-1+ -+ agYn—g + Bun_a + € if up_a ¢ S, .

where the inputs u; are independent random variables that are independent of
{e»} and S is a given interval, cf. Tong (1983). Let 8 =(aq,. . .,ap,b, ag,...,aq,3),
Xn = (Un-15+++ 1¥n—prtn-a) and ¥, = P(x,), where 9(x,) is the vector
(I{un-aesy ¥n-1T{u_sestre-+ > Un-al{u,_ses)
Ity _agsysYn—11{u,_pgs}>--- ,un-Af{u,._A¢5})'-

Here and in the sequel, we use Ig to denote the indicator function of an event
E. Assume that 02 (= Var ¢;) > 0 and that

liminf P{u, € §}> 0, liminf P{u, ¢ S} >0,

2.9
sup E|u,|? < oo for some p > 2. (2.9)
n
Suppose that the zeros of the characteristic polynomials 27 — a;2P~! — ... — g,
and 27 — ;291 — ... — ay lie on or inside the unit circle. Note that since some

of the roots may be on the unit circle, the system (2.8) need not be stable. By a
modification of the proof of Corollary 1 of Lai and Wei (1982b), it can be shown
that

n n

Zuf =0(n) as., Zy? = O(n®) a.s. for some b > 1 and

! ! (2.10)
ILIEL%f 27 Amin ( 21:111,-11)2) >0 as.

From (2.10) it follows that (2.7) and therefore (2.4) also are satisfied.

For the general ARX model (2.1) in which fs(x,) need not be linear in

0, the method of least squares estimates § by @, which is the value of ¢ that
minimizes S,(¢) = 3 ;<,[¥i — fo(x:)]* over a given region © that contains 6.
Throughout the sequel we shall let Dfy(x) = (8fp(x)/d¢1,- - ,8fs(x)/0.),
D? f4(x) = (8% f4(x)/06i0;)1<i,j<v- We shall use D fy(x) to denote the value of
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Dfg(x) at ¢ = 6. We shall also let || D? f4(x)|| = max i j< |07 f4(x)/06:06;].
Suppose that

fe(x) is twice continuously differentiable in ¢ belonging to some neighborhood

Uoffand 3 sup (IDfs(xII" +ID*fe(xi)|') =O(n) as., (2.11)
1

sup n~1 E[|D2f¢,(x,)—sz(,a(x.)”2 O(6) a.s. as n — o0 and § — 0, (2.12)
e-eli<s

"._

n~! Z (Dfe(x:)) (D fg(x,-))l converges (as n — 00) to a positive definite
i=1
matrix a.s. (2.13)

Then we can apply the consistency theorem of Klimko and Nelson (1978) for least
squares estimates in nonlinear stochastic regression models to conclude that with
probability 1, there exists for sufficiently large n a solution ¢ = 8, to the equation
05n(9)/0¢; =0 (J=1,...,v) such that 6, — 8. Note, however, that the least
squares estimate 6, that attains the global minimum of S, (¢) may be different
from 6, that gives a local minimum of S,(¢). In the linear case fy(x) = 6'x,
condition (2.13) reduces to the persistent excitation condition (2.6), condition
(2.12) is trivially satisfied, while condition (2.11) reduces to 3.7 ||x;||> = O(n)
a.s.

Assuming © to be compact and fu(x) to have continuous partial derivatives
814(x)/08:, 8 f4(x)/08i0; (i # 5), .. ,0” f5(%)/¢r - -0, for every x, Lai
(1990a) recently showed that the least squares estimate 8,, is strongly consistent

if for every A # 6 there exist 1 < p) < 2 and an open ball B()) in ©, centered
at A, such that

mm E[f¢(x.)— fo(x:)? = 00 as., (2.14a)
r ) L. - Vdd: e dd:
1<1111<£1'a{£)r<u gZ—:/GB()\;J'l gooe ,jr)[a f¢(x')/a¢11 . 6¢-7"] dd’-ﬂ d¢3'
. - P
+ EI:UA(XJ - fo(x)?=0 ({ ¢€1ng) 21:[ fo(xi) — f,,(x,-)]Z} ) a.s., (2.14b)

where B(A; ji, ... ,j-) denotes the r-dimensional sphere {¢ € B()\): ¢; = A;j for
j € {j1,-.. ,5r}}. Note that in the linear case fo(x) = 8'x, (2.14a) and (2.14b)
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reduce to

)\min(ixix:‘) — 0 ;.nd
1

n n ,
21: lIx:]|* = 0({)\mi,.(2;x.-x§)} ) a.s. for some 1 < p < 2,

which is much weaker than the persistent excitation condition (2.6) but stronger
than the condition (2.4).

For the ARX model (2.1), the minimum variance 1-step ahead predictor of
Yt+1 18 Ye41 = fo(Xe+1) when 6 is known, and the corresponding least squares
predictor when 8 is unknown is J¢yq = f5,(x¢t41)- If one carries out the adaptive
prediction procedure after an initial learning period ng, the overall squared error
of the predicted values up to stage n (> ny) is E;::o(i]t“ — yt+1)%. Since
Y1 = gt-l—l + €41 by (21) with E€%+1 = 0'2, it follows that E{E;::o('y}ﬂ -
Y41 )2} = E(Rn) + (n — TN )02 ’ where

(2.15)

-1
Ro= ) (fe+1 — Be41)’ (2.16)

t=no
is the cumulative squared difference between the optimal predictor 3;4, and the
adaptive predictor %;41. We shall call R, the “regret” of {Fi+1,n0 <t < n}. If

Jo(xn) = 0'9(xy,), then (2.1) can be expressed as a linear stochastic regression
model (2.3) with 9, = ¥(x,,), and in this case,

R, = nf[(?.- = Y $ia]? = O 10g Amax ( Z"j«p.-w:)) as.
i=ng 1

i (2.17)
on {lif.n_.slip %( Z¢e¢€) T < 1},
1

cf. Lai and Wei (1982a), Lai and Ying (1991). Therefore if (2.13) also holds,
then R, = O(logn) a.s. The following theorem extends this logarithmic order of
the regret to adaptive 1-step ahead predictors in the general ARX model (2.1)
under the assumptions (2.11)-(2.14).

