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SIMPLE ESTIMATORS FOR THE MEAN OF
SKEWED POPULATIONS
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Abstract: Simple estimators of the mean are developed and investigated. The
Weibull is used as the distributional model for the tail of the observed distribution.
No assumption is made about the left portion of the distributions. It is proven that
the once-Winsorized mean is superior to the sample mean for Weibull populations
with shape parameter greater than one. Estimators for the mean based upon a
simple preliminary test for the exponential distribution are illustrated.
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1. Introduction

The problem of estimating the population mean from a sample containing
a few “very large” observations has been faced by most sampling practitioners.
The definition of “very large” must itself be part of a study of estimation for such
samples. An individual practitioner may specify values as “outlier” or “unusual”
on the basis of experience. However, the definition of “very large” that appears
most useful to the statistician is a definition that separates cases wherein the
sample mean performs well as an estimator from those cases wherein alternative
estimators are markedly superior to the mean.

In the experimental situation, it is common to reject a large observation on
the basis that the unusual observation is the result of contamination or of errors
in procedure. Early studies of outliers include Dixon (1950), Anscombe (1960,
1961), Veale and Huntsberger (1969), and Kale and Sinha (1971). The books
by Barnett and Lewis (1984) and Hawkins (1980) treat the general problem of
outlier detection.

Tukey (1962) suggested the consideration of “longer-tailed” distributions as
an explanation of outliers. Tukey and McLaughlin (1963) and Dixon and Tukey
(1968) studied an estimator suggested by Charles Winsor and called by Tukey
the Winsorized mean. In its general form this estimator replaces the largest
7 observations by the (r + 1)st largest observation and replaces the s smallest
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observations by the (s 4+ 1)st smallest.

A large body of literature has appeared on robust estimation in the last
twenty years. Robust techniques are discussed in the texts by Huber (1981)
and Hampel, et al. (1986). Chambers (1986) studied robust estimators of the
superpopulation mean.

Bershad (1961) investigated estimators for the mean of a finite population
using a fixed number, A, to divide the population into two groups. Let X, m <
X(2) £ - £ X(n) be the ordered observations in a sample of size n. Bershad
considered the estimator of the finite population total defined by

Nn~! ix(,.) +C Y X,

=1 i=n—r+1

where the first summation is over sample values less than A and the second
summation is over the sample values greater than A. The values of A and C
which minimize the mean square error are a function of the population mean
and variance for each of the two groups. Bershad demonstrated that gains can
be made for a rather wide choice of A and C. Hidiroglou and Srinath (1981)
and Ernst (1980) also investigated estimators that give a different weight to the
largest observations. These estimators are called reweighted estimators by some
authors.

As a further illustration of estimators of the reweighting type, let n — r of
the units in a sample of size n be less than a specified value, A, and let r of the
units be greater than A. Consider the estimator of the infinite population mean

n—r n
b= a(n - 'r)_l EX(;) + (1 — a)r'l Z X(,'), (1.1)
=1 t=n—r+1

where X(;) are the ordered observations and a is to be determined. If a depends

only on 7, it is possible to show that the a(r) that minimizes the mean square
error of p is

_ _(n=n)af +r(n — r)p1(p1 — p2)*
a(r) = —5 P 2’
roT + (n — )0k + r(n — )(pi1 — pia)

where (u1,0%) is the mean and variance of the population of elements less than A,
(p2,0%) is the mean and variance of the population of elements greater than A,
and p, is the proportion of the population less than A. In order to implement the
estimator i, it is necessary to use outside information to specify the value for a(r).
This requires the practitioner to have some prior knowledge of the parameters
of the population. Hidiroglou and Srinath suggest that such information can be
obtained from previous surveys or from a previous census.

(1.2)
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Our investigation of the estimation of the mean is undertaken on the as-
sumption that the right tail of the distribution is well approximated by the right
tail of a Weibull distribution. The nature of the left portion of the distribution is
of modest importance to the problem, and casual investigation of empirical dis-
tributions suggests that it is difficult to specify a form for the left portion that is
widely applicable. On the other hand, many empirical distributions display “tail
characteristics” of the Weibull.

We shall be interested in relatively simple estimators. In particular, we shall
consider estimators that are linear in the order statistics and estimators that are
a function of a simple preliminary test. Qur investigation suggests that the loss
in efficiency associated with the use of our estimators for populations where the
mean performs well (such as the exponential) is very small relative to the gains
made in using the estimators on heavily skewed populations. It is demonstrated
that these estimators can easily have mean square errors on the order of one-half
or one-third the variance of the mean for the type of populations encountered in
practice. We begin by considering estimation for an infinite population mean.
In the final section we show how the results can be extended to the estimation
of a finite population mean.

2. Winsorization for the Weibull

The Weibull density is given by

f(yi0,0)=ar"ly* texp{-A"1y%}, y>0

=0, otherwise (2.1)

where A > 0 and @ > 0. If X is defined by the one-to-one transformation
X =Y, then X is distributed as an exponential random variable with parameter
A. Conversely, the Weibull variable is the power of an exponential variable, X7,
where v = a™1.

The once-Winsorized mean for a right skewed distribution is

n—1

Wl = n—l [E Y'(') + Y(n—'l)] . (2.2)

i=1

Using the mean square error as the criterion, we prove that the once-Winsorized
mean is superior to the sample mean for the Weibull if the shape parameter v
is greater than one, has the same efficiency as the mean if ¥ = 1, and is less
efficient than the mean if v < 1.

The behavior of the order statistics of a random sample selected from the
exponential distribution plays a central role in our investigation. Let X be an
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exponential random variable with parameter A. Let the order statistics of a

random sample of size n be denoted by X(;) , where X(3) < X(2) < --- < X(n)
and set X(o) = 0. Then it is well known that the random variables

Zy=(n-k+ 1)(X(k) - X(k-l))a k=1,2,...,n, (2.3)

are independently, identically distributed exponential random variables with pa-
rameter A. See David (1981, p.20).

The following two lemmas permit us to express the expected value of positive
powers of the largest exponential order statistic as a function of expected values
of that power of the second largest order statistic and of a smaller power of the
largest. These results can also be obtained from Theorem 3 of Lin (1989).

Lemma 1. Let X(;) be the ith order statistic for a random sample of n selected
from the standard exponential. Then, for v > 0,

E{X(,} = E{X{n_y} +7E{X(3"}-
Proof. We have
E{Xy}= / (1 — e ®)* e %dz
0

n—1
=n), (n i 1)(—1)"(:' +1)~0*IT(y + 1),

=0

where I'(-) is the gamma function, and

n-2 n—29 )
Xy} =nn -0 Y (") 106+ 2" + .

i=0

It follows that
n—1 n—1 )
B }-1B5 ) =arer+ DY ("7 )06 + D0 -6+ 97
‘ =0

n—-1
=n =1\ iy ~(7+1)
_ r(7+1>§0( j )( (=) + 1)

= E{X(‘Yn—-l) }
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Lemma 2. Let X(;) be the ith order statistic for a random sample of size n
selected from the standard ezponential. Then, for v > 0,

E{X?n—l)xgn)} = E{X(z;uy—l)} + 7E{X(’Yn—1)X(‘yn_)l ¢

Proof. We may write X(’Yn) = [X(n-1) + Z]7, where Z is an exponential ran-
dom variable distributed independently of X(,,_1). Letting fin-1)(z) denote the
density of X(,_y), we have

o0 o0
EX X} = /o /o 2" fin-1)(z)(z + 2)"e *dzdz

and, using integrating by parts,
% 3
E{XG X} = /0 27 f(n-1)(z)dz

+/ / vz (2 + 2)"7 fn-1)(z)e *dzdz
o Jo

= E{X(z':—l)} + 7E{Xgn-—1)X('yn_)l *

The covariance between any two exponential order statistics is equal to the
variance of the smallest. The following lemma demonstrates that the exponential
(7 = 1) represents a boundary between those ¥ < 1 where the covariance is less
than variance of the smallest and those ¥ > 1 where the covariance is greater
than the variance of the smallest.

Lemma 3. Given a sample of size n from the Weibull distribution, the covari-
ance of the kth (k > 2) order statistic, Y(x), with any smaller order statistic,
Y(j), 0 < 7 £ k-1, is greater than, equal to, or less than Cov(Y(k-1),Y(j)) if the
parameter v is greater than, equal to, or less than one, respectively.

Proof. We express the Weibull order statistics as powers of the exponential
order statistics and recall that

k
Xy=» (n-i+1)71z,
=1

where the X(;) are the exponential order statistics and the Z; are independent
exponential random variables. We then express, for 0 < j < k — 1,

Xk = X(j) + Wik = X(j) + Wig—1+ (n =k +1)71 2,
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where
k—j .