Theorem 1. Suppose that in the general ARX model (2.1) the parameter space
© is compact with 6 belonging to its interior and that fs(x) satisfies conditions
(2.11)«2.14). Define R, by (2.16), in which Yi41 = fo(Xe41) and Goyq = f3(Xt41),
where 8, is the least squares estimate (of 8) that minimizes Si(¢) = Y, ,lvi —
fo(x:))? over ©. Then R, ~ o?vlogn a.s. -

Proof. In view of (2.14), b, — 0 as. by Theorem 1 of Lai (1990a). By Taylor’s
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expansion about the true parameter value 6,

0= -DSn(8,)/2 = Z“Df"n (%) + Zng, (xi) (fo(xi) — f;, (x3))

3

=Y &Dfo(x:) + { Y &[D? fo, (xi) — D*fo(x:)] + D €:D? fo(xs)
=1

i=1 =1

= 2 (Dfo(x)) (Dfo(x))" = 3 D* fo, (x:)(Bn ~ 8) (D fol(x:))’

i=1

~ " Df; (x:)(6 — ) D? fan (x,-)}(@n —0), (2.18)

=1

where 8,,, 0%, 0%* lic between 6 and 8,.. By (2.11) and Lemma 2(iii) of Lai and
Wei (1982a),

n n
" ZQDfo(Xi)" + “ D &D? fo(x:) “ = o(n3+%) a.s. (2.19)
i=1 i=1
for every § > 0. By the Schwarz inequality,

| S0 s, (x) - D% fatxl
i=1

< (L&) (LD o) - D pas) )7 = ofm) ms (220
i=1

i=1
in view of (2.12) and the strong law of large numbers since 8,, — 6 a.s. Moreover,
by the Schwarz inequality and (2.11),

I S D fou (xi)Bn - 0)(Dfo(x)'|| = O(nl|d - 8ll) = o) as., (2.21)

=1
| 3 Dfs, ()07 - 8D far (i) | = OCrlloz" ~ 6) = o(m) as. (2:22)
=1
Combining (2.18)—(2.22) with (2.13) yields
162 = 6 < 18 ~ 0]l = O(n~ || - i fo(x)
=1

for every 6 > 0. Putting (2.23) in (2.20) and (2.12) gives

) =0(n~12%) a5 (2.23)

" zn:fi[sze.. (x:) = D? fo(x:)] ” = O(n®/**+%) as. (2.24)
i=1

for every § > 0. Moreover, putting (2.23) in (2.21) and (2.22) gives
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|32 5% fen )@ - (DS | + ]| 32 D, (005 - 0YD* 0 |
i=1 i=1
= o(n/?*%) as. (2.25)

for every 6 > 0. From (2.18), (2.19), (2.24) and (2.25), it follows that with
probability 1,

~

b= 0= {3 (Dfs(x)) (Dfo(x0)’ +0(n¥45)} ™ 3" D fo(x)
=1

i=1

(3 (0s6e)) (DAY} " S Do) + Ow3/42)  (2.20)
=1

=1

for 1/8 > & > 0. Let z; = Dfy(x;) and 8, =  + (X} ziz})~! T} izi. By (2.13),
1Zn ||/ Amin (1 2i2}) — 0 a.s., and Theorem 3 of Wei (1987) is applicable to
show that

n—1 n
Z [(6; — 8)'2i41]) ~ 0% log det (Zz;zﬁ) ~a’vlogn a.s. (2.27)
i=no 1
Since Y3° n~3/2+4 < o for § < 1/8, combining (2.26) with (2.27) yields
n—1

8; — 0)z; 1> ~ oclvlogn as. 2.28
+

i=ng
Moreover, since 8; — 8 a.s.,

f3,(xe41) — fo(xe1) = (8 — 8)' D fo(xe41) + O(|}6: — 6] sup |1 D? fo(xe41)]]) a-s.

(2.29)
By taking § < 1/4 in (2.23), it turns out that, with probability 1,
o oo 2fH11
> 18 = 6]* sup [ID* fo(xsr)* = D D O(2*+4) sup || D? fy(xe41)|?
t=1 ¢eU i=0 ¢(=2i oeU
oo 241 oo
<D 0@ 3 Tsup |0 fy(xo)ll = Y027 <00, (2.30)
i=0 t=1 €U i=0
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by (2.11). From (2.28), (2.29) and (2.30), it follows that

n-1

R, = 2[f5' (Xe41) — fo(xeq1)]> ~ a?vlogn as.

t=ng

3. Adaptive d-Step Ahead Prediction in Non-Linear ARX Models

In this section we shall let d > 2. To begin with, consider the minimum
variance d-step ahead predictor (1.7) when both  and H are known. Direct
numerical integration to evaluate (1.7) is often quite complicated. Instead of
direct numerical integration, one can also evaluate (1.7) by Monte Carlo (MC)
methods, generating i.i.d. random variables €], ... , ek having distribution H and
approximating (1.7) by

N—-d+1
B =V =d+2)70 S gnaleli,- - €fran, 0;6). (3.1)

1=0

Note that as N — oo, yg:? = [ [yna(wy,... ,wa-1,0;0)dH(w1) - H(w4-1)
a.s. by the strong law of large numbers for d-dependent random variables.
In the case of a first-order exponential autoregressive model

Yi = fo(yi-1) + €, where 8 = (a,b)' and fy(z) = (a + be"”n)z, (3.2)

with i.i.d. normal random disturbances ¢;, Al-Qasssam and Lane (1989) devel-
oped an approximation to (1.7) based on the assumption of approximately normal
forecast errors (NFE). In Tables 1 and 2 we compare the values of (1.7) obtained
by direct numerical integration (NUMI) and by the NFE approximation for the
exponential autoregressive model (3.2), with a = —0.3, b = —0.8 and normal
N(0,0?) errors ¢; reported by Al-Qassam and Lane (1989), with the values given
by the Monte Carlo method (3.1) based on 1000 normal N(0,0?) random vari-
ables €}, for the problem of predicting .44 given that y, = 0.555. The results
indicate good agreement between NUMI, NFE and the Monte Carlo algorithm
(3.1). The NFE approximation, however, may not be appropriate when the ¢; are
not normal. For example, for the case d = 2 in Table 2, if ¢; + 1 is exponentially
distributed with density e=* (¢ > 0), so that ¢; still has mean 0 and variance 1,
then numerical integration of (1.7) gives ¥4+2 = 0.2930, while the NFE predictor
- still remains 0.2178.

Now suppose that €},... ,€} are not directly observable and that one ob-
serves instead y7,... ,yx with y7 = fo(y/_,)+¢€;. Suppose also that 6 = (a,b)’ is
unknown. It is natural to first estimate 6 by least squares (i.e., let §N minimize
Sn(8) = >3 —l{y;“_,_l — fo(y7)}?), and then to replace the unobservable €} by
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€N, =y — f3,(yi_,) for i = 2,... ,N. This leads to the adaptive Monte Carlo
(AMC) predictor ‘

N-d+1
g = (N -d+1)7! > Una(@nisrs - 1 ENira-1,0;0n). (3.3)
=1

In Tables 1 and 2 we also give the values of _i]g:) that are based on the same

1000 normal N(0,0?) random variables as in yg:;), and these values are adequate

approximations to those obtained by direct numerical integration.

Table 1. Values of d-step ahead predictors calculated by
four different methods for normal disturbances with o2 = 0.01

d | NUML (1.7) NFE MC: (3.1) | AMC: (3.3)
N=1000 | N =1000
2 0.4495 0.4495 0.4479 0.4395
3 —0.4183 | —0.4183 —0.4185 —0.4078
4 0.3944 0.3944 0.3923 0.3796
5 -0.3751 | —0.3751 —0.3747 —0.3602
6 0.3587 0.3589 0.3560 0.3399
7 —0.3443 | —0.3448 —0.3436 —0.3258
8 0.3314 0.3222 0.3289 0.3096
9 —0.3196 | —0.3207 ~0.3190 —0.2983
10 0.3086 0.3101 0.3063 0.2842
15 —0.2612 | —0.2640 —0.2617 ~0.2335
20 0.2222 0.2226 0.2208 0.1879
30 0.1610 0.1445 0.1565 0.1221
40 0.1166 0.0816 0.1047 0.0754
50 0.0845 0.0423 0.0672 0.0422

Table 2. Values of d-step ahead predictors calculated by
four different methods for normal disturbances with o2 = 1

d | NUMI: (1.7) NFE MC: (3.1) | AMC: (3.3)
N=1000 | N =1000

2 0.2178 0.2178 .0.2284 0.2388
3 ~0.0950 -0.0925 —0.0862 —0.0928
4 0.0414 0.0390 0.0472 0.0510
5 —0.0180 —0.0164 —0.0083 —0.0101

The preceding considerations suggest the adaptive predictor (1.8) of yn44
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based on y1,u1,...,Yn,Un, in which we let (€,...,€,) play the role of
(€1,.-- ,€x) in the adaptive Monte Carlo predictor (3.3) (with N = =) and
use the method of least squares to estimate §. The following theorem, whose
proof will be given at the end of this section, shows that under the assump-
tions (2.12)-(2.14) and a stronger form of (2.11), we can in fact extend the
logarithmic order of the regret in Theorem 1 on adaptive 1-step ahead pre-
diction to the adaptive d-step ahead predictors (1.8). As in (2.1), we let
Xn = (Yn—1r--+ sYn—psUn-~As--+ ,Un—a—k). Let A = min(p,d — 1) and assume
that for some compact neighborhood U of 6,

fo(x) is twice continuously differentiable in ¢ belonging to U and
n

> sup(IDfo(x)|? + | D? fo(x:)[|*) = O(n) as., (3.4a)
eU

i=1

0% f4/0z;0¢; exists and is bounded for (¢,x) € U x RPHF+1 1 < § < h,
1£5<v, (3.4b)

0" fo/ 0z - - Bz} exists and is bounded for (¢,x) € U x RP+*+1 for every
1<r < d-1andall h-tuples (41,... ,45) With 3 4---+ip = 1, 0 < i; < 7.(3.4c)

Note that (3.4b) and (3.4c) are clearly satisfied by the function f,4(z) = (a +
-=? )z in the definition (3.2) of the exponential autoregressive model; moreover
(3 4a) holds if |a| < 1.

Theorem 2. Suppose that in the general ARX model (2.1) the parameter space
© is compact with 6 belonging to its interior and that f4(x) satisfies conditions
(34), (2.12) and (2.13). Assume also that for every A # 0 there ezist 1 < py < 2
and an open ball B()) centered at A such that (2.14a) and (2.14b) are satisfied.
Let m = max(p,k+ A). Forn > m, let 8,, be the least squares estimate of 0 and
lete,;, =y — f5,(xi) for m < i < n. For A > d > 2 define the adaptive d-step
ahead predictor Ynia of ynia by (1.8), in which y, 4 is defined by (1.6). Let
Yn+d denote the minimum variance predictor of yni+4 given by (1.7), assuming
knowledge of 0 and the common distribution function H (with f zdH(z) =
and [%_|z|*dH(z) < 0o for some a > 2) of the ;.