Wik=> (n—j+1-i)""Z;ps, n>k>j.
=1
We consider the conditional expected value of Yy — Y(k-1) given Y(;;
¥ ¥ Y
E{XGy = Xg-y|X() = 2y}

= E{[z(j) + Wik-1+ (n =k + 1) Z4]" = (2(j) + Wjk-1)"}.  (24)
If v = 1, the expected value on the right of (2.4) is E{(n — k + 1)~1Z;}. If
0 < 7 < 1, the quantity in (2.4) whose expectation is desired is decreasing in Z(j)
for every fixed W x_; > 0 and fixed Z; > 0. Hence, if0 < v < 1, the expectation
on the right of (2.4) is a decreasing function of z(j)- By a similar argument, if
¥ > 1, the expectation is an increasing function of z(j)- Now the covariance
between X and an increasing function of X is positive. See, for example, Bickel

(1967, p. 576). Hence, if 7 is less than one, equal to one, or greater than one,
then

Cov (Yix) = Yk-1),Y()), 0<j<k-—1,

is negative, zero, or positive, respectively.
We now give the main result.

Theorem. Let a random sample of n elements be selected from the Weibull
distribution defined in (2.1). Let the once-Winsorized mean in (2.2) be used as
an estimator of the population mean. Then the mean square error of (2.2) is less
than, equal to, or greater than the variance of the sample mean if the parameter,
v = a~1, is greater than, equal to, or less than one, respectively.

Proof. Expressing the Weibull order statistics as the yth powers of the expo-
nential order statistics, X(;), we consider two estimators of the expectation of the
sum of the two largest order statistics; X(”:‘) + X("n__l) and 2X(7n_1). The mean
square error of these estimators is

MSE{X[, + X(,_1)} = E{X}) + 2X,_,,X(,) + Xy}
- [E(X?n)) + E(X("n-—l))]z’
MSE{2X] _, } = 4E(X(2,j_1)) —4E(X[,_)) E(X(,) + X, _y)
+[B(X],) + E(X7,_,))"
Using Lemmas 1 and 2, we have
MSE{X [, +X{,_;,} - MSE{2X(,_,)}

-1 -1
= 27Cov(X('7n),XZn) )+ 2'7Cov(X8n_1),X(7n) . (2.5)
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Now X ('Yn_)l is a monotone increasing, constant, or monotone decreasing function
of X(n)if ¥ > 1,7 =1, 0r 0 < 7 < 1, respectively. Furthermore,

E{X)' | X(n-1) = 2(n-1)} = E{(X(n-1) + 2)" | X(n-1) = Z(n-1)}

is monotone increasing, constant, or monotone decreasing function of T(n-1) if
v¥>1,vy=1,0r 0 < v < 1, respectively. Hence, the two covariances on the
right of (2.5) are positive, zero, or negative,as y > 1,y = 1, or 0 < v < 1,
respectively. It follows that 2X(,_,, as an estimator of E{X,_,, + X} has
smaller, the same, or larger mean square error than X("n) + X?n_l) as v > 1,
7=1,0r 0 <7v <1, respectively. Now

n-1 n
MSE{E Y + Y(n-l)} - MSE{EY«)}

=1 =1

n—2
= Cov{ > Y(,-),2Y(n_1)} + MSE {2Y(,_1) }

=1
n-2
- Cov{z Yy, Yn-1) + Y(n)]} = Var {¥(n_1) + ¥(m) } -
=1

But, by Lemma 3,

n-2
COV{ Z Y(i)’ 2},(11.—1) }

i=1

is less than, equal to, or greater than
n-2
COV{ E },(i) ) [Y(n—l) + Y('n)]}
i=1
ify>1,7=1,0r 0 <7 <1, respectively. Using (2.5), the result follows.
3. Efficiency of the Winsorized Mean for the Weibull

The once-Winsorized mean W, is defined in (2.2). In general, the rth Win-
sorized mean for a right skewed distribution is

n—r
W, = n~1 (Z X(j) + TX(,,_.,-)) . (3.1)

i=1

If the X(;) are distributed as exponential order statistics and if we consider only
estimators employing the first (n — r) order statistics, then it can be shown that
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the minimum mean square error estimator of the mean is

ﬁ,. =(n—-r+ 1)~1 (Z X3y + ’I‘X(,,_,.)) . (3.2)
j=1

For the exponential distribution with parameter A\ we have

E{W,,M,} = {n(n—r+1)}(n-r),
MSE{WT,JTI\,} ={n?n-r+r),(n-r+ 1)~}

Forr =1, M\l = ﬁ\’l has a mean square error that is equal to the variance of the
sample mean.