(i) Define the regret R, = t_no(yt+d — Yt+d)?, in which ny denotes the
stage at which adaptive prediction begins after an initial learning period. Then

R, =O(logn) a.s. (3.5)

(ii) Suppose furthermore that supyey ||Dfs(xs)|| = O(1) a.s. and that H
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has bounded support. Then

n—d+1

S:;Il’ l(n —d-m + 2)..1 Z yt,d(?n,i-l—l, R ,?n,i-{-d—-lio; 5’!&) - gt+d
= i=m
= O((n"'loglogn)'/?) a.s. (3.6)

For the exponential model (3.2) in which |a| < 1 and the ¢; are i.i.d. ran-
dom variables with a common absolutely continuous distribution function having
mean 0 and finite absolute moment of some order > 2, (3.4) and (2.12) are sat-
isfied. Moreover, since f, 3(z) = az + bze~* is linear in a,b, (2.13) and (2.14)
follow from the fact that

n
n~! Z(y,-,y;e"y? Y (v, y,'e"y?) converges a.s. to a positive definite matrix,
1

which in turn can be proved by a standard argument using the ergodicity of
{yn}, cf. Tong (1990). Hence the assumptions of Theorem 2(i) are satisfied in
this model.

The result (3.6) in Theorem 2(ii) is related to the following modification of
the adaptive predictors (1.8) to facilitate computation when we perform d-step
ahead prediction sequentially over time. Instead of updating the least squares
estimate at every stage ¢ and using a new set of residuals & ; = y; — f3, (%) for
every i, as in the procedure (1.8), we update the estimates and the corresponding
set of residuals only at stages t = n; and predict y;4 4 with the adaptive predictor

ni—d+1
era =(nk —d—m+2)"" > pa(@n, i41y-e €nyird=1,0;0n,),

t=m

(3.7
ng <1< Ngys.

In particular, if ny ~ nock for some integer ¢ > 1, then (3.6) implies that the
adaptive predictors (3.7) have regret

N-d
Rv=) @a—T4a)'= . O((nk — nk—1)ny?, loglogni_y)
t=no king SN—d
= O((log N)(loglog N)) a.s. ' (3.8)

We next report a simulation study of the performance of the d-step ahead
adaptive predictors (3.7) in the case of a sinusoidal autoregressive model

Yn = 5sin(fyn-1) + €, (3.9)
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with initial state yo = 2. Suppose that  is known to belong to the interval
© = [0,2]. In particular, suppose that § = 1 and the common distribution H
of the ¢; is uniform on (-7, 7). Note that the assumptions of Theorem 2(ii)
are satisfied in this case. The minimum variance d-step ahead predictor (1.7)
assuming knowledge of # and H is given by

Unyd = Dsinly,, ifd=1,

=0, ifd > 2,

since f_’_:r sin(z + w)dw = 0 for all z. Without assuming 6 and H to be known,
consider the adaptive predictors (3.7) with m = 1, ng = 100 and nx = 3nx_,
(k > 1). Table 3 gives the mean values, over 100 simulation runs, of the regret
Ry (defined in (3.8)) for N = 300. Since n; = 3np = 300, the rule (3.7) only
uses the initial least squares estimate and the initial set of residuals based on
no = 100 observations for predicting yi+q when t < N = 300. Also given are
the mean values (over the 100 simulations) of the total squared prediction error
VN = Ziv:::,(?t-l»d — yt+4)? for the adaptive rule (3.7) and of the total squared
prediction error Ef::, (Ye4d — Yt4+4)? for the optimal rule (3.10) that assumes
knowledge of # and H. When 6 is assumed known, Al-Qassam and Lane (1989)
also consider the following simple procedure, which they call the “extrapolation
method” (EXM), for d-step ahead prediction. The EXM method discards the
unobservable random disturbances in forming the d-step ahead predictor

Yn+d = Yn,a(0,...,0;0). (3.11)

In Table 3 we also give the mean values (over 100 s1mu1atlone) of the regret

1t=m)(yt +a — Jt+4)? and of the squared prediction error Et_no(yt 'vd — Yead)
for the EXM method.

The results in Table 3 are consistent with the logarithmic order (3.8) for
the regret of the adaptive rule (3.7). They also show the considerable price to
be paid by “switching off” the noise for d-step ahead prediction in the EXM
method when d > 2. Note also the good agreement of the mean values of these
100 simulations with the identity E(Rn) + E{Et_no(yH.d — ¥1+4)?} = E(Vw)
for the adaptive rule (3.7) and also for the EXM rule (3.11).

(3.10)

Table 3. Expected regret and total squared prediction error of d-step ahead predictors

ERN (Regret) EVy (Total squared prediction error)
d | Adaptive rule | EXM rule | Optimal rule | Adaptive rule | EXM rule
1 5.95 0 661.2 668.1 661.2
2 8.98 3114.9 3145.2 3154.1 6321.3
3 8.53 3522.8 3131.2 3139.6 6678.3
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We now give the proof of Theorem 2, which is prefaced by the following
three lemmas.

Lemma 1. Let {¢,} be a martingale difference sequence with respect to an
increasing sequence of o-fileds {F,} such that sup,, E(|€,|*|Fn-1) < o0 a.s. for
some a > 2. Let z, be an F,_;-measurable v X 1 vector for every n such that
n~! Yo, 22} converges a.s. to a positive definite matriz. Then n=1/2||z,|| — 0
a.s., and for every fized r = 1,2,...,

i [z;+r( iz;zé) - ( i €1'Zi)] ’ = O(logn) a.s., (3.12)

=1
z": ”(Zt:z‘zz) -l(i‘fzf)lr = O(logn) as., (3.13)
" Z€tzt” (nloglogn)l/z) a.s. (3.14)

Proof. For every 0 < § < 1, since n~' 37", z;z} converges a.s. to a positive
definite matrix A,

|lznll* < tr( Z z,-zﬁ) < (86 + o(1))ntr(A) a.s.
n2i>(1-6)n
Since § can be arbitrarily small, ||z,]|> = o(n) a.s. From Corollary 1.1 of Stout
(1973) and a standard truncation argument, (3. 14) follows.
Let A; = Y°i_, z;z} and note that z} 1 AT 2041 = O(|2e41 |2 /t) — 0 a.s.
By Corollary 1 of Lal and Wei (19823.), (3.12) holds for r = 1. Since A7}, =

A7 — A7 Yzep12i 1 ATH/(1 + 24, 1A 2,41), of. (1.4b) of Lai and Wei (1982&),
we have

t+1 t
' -1 }: ! -1 } : ! -1/2 , -1/2
zt+2At+1( €"z") = zf+2At ( fizi') +zt+2At / At / Zt+1€t+1
i=1 i=1

t
— (142441 A7 2041) " (2L 0 AT 2041) [z;+1A;l ( > fizi) +z§+1At—lzt+1€t+1] .
i=1
(3.15)

Since Z?=1[z$+2At-+11(Zfﬂ €z;)]* = O(logn) a.s. and since z, ,A;'z¢1; — 0
a.s., it follows from (3.15) that

n i n
Y- [eteaArt (Y eini)] = 0ogm) +O( 3 I 2esallA (2 A 204141)
=1 t=1

t=1

n
+ O( Z(ZQHA{lth)zefH) a.s. (3.16)
=1
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By Lemma 2(ii)-(iii) of Lai and Wei (1982a),

n n
zzéﬂAflthffﬂ = 0( Z(z;+1At—lzt+1)) = O(logn) a.s. (3.17)

t=1 t=1

Noting that ||At—1/22¢+2||2 +2},,A7 2441 — 0 a.s., we obtain from (3.16) and
(3.17) that (3.12) holds for » = 2. Proceeding inductively in this way, we can
then establish (3.12) for r = 3,4,....

Since 0 < lim Apin(n"1A,) < lim Apax(n™1A,) < 0 a.s., it suffices for the
proof of (3.13) to show that for fixed j = 1,... ,v

?

n

Z [( z_t:qzi,j)z/tz] = O(logn) a.s., (3.18)

=1

-

where the z; ; are the components of z;. Let %; = z; ;121313 + I{ja <1}

Then |7 ;| = max(|z; ;],1), so t < E:ﬂ z}; = O(t) a.s. By Corollary 1 of Lai
and Wei (1982a),

En: [(ifiz,j)z/ﬁ] < i [Et?i—l,j(iéiz‘,j)z/tz] = O(logn) a.s. (3.19)

t=1 =1 t=1 i=1

Let 27 ; = 2 j—Zi,; = (2i,j—1)I{|2, ;|<1}- Then |z} ;|1 < 2. Applying Corollary 1 of
Lai and Wei (1982a) to the martingale difference sequence {¢;z] ;) and regressors
z; =1 yields

Zni [(ifiz?,j)z/tz] = O(logn) a.s. (3.20)
t=1 i=1

From (3.19) and (3.20), (3.18) follows.

Lemma 2. With the same notation and assumptions as in Theorem 2(i), for
every 1 < r < d -1 and all r-tuples (ji,...,jr) of positive integers with j; <
e gr < d— 1,

61‘
su su _— cee yW4-1,0; l < 00 a.s.
tZ? { ¢G¥] awjl . aw],. yt,d(wl’. y Wd—-1, a¢) }
(‘UJ1 pooe )wd—l)eRd—l
(3.21)
Moreover, there ezist (scalar) random variables asll’)t' gren ,asl':z, s and v X 1 ran-

R N . .
dom vectors zs‘;m, cee ,thl# such that suptZI,nzﬂm,¢EU(|aff,)t’¢|+||z£f,)t,¢||) <
as. for j=1,... ,h, where h = min(p,d — 1), and
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n—d+1

sup “(n d—m+2)"! Z Dyt ,a(€nit1y- -+ 1€nitd—1,0;0) — Dfy(Xt4a)
t>1,6€U

i=m

h
= > D falreracs) ~ S U (kenas) — Forras) — coracslal) o
j=1

j=1

=0(1) as., (3.22)
where D denotes the gradient vector (8/3¢y,... ,8/8¢,).

Proof. Let A:¢ = fo(x¢) — fo(x¢). First consider the case d = 2. Since
Y,2(w1, w25 9) = fo(fo(Xes1) + W1, 925 s Us—a—-k+2) + W2, OYs,2/0wz = 1 and
0yt,2/0wr = 0fy/0x1, so (3.21) follows from (3.4c). Moreover, fs(x¢y1) +

€nit1 = Ye41 + €njip1 — €041 + Aig1,4 and

n—1 n-1 n—-1
"~ i a 3

> Dyea(@nis1,0:6) = 3 Dfo(xa) + 3 a—ﬁ(x&?t,z)nf¢(xt+1), (3:23)

t=m i=m t=m
where XS, = (fo(Xt41) + € iv1s Yty - s Ut—A—k+2) = Xep2 + (€41 — €241 +
At41,4,0,...,0). By Taylor’s theorem,

i - o ,aG
Df¢(x£z,)t,2) = Dfp(xt+2) + (€njiv1 — €141 + At+1,¢)(a 106, (XE;,)m )1<j<,,’
" (3.24)

where x( ) t 2 lies between X;42 and x( ) t2- Since €, — €; = fo(x:) — fé.. (xi) and

7 subser [Dfs(x:)l| < /2 {57 supger [|Dfo(x:)|[}1/2, it follows from (3.4a)
that

D leni — &l = O(nflbn — 6]]) as. (3.25)
i=m
Since 371, |e&i| = O(n) a.s., it follows from (3.25) and (3.4b) that

n—1
Y 10 £4(R), 2)/021085] [€nji41] = O(n) ass. for j = 1,... 0. (3.26)