The best unbiased estimator for the parameter A of the exponential distri-
bution using only the first (n — r) observations is

X,- = (n - 1‘)-1 (Z X(]) + rX(n—r)) N (3-3)

=1

which has a variance of (n — r)~1A%. Discarding the largest r observations has
the effect of reducing the sample size by r.

The efficiencies of these three estimators relative to the sample mean for
the Weibull distribution have been tabulated by McElhone (1970). A portion
of McElhone’s results are given in Table 1. The striking aspect of this table is
the large gains in efficiency possible with the use of the once-Winsorized mean.
For example, given a Weibull with shape parameter ¥ = 2 and a sample of size
25, the once-Winsorized mean is 24 percent more efficient than the mean. A
population displaying this degree of skewness would not be unusual in practice.
For n = 25, the once-Winsorized mean is twice as efficient as the sample mean
for a population with ¥ = 3 and more than four times as efficient as the sample
mean for a population with v = 4.

For those configurations in the table and r > 1, ﬁ, is uniformly superior on
the basis of mean square error to Wr. For reasonable sized samples, say n > 4,
there is little difference among the mean square errors of the three estimators.

Relative to the gains made for r = 1, the gains from proceeding to r = 2 are
modest, and in no case is r = 3 superior to r = 2. For ¥ = 2, r = 2 is inferior
tor = 1. Of course, the sample sizes of the table are relatively small. As sample

size increases and as +y increases, r greater than one becomes superior to r equal
to omne.
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Table 1. Efficiencies of estimators relative to the mean
for the Weibull distribution

Shape parameter ¥ and Estimator

Sample Censoring
size r 2 3 4
n

—~ — ~ —

W X M W X M W A M

2 1 2.86 1.67 2.86 8.94 5.43 8.94 30.04 18.71 30.04
3 1 2.27 1.69 2.27 6.34 4.81 6.34 20.12 15.43 20.12
4 1 1.99 1.63 199 5.13 4.25 5.13 15.55 12.95 15.55
5 1 1.82 1.57 1.82 4.42 3.84 4.42 12.89 11.23 12.89
2 1.58 1.61 1.64 450 4.54 4.56 14.67 14.67 14.73
7 1 162 148 1.62 3.61 3.30 361 9.91 9.05 991
2 1.42 150 1.49 3.61 3.72 3.68 11.06 11.18 11.14
10 1 147 139 147 299 283 299 769 725 7.69
2 1.31 140 137 2.95 3.07 3.02 8.38 8.54 847
3 1.04 1.26 1.18 254 2.98 268 7.70 7.98 7.87
15 1 1.34 1.30 1.34 249 241 249 592 572 5.92
2 1.22 1.30 1.27 243 254 248 6.30 6.44 6.37
3 098 1.18 1.12 2.06 2.26 2.19 5.66 5.90 5.81
20 1 128 1.25 1.28 2.22 2.17 222 500 488 5.00
2 1.17 1.25 1.22 2.15 225 2.20 5.24 537 5.30
3 096 1.14 1.08 1.82 2.00 1.94 4.65 4.86 4.78
25 1 1.24 1.22 1.24 2.05 2.02 205 442 435 4.42
2 1.14 1.21 1.18 1.98 2.07 2.03 4.59 470 4.64
3 0.95 1.11 1.06 1.68 1.83 1.78 4.04 422 4.16

4. A Simple Test for the Weibull Shape Parameter

The theory and empirical evidence of the previous sections demonstrate that
considerable gains in efficiency relative to the mean are possible if the parameter,
v, of the Weibull is greater than one. It is therefore desirable to be able to test
the hypothesis that vy = 1 versus the hypothesis that v > 1.

A number of tests have been suggested in the literature, resting upon the fact
that Zy = (n— k+ 1)(X(x) — X(k-1)) are distributed as independent exponential
random variables when the original X(4) are the exponential order statistics.
Several tests are discussed in McElhone (1970). Also see Jackson (1967) and
Mann, et al. (1974).