In view of (3.23), (3.24) and (3. 26), (3 22) holds for the case d = 2 with

S.l)t i =(n-m)” - Z af¢(xn t,,z)/azl,

(), = (n—m)~! Z(a2f¢(i£:’t,,2)/azla¢,-);S,-S,.
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Moreover, by (3.4b) and (3.4c), sup,», n>d+m,¢eU(|| .t ¢|| + |a$‘11,¢|) < 00 a.s.
We next consider the case d = 3. First suppose that p > 2, s0 h = 2.
Since yt,3(w1, w2, w3;9) = fo(ye,2(w1, w25 8), 1,1 (w1;8), Yty - . -, Ut—A—k+3) + w3,
Oyt3/0ws = 1, Oys3/0w; = 0fy/0z1, Oy3/0wy = (8f4/0z1)(Dys,2/0wr) +
0fs/0%2, 0?ys 3/0w10wy = (8% f3/023)(Oyt 2 /0w )+0% f3/0210%;, and therefore
(3.21) follows from (3.4c) and the corresponding result for the case d = 2. Note

that y:,1(€n,i+156) = Ye41 + €n,it1 — €241 + Agy1,4 as mentioned above. A slight
modification of (3.24) gives

Fo(x$h2) = fo(xer2) + (Enie1 — €1 + Degr,8)0f5(ES) ) /021,

where x( ) t2 = Xt42 + (€n,i41 — €41 + Di41,4,0,...,0) as before and X xn + 2 lies

between xt+2 and xs‘,)m. Therefore

Y,2(€nit1,6n it2; @)

~ ~ 6 ~{1
= Y42 + Enjit2 — €42 + Deg2,6 + (Gnig1 — €41 + Af+1,¢‘)a%(x£;)t ). (3.27)

Let xf,',’t,a = (¥,2(€n,i+1,€n,i42;8), U1 (6n 415 D) Yty - - - s Ut—a—k43)’.  Then

x{ ?t 3 — Xt43 is equal to

(fn,i+2 — €2 + Degag + (Gnit1 — €141 + At+1,¢)a_£f(x$;,)t,2 ,
1
€nit1 — €41 + Ai41,4,0,. .. ao) .
Hence, analogous to (3.24), we now have for j = 1,... ,v
a¢j f¢(xn,t,3 = a¢] f¢(Xt+3)
+{€n,i+2 — €42+ Aeya9 + (61 — €41 + At+1.¢)’_f¢o(x£, )t 2 }

0? —
X5 106 fo(X 'n.t3) + (€njit1 — €141 + At+1,¢)a 6¢ JAES Xn, t3) (3.28)

( i) .
where xs,)t 3s Xp ¢ 3 lie between x;y3 and xf,)t'a. Moreover, since y:3 = fg(ys,2,

Yt,1,Yt;- - - »Ut—A—k+3) + w3, We have analogous to (3.23)

n-2
Y Dyea(@nit1:En,is2,0;8) = Z Dfa(x; 5
i=m i=m

n—-2 n—-2

+ D (0F5(x: 3)/021) Dyea(€n 141, 0; SH Y (0F6(x) 3)/022) Dfg(%e41),(3.29)

i=m t=m
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noting that Dy, 2(w1,w;; ¢) = Dye 3(w1,0; ¢) and that Dy 1(w; ¢) = D fe(Xe41)-
In view of (3.28) and (3.29) together with (3.25), (3.4b) and (3.4c), we obtain
from an obvious modification of the corresponding result for the case d = 2 that

(3.22) also holds for the case d = 3 and p > 2 for suitably defined afz )t & aﬁf)t e
(1) (2)

. 1 2 1 2
20} 0 2% ¢ With U3 s armpeu(lah gl + 108 o1 4 185 ol + 125, 1) < o0
a.s.

For the case d = 3 and p = 1, note that y, 3(w1, w3, 0; ¢) = fo(ye,2 (w1, w2; @),
Ut—A43,- -+ ,Ut—A—~k+3), and the argument is therefore completely analogous to
that above. Proceeding inductively in this way, we can then establish the desired
conclusions for d = 4,5,....

Lemma 3. With the same notation and assumptions as in Theorem 2(i),

n—d+1

2

> {(n —d—m+2)"" )" yna(€is1,... ,€i4a-1,0;0) - §n+d}
n<N i=m

= O(log N) a.s., (3.30)

n—d+1

sup I(n —d-m+2)7" Y yia(€ir,. .. €ia-1,0;6) - ?7t+d|
121 i=m

= O((n""loglog n)1/2) a.s. (3.31)

Proof. Introduce the empirical distribution function

n—d+41
F’n(w1,~ AL ] wd—l) = (n - d —m + 2)—1 Z I{e.-+15w1,... ,€;+4_1Swd-1}'

i=m

Let F be the distribution function of (e1,...,€4-1), so dF(wy,... ,w4_1)
= dH(w,)---dH(wq—1). Note that for ¢t > 1,

n—d+1
(n—d-m+2)"" > yra(eis1,--- €i4a-1,0;0) = Fra
o0 OO'——_m
=/ / ye,a(wiy ... ywa-1,0;80)d(Fn — F). (3.32)
—00 - 00
For notational simplicity, we shall focus on the case d = 3. Denote

yt,3(wy, w2,0;0) simply by yi(wy,w;). Let G, = F, — F, which we shall also
regard as a signed measure. Expressing y.(w1,wz) — :(0,0) as

wy wag
/ A avla (vl,'vz)dvldvz +/ (vl,O)d ()1 +/ (0 ’Dg)dvz,
if w 2> 0, Wy 2 0, (333)
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and as

0 w2 62 Y 0 ) 9
- ~/w1 -/0 8”16 (vl’v2 )dvldvz B /1‘01 a_g:(vl,())dvl + _/ v (0 () )dv2’

ifw, <0, wy >0,

with similar expressions for the cases w; > 0, w; < 0 and w;, < 0, wy < 0, and
noting that (0,0) /> [%° dG, = 0, we obtain by Fubini’s theorem that

/ / ye(wr, w2)dGr(w1,w2) =
00 0
/ G([on,00) x R) 2 (11, 0)dvy — / Ga((=00, 1) x B) YL (v, 0)dvy
0 a'vl - 00 6’01
*° 3% 0 a?]t
+ G,-,,(R X [’02,00))5——(0, ’vz)d’vg - Gn(R X (—00,'02))'672(0, 'Uz)d'vz

‘//,, ;g Grn([v1,00) X [vg,oo))av u; (v1,v2)dvydvy

// <0 n(( o0, ’01))([1)2,00))6 a (vl-;'vz)d'vld’vz

v220
// >0 Gn([v1,00) x (- °°”2))a 3 (v1, v2)dv1dv,
v, <0
‘//‘vgég Gn((—00,v1) X (~00, ”2))6 8 (v1,v2)dv1dv;. (3.34)

It therefore suffices for the proof of (3.30) and (3.31) to establish similar results
for each of the eight summands above.

Recalling that E|e;|* < oo for some a > 2, we can choose 0 < § < } such
that f_ooo HP(u)dv + [;°(1 — H(u))Pdv < 00. Let g(v) = max(H"(v), e I*l) for
v<0andlet A= ffoo g(v)dv (> 0). Consider, in particular, the integral

2 G (”1,1)2) 3231:
/ / G"(”“””a oy drdva= A/ wg(vl)g(vz)avlavz‘“(”“”’)’
(3.35)

where A is a probability measure on (—00,0) X (—00,0) defined by dA(vy,v3) =
A~?%g(v1)g(v2)dvydv,. Since sup, w102 |0%y:/B8v,0v2| < 00 a.s. by Lemma 2 and
Since SUB,, <q.vy<0 [Gn(v1,92)/9(v1)9(2)| = O((n~ loglogn)!/2) a.s. by a mul-
tivariate analog of James’ (1975) law of the iterated logarithm for weighted em-
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pirical processes, we have by (3.35) that

0 40 2
0 -
SUP|/ / Gn(”l,vz)wg;zdvldvzl = O((n"'loglogn)'/?) a.s.  (3.36)

t>1

We next proceed to show that

Z {/_000 /_Ow[Gn(”l’”2)/9(111)9(02)][32yn/301802]d)\}2

n<N
0 0 Gz (")1 ,02) 32% 9
- ﬂ%l:v/‘w /—oo 92 (v1)g%(v2) (31)18112) (logN) as. (3.37)

The first inequality in (3.36) is a consequence of the Schwarz inequality.
Since sup,, ,, |0?yn/0v10v2] = O(1) a.s. by Lemma 2, it remains to show that

0 0o N n 9
/_w]_ 2 (”_1 ZXi(”hvz)) d\(v1,v;) = O(log N) as.,  (3.38)

X n=1 i=1

where X;(v1,v2) = {I{e;,; <vs,ei42<v2) — H(v1)H(v2)}/{g(v1)g(v2)}. Note that
{X1,Xs,...} and {X3,X4,...} are two i.i.d. sequences of random functions and

that (X5, X;)? < 2(2151'511/2‘ X15)% + 2(Eosj<n/2 X32;+1)%. Moreover, since
(28)7 > 1,

B / 0 f 0 X?(vmz)d*}(wlSE / 0 / " Xi(ow,en) a2
< 2P /_ow /; [H (v1)H(v2) + (H(v1) H(v2))"/Pllg(v1)g(v2)] /P dA < o0,

noting that (g(v))~1/# < 1/H(v). Hence (3.38) is a special case of a more general
result of Lai (1990D).

The other summands in (3.34) can be analyzed similarly, defining g(v) =
max((1— H(v))?,e™?) for v > 0. In view of (3.32), this proves the lemma in the
case d = 3. The case d = 2 is even simpler, for which (3.34) takes the form

o0
/ yi2(v,0;0)dGn(v)

_ [ Ayt . ° 0yt,2 .
- /0 Gn([9,00)) 222 (v,0;6)dv ~ /_  Gal(=00,9)) 32 (0, 0;)do.

As shown in Lai (1990a), the representation (3.33), and therefore (3.34) also, can
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be generalized to more than two variables, and therefore the same arguments can
be extended to prove the lemma for general d.

Proof of Theorem 2. Let z; = Dfg(x;). By (2.26) together with (3.14), (3.13)
and (3.12) of Lemma 1, for r = 1,2,...,

b, — 0= O((n 1 loglog n)§) a.s., (3.39)

Z 18s — )2 = { (" ( Zz z! ) l(ge;z;)nz) + O(n—3/2+45)}
= 0(log N) as., (3.40)

N N
> (5t (Bn — O)F = O(10g V) + 0 3 fltnsrln~/2449)

n=1 n=1

2l'
= O(log N) +0( 3 27%i/r+46 3~ lzntrl*) = O(log N) as., (3.41)

#:2¢<N n=2¢"1
in view of (3.4a), taking § < 1/8. By Taylor’s theorem,

n—d+1 n—d+1
Z Yed(Enit1s- - 58n,i4d-1,000)— D yra(@njie1y-- . sEniva—t,0;0)
i=m i=m
n—d+1
"y 1 ~ ~
= (0,., - 9) Z Dyt,d(en,,-ﬂ, cer s €nitd—1,0; 0*), (3.42)
i=m

where 6* lies between 8,, and 6. Let A, ¢ = fo(Xa) — fo(x5). Combining (3.42)
with (3.22) of Lemma 2 yields