We desire a test to use as a basis for choosing between competing estimators
of the population mean. We also desire a test that is location invariant because
we are concerned only with the tail of the empirical distribution. The location




146 WAYNE A. FULLER

invariance requirement rules out tests based upon the log-Weibull distribution.
If the two competing estimators are the sample mean and the jth-Winsorized
mean, a very simple test statistic that is a function of the difference between the

two estimators is B
J Ei:n—j+l Zyi

(T -1 2:‘::-—T+1 Zyi

where Zy; = (n — i+ 1)(Y) — Y(i_y)) and j+ 1 < T < n is the number of
large observations used to construct the test. We consider the use of T < n in
constructing the test because we only postulate a model for the tail portion of
the distribution.

If the Y’s are selected from an exponential distribution, the Zy; are inde-
pendent exponential random variables and Fr; is distributed as Snedecor’s F
with 2j and 2(T — j) degrees of freedom. If T = n and j > 1, the statistic is seen
to be the ratio of a multiple of the difference between the sample mean and the
once-Winsorized mean to the once-Winsorized mean. Thus it is an intuitively ap-
pealing criterion for choosing between the two estimators. The following lemma.

demonstrates that the test possesses power to discriminate against Weibull dis-
tributions with v > 1.

Fr; (4.1)

Lemma 4. LetY(;) be the order statistics of the Weibull distribution. The test
that accepts ¥ = 1 or accepts ¥ > 1 as Fr; is less than or greater than F:("T_j)(6 ),
where F;(’;‘,._j)(ii) is the § percentile of Snedecor’s F with 25 and 2(T — j) degrees
of freedom, has a power function that is monotone increasing in +.

Proof. The order statistics of the Weibull sample may be expressed as powers

of the order statistics from the exponential distribution. Thus the test statistic
may be written as

. -1 .
_ J ! [Z?:n—,ﬂ-l (X(‘Yn—-j) B X?ﬂ—T)) (X(‘y;) B X(‘Yn-—T)) B J]
- . —j- -1 . ’
(T - J)_l [Z?::—;'+l (X?n—]) - X(’Yn—T)) (Xa) - X?n—T)) +7+ 1]

T;

where X(;) are the order statistics of the exponential. Now the ratio of X("‘.) -
X?n-—T) to.X("'n_ i X&_—T) is mfmotone decreasin.g fori < n = Jj- 1 a.n.d is
monotone increasing for ¢ > n — j. Therefore Fr; is monotone increasing in 7y
and the result follows.

5. Estimation Following a Preliminary Test

In Section 3 we demonstrated that there exists a simple estimator superior
to the mean for the Weibull distribution with parameter v > 1. In Section 4 we
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described a simple test of the hypothesis that ¥ = 1 against the alternative that
4 > 1. In practice it is the tail of the distribution that produces the skewness in
the distribution of the sample mean. Also we have found it difficult to model the
entire distribution of variables encountered in survey sampling practice. These
results suggest the following estimation procedure.

i) Test the hypothesis that the order statistics were selected from an exponential
(¥ = 1) versus the alternative ¥ > 1 using the T largest order statistics.

ii) If the exponential hypothesis is accepted, use the sample mean as the estimator
of the population mean. If the exponential hypothesis is rejected, estimate the
largest order statistic(s) by a procedure appropriate for the Weibull with v > 1.

We shall study the class of estimators defined by

Pri=7

n—j
= n—l{z },(1) + .7 [Yv(n—j) + KjETj] } Otherwise, (51)

=1

if FT]' < Kj

where Fr; is defined in (4.1), K; is the cut-off value that determines when the
alternative estimator of the large values is used and

T-1
dr; = (T - ) { Y- Winmiy = Yonemy) + 3 [Yini) = Yin-m)] }

=3

The estimator of (5.1) is a test-and-estimate procedure in which the estimator is
a continuous function of the sums formed from different sets of order statistics.
The sample mean and the Winsorized mean are special cases of estimator (5.1)
obtained by setting K; equal to infinity and zero respectively.

It is difficult to specify the number of tail observations, T, the number of
large order statistics, j, and the cut-off values, K, to use in constructing the
estimator for the tail portion. It would seem that T approximately equal to one
fifth to one third of the observations is reasonable for many populations and
sample sizes. It also seems that one can reduce this fraction in large (n > 200)
samples. When the sample is large, setting 7 = 30 seems to perform well. Table
1 suggests that the optimum j depends on the sample size, with larger j possible
for larger samples. We consider j = 1,2,3 in the Monte Carlo section. Larger
K ; will give higher efficiency for populations in which the mean is optimum. We
now investigate the effect of varying K; for the exponential distribution.

For the exponential distribution with 7 = n, n > 1, and Ky = (n — 1)A,

E(im)=A[1-n"' 1 +R)"],
Var (fin1) = A2[n™! = n~2(1 + h) 2D,
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The bias is negative for all h < oo and the absolute bias is a decreasing function
of h reaching a maximum for h'= 0. The variance is decreased by the square of
the bias and hence the mean square error of the estimator is a constant function
of h, being always equal to the variance of the mean.

Huang (1970) has investigated the relative efficiency of this and similar es-
timators under the exponential model. Huang derived the multiple, a,,, of fin;
which minimizes the mean square error of the estimator and the multiple, a,,
required to produce an unbiased estimator. He showed that

[(1+R)" =1] [(n+ 1)1+ 2)" " = 2] ™ fins = @mfin
minimizes the mean square error for a fixed h and that
n(1+ h)*"! [n(l +h)*1 — 1] finl = Qyufiny

is unbiased for A. Huang studied the ratio of the mean square error of n(n +
1)~1¥ to the mean square error of amfin; and the ratio of the variance of §
to the variance of a,fin;. Huang demonstrated that these ratios are monotone
increasing in h for fixed » > 1 and monotone increasing in 7 for fixed h, with
one as the limiting value in both cases. The ratios for A = 0 are

MSE (n(n+1)7'3) =n
MSE(amfin1)  n+1

and
Var(y) n-—1
Var(a,fin1) n

A few ratios for n = 10 and n = 21 for the exponential distribution are given
in Table 2. The § of Table 2 is the percentage level for the F-test of (5.1). The
loss in efficiency associated with h = 0 relative to & = 1 is about n~!. The loss
is less than 0.5n~1 for the h-value associated with the 25 percent level of F. The
loss in efficiency is less than 0.1 percent if the preliminary test is performed at
the 0.5 percent level.

8. A Monte Carlo Study

The procedures discussed in the preceeding sections were applied to samples
selected from two real populations and from a Weibull distribution with v =3.
The first population is the chickens per segment (in tens less ten) for segments
with chickens observed in the United States Department of Agriculture area sur-
vey of the Southeastern states 1959-60-61. The segment is the primary sampling
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Table 2. Relative efficiency of preliminary test estimators for the exponential

Sample 5 h MSE (n(n + 1)"3) Var(y)
size MSE (am fin1) Var(ayfin1)

10 100 0.0 0.9091 0.9000

25 0.1667 0.9610 0.9571

10 0.2911 0.9827 0.9810

2.5 0.5067 0.9954 0.9950

0.5 0.8011 0.9991 0.9990

21 100 0.0 0.9545 0.9524

25 0.0720 0.9805 0.9793

10 0.1220 0.9914 0.9910

2.5 0.2025 0.9977 0.9977

0.5 0.3035 0.9995 0.9995

unit of the area frame. The second population is the size of farm, “Acres in
Place,” (in tens of acres) published in the Agricultural Census (1959). In both
cases the populations were simplified so that the smallest relative frequency for
any particular y-value is 1/2000. The populations are given in the Appendix.
The chicken population has a mean of 14.69 and a variance of 4293, the acre
population has a mean of 301 and a variance of 2,338,204, and the Weibull dis-
tribution with 4 = 3 has a mean of 6 and a variance of 684. The coefficients of
variation are 4.46, 5.08, and 4.36 for chickens, acres, and Weibull with v = 3,
respectively. To facilitate comparisons all populations have been coded by divid-
ing the observations by the population mean. Thus, all three populations used
in the simulations have a mean of one and a variance that is equal to the squared
coefficient of variation.

The distribution functions for chickens and acres deviate markedly from the
Weibull model in the left part of the distribution. On the other hand, the upper
portion of the distribution, say the largest ten percent, is well approximated by
the tail of a Weibull distribution with a slope corresponding to a 7y of about 3.
Also the coefficients of variation for chickens and acres approximate that of a
Weibull distribution with shape parameter, v = 3.

Six estimators of the population mean were compared in the Monte Carlo
study. In addition to the simple mean, the once-Winsorized mean and the twice-
Winsorized mean, three estimators of the test-and-estimate type were cons-
tructed. The three test-and-estimate procedures are the estimators defined in
(5.1) for j = 1, 2, and 3. The cut-off values are K; = 5.8, K = 4.2 and
K3 = 3.5. The cut-off levels for the F-tests were set so that less than one half of
one percent of the samples with 7' = 30 from an exponential would be modified.