N n—d+1 .
Z {(n —d-m+2)7?! E (¥n,d(€ni41s-- - +€njita—1,0;65)
n=no i=m ,
~Yn,d(€ni41s- -+ »En itd—1,0; 0)]}
N h
= 0( 3 {(@ ~ 0 Dfo(xtnsa)l* + Y10 ~ 0 Do (xnra-i)})
n=n =1
h.o N " ” h N’
102 X ehyasliBa-01?) +0( 3 D Anpamsie = 0IF)
Jj=ln=ng j=ln=n
N
+0( 3 118 - 6l12) = O(log V) a.s. (3.43)

n=ng
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The last relation above follows from (3.40) and the following bounds for fixed
i2L ‘

N N
z efl+j||§,; —0||> ~o? Z 16, — 6]1, by Lemma 2(iii) of Lai and Wei (1982a),
n=no n=no

= O(log N) a.s., by (3.40);

N N
2 ) 2 _ 2 _ pl4 A2
Y AbwsorlOn =6l = O( 3 18 - 61l sup 1D So(xns I

n=ng n=ng
2%

=0( 3 27%(0gi*Y. supl|Dfe(xns)IIP)=0(1) as., by (3.39) and (3.4a);
:2' <N n=2i-1 $€U

N
3" (B — 6)' Dfoe(xn4))?

n=ng

N N
= 3 (n = 0 Dfa(xari)V* + O( 3 13 = 01 sup 1D foxars)I)

n=ng n=ngp

= O(log N) a.s., by (3.41), (3.40) and (3.4a).
By Lemma 2 and (3.25),

n—d+1
sup > |vea(Enit1s- e 2En,ird=1,0;8) = Yeal€ir1s- .- s€ira1,0;0)]
t=m
n ~
= o( 3 feni - c,-|) = O(n|[8, - 0]]) as. (3.44)
i=m

From (3.44) and (3.40), it follows that

N n—d+1
> {(n —d=m+2)"" D" [Una(Enit1se- - Enit+d-1,0;0)
n=ng t=m \
~Yn,d(€i415- - 5 €i4d—1,0; 0)]}
N
=0( Y 118n - 0l%) = 0(tog V) ass. (3.45)
n=ngo .

Combining (3.43) and (3.45) with (3.30) of Lemma 3, we obtain the desired
conclusion (3.5).

Suppose furthermore that H has bounded support and that sup || D fgs(xn)||
11304
= 0(1) a.s. To prove (3.6), first note that by (3.44) and (3.39),
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n—d+l

Sl;}; (n-d-m+2)7! E |9,d(€nyit1s- - »€n it+d—1,0;0)
1
i—m

—Yt,d(€i41,- -+ €ipd-1,0;0)|
= O((n"' loglogn)}/?) a.s. (3.46)

Moreover, since |e;| + supgey || Dfs(x¢)|| = O(1) as., it follows from (3.42) and
(3.22) that

n—d+1
Sup (n—d—-m+2)! Z |9t,a(€n it1s - -+ sEnira-1,0;05)
~Yt,d(€n,it1s-- - »Enjitd—1,0;0)|
= 0(||6» — 8]]) = O((n"*loglog n)'/?) a.s., by (3.39). (3.47)

Combining (3.46) and (3.47) with (3.31), we obtain the desired conclusion (3.6).

4. Estimation of the Variance and Other Functionals of d-Step Ahead
Predictive Distributions

The minimum variance d-step ahead predictor (1.7) is the mean of the pre-
dictive (conditional) distribution of yn+4 given the current and past outputs and
inputs yn,un,... ,¥1,u1. Therefore the adaptive predictor (1.8) can be inter-
preted as an estimate of the mean of this predictive distribution when 8 and H
are both unknown. The variance of the predictive distribution is

Var(yn+q|Fn)
=o%(=Var¢), if d=1,

=02+ / -/y:,d(wl,. e yWe-1,0;0)dH(wy) - dH (wg_1) — §3+d, ifd > 2,
(4.1)
where y,, 4 is defined in (1.6). Note that Var(yn4.q|F,) is the conditional mean
squared prediction error E{(yn4d— Yn+d)?|Fn] of the minimum variance predictor
Yn+d- When o? and H are not known in advance, let 8, be the least squares
estimate of @ and let &, ; = y; — fo,. (xi), ¢ < n, be the residuals, as in Section 3.
An estimate of (4.1) based on the current and past observations y,uy,... ,Yn, Un
is
va'\r(yn+d|f )

=(n-m+1)"" Z e, d=1,

i=m
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n—d+1
~2 - ~ ~ . a2 ~2
= Un+(n -m — d + 2) 1 E yi,d(fn,i+l’° . ,fn,,’+d-l,0,0n) - yn+d, d _>_ 2,
i=m

where Y44 is defined in (1.8) and m = max(p,k + A). Under the assumptions
of Theorem 2(ii) and assuming that sup, |y»| < o0 a.s., it can be shown by a
straightforward modification of the preceding proof that

Var(ynsdlFn) — Var(ynsalFn) = O((n~loglogn)?) as.

The same ideas can be used to estimate other moments of the predictive
distribution of y,44 given F,,. Under the assumptions of Theorem 2(ii) and as-
suming H to be continuous, we can also obtain uniformly strongly consistent (cf.
(4.2) below) estimates of the predictive distribution function G 4(t) = P{yn4d
< t|Fn} by

n-d

Gﬂ,d(t) = (n - m — d + 1)—1 E I{yn,d(én,i+ly--- yén,i+d;é")st}.

=m

Since Gn,d(t) = f oo f P{yn,d('wl, v W4 0) < t}dH(wl) oo dH(wd_l)dH(wd),
it can be shown by a modification of the proof of Theorem 2(ii) together with a
Glivenko-Cantelli-type argument that

sup |6’n,d(t) = Gra(t)) > 0 as. as n— oo. (4.2)
t

Using the quantiles of @n,d, we can also obtain strongly consistent estimates of
the quantiles of the predictive distribution.
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