Simple random replacement samples of size 25, 100, and 200 were selected
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from three populations. Two thousand samples were used for n = 25 and one
thousand samples were used for n = 100 and n = 200. The samples were re-
stricted so that they contained, approximately, the correct fraction of the 1 /1000
largest observations in the population. A T of 10, 30, and 30 was used to con-
struct the test-and-estimate procedures for n = 25, 100, and 200, respectively.
The Monte Carlo results for samples of size 25 are given in Table 3.

Table 3. Monte Carlo comparison of alternative estimators
for the mean (2000 samples of size 25, T = 10)

Estimator Mean nV{u} nMSE{i} V{y}/MSE{z}
Chickens
Mean 1.008 20.03 20.03 1.00
Once-Winsorized 0.674 4.64 7.30 2.74
Twice-Winsorized 0.549 1.29 6.38 3.14
Prelim. (F = 5.8) 0.803 8.10 9.07 2.21
2-Prelim. (F = 4.2) 0.729 3.67 5.51 3.64
3-Prelim. (F = 3.5) 0.694 2.38 4.72 4.24
Acres
Mean 1.016 27.14 27.14 1.00
Once-Winsorized 0.682 4.06 6.59 4.12
Twice-Winsorized 0.582 0.99 5.36 5.06
Prelim. (F = 5.8) 0.794 6.94 8.00 3.39
2-Prelim. (F = 4.2) 0.743 2.59 4.24 6.40
3-Prelim. (F = 3.5) 0.721 1.93 3.88 6.99
Weibull (y = 3)
Mean 1.009 18.08 18.08 1.00
Once-Winsorized 0.678 6.77 9.36 1.93
Twice-Winsorized 0.503 3.26 9.44 1.92
Prelim. (F = 5.8) 0.860 10.98 11.47 1.58
2-Prelim. (F =4.2) 0.748 7.95 9.54 1.90
3-Prelim. (F = 3.5) 0.715 6.25 8.28 2.18

The contribution of the large observations to the variance of the sample
mean is demonstrated by the small variance of the Winsorized means relative
to the sample mean. For the Weibull distribution, the mean square error of the
once-Winsorized mean and of the twice-Winsorized mean are about one-half of
the variance of the sample mean. This is consistent with the Weibull theory used
to construct Table 1. The efficiency of the mean relative to Winsorization is even
smaller for the chickens and acres populations than for the Weibull.

While once-Winsorized means have much smaller mean square errors than
the simple mean, they have a bias that is roughly one-third of the population
mean. The test-and-estimate procedures defined by (5.1) have a smaller bias and
a larger variance than the Winsorized means. The large value for the test (F =
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5.8) used with the estimator that modifies only the largest observation resulted
in a relatively small bias but ‘a larger mean square error than the corresponding
once-Winsorized mean. The procedure based on the comparison of the largest
two observations to the next eight largest had a smaller bias and a smaller mean
square error than the twice-Winsorized mean for chickens and acres. The bias
of the test-and-estimate procedure based on the largest two observations was
smaller than the bias of the twice-Winsorized mean but the mean square errors
were comparable.

The best procedure with respect to mean square error was the procedure
that modified the three largest observations. This was slightly surprising, given
the small sample size.

Our discussion assumes that we are dealing with a single sample. If samples
are to be summed, this must be recognized in evaluating the estimators. For
example, the mean square error (= variance) of the sum of six independent simple
means from samples of 25 for the chicken population is 4.78 while the mean square
error of the sum of six independent once-Winsorized means. is estimated to be

[6(0.326)]% + 6(0.204) = 5.05

and the estimated mean square error of the sum of six test-and-estimate proce-
dures modifying only the largest observation, 10,1, is

[6(0.190)]* + 6(0.361) = 3.46.

In this example the variance gains of the biased estimators is such that they retain
an advantage for the sum of several estimators. In our case the biased estimators
are always biased towards zero. Therefore, there is always a number L such that
the sum of L unbiased estimators is superior to the sum of L biased estimators.
The test-and-estimate procedures are less biased than the Winsorized estimators.
Hence, a sum of test-and-estimate procedures will retain an advantage over a sum
of simple means for a larger L, than will a sum of Winsorized means.

The Monte Carlo properties of the estimators for samples of size 100 and
200 are given in Table 4 and Table 5, respectively. The basic ordering of the
mean square errors of the estimators is the same for the three sample sizes. The
efficiency of the five estimators that modify the largest observations relative to
the simple mean declines as the sample size increases. This is to be expected
because the relative importance of the largest observations declines as the sample
size increases. Associated with this phenomenon is the fact that the variances of
all of the modification procedures decline at a rate smaller than n~. Thus, the
entries in the table, nVar(i), are uniformly larger for n = 200 than for n = 100.
On the other hand, the bias shows a marked reduction from n = 100 to n = 200.
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Table 4. Monte Carlo comparison of alternative estimators
for the mean (1000 samples of size 100, T = 30)

Estimator Mean nV{u} nMSE{z} V{y}/MSE{n}
Chickens
Mean 1.005 20.16 20.16 1.00
Once-Winsorized 0.835 10.17 12.91 1.56
Twice-Winsorized 0.734 5.89 12.95 1.56
Prelim. (F = 5.8) 0.900 12.76 13.75 1.47
2-Prelim. (F = 4.2) 0.832 9.12 11.94 1.69
3-Prelim. (F = 3.5) 0.786 7.09 11.68 1.73
Acres
Mean 1.000 25.56 25.56 1.00
Once-Winsorized 0.803 8.73 12.63 2.02
Twice-Winsorized 0.723 3.17 10.86 2.35
Prelim. (F = 5.8) 0.857 11.11 13.15 1.94
2-Prelim. (F = 4.2) 0.803 5.03 8.90 2.87
3-Prelim. (F = 3.5) 0.778 4.01 8.93 2.86
Weibull (y = 3)
Mean 1.007 19.33 19.33 1.00
Once-Winsorized 0.862 10.83 12.73 1.52
Twice-Winsorized 0.772 8.16 13.37 1.45
Prelim. (F = 5.8) 0.943 13.62 13.95 1.39
2-Prelim. (F = 4.2) 0.906 11.79 12.67 1.53
3-Prelim. (F = 3.5) 0.876 10.80 12.34 1.57

There is still a considerable gain in efficiency from using the modifications
at samples of size 200 for all three populations. There are gains of about 20%
for the Weibull and chicken distributions, while larger gains are attained for the
acres population.

One form of a reweighted estimator was introduced in (1.1). The mean
square error of that reweighted estimator is

2P (n)o} + (1 - a(r)Po? + [a(r) - p1)* (1 — p2)?}

r=0

where
n\ ,_
P, = (T)pl "(1-py)".

Using this formula, the mean square error of the estimator based on the optimum
values of a(r) defined in (1.2) was computed for n = 100 and p; = 0.97. The

mean square error relative to that of the sample mean is given in line three of
Table 6.
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Table 5. Monte Carlo comparison of alternative estimators
for the mean (1000 samples of size 200, T = 30)

Estimator Mean nV{i} nMSE{n} V{y}/MSE{j}
Chickens
Mean 0.995 19.77 19.77 1.00
Once-Winsorized 0.888 13.89 16.42 1.20
Twice-Winsorized 0.809 9.37 16.65 1.19
Prelim. (F = 5.8) 0.938 16.05 16.81 1.18
2-Prelim. (F = 4.2) 0.895 13.13 15.34 1.29
3-Prelim. (F = 3.5) 0.859 11.49 15.32 1.29
Acres
Mean 0.996 25.42 25.42 1.00
Once-Winsorized 0.853 14.79 19.13 1.33
Twice-Winsorized 0.776 6.19 16.26 1.56
Prelim. (F = 5.8) 0.898 17.65 19.73 1.29
2-Prelim. (F = 4.2) 0.843 9.14 14.09 1.80
3-Prelim. (F = 3.5) 0.816 5.92 12.68 2.00
Weibull (y = 3)
Mean 0.995 18.93 18.93 1.00
Once-Winsorized 0.906 13.73 13.73 1.22
Twice-Winsorized 0.842 10.64 10.64 1.21
Prelim. (F = 5.8) 0.962 15.82 15.82 1.18
2-Prelim. (F =4.2)  0.943 14.28 14.94 1.27
3-Prelim. (F = 3.5) 0.929 13.47 13.47 1.31

Table 6. Relative mean square errors of alternative estimators
of the mean (n = 100 and p; = 0.97)

Estimator Population

Chickens  Acres  Weibull(y = 3)
Mean 1.00 1.00 1.00
3-Prelim. 0.58 0.35 0.64
Reweighted, a(r) 0.49 0.42 0.51
Reweighted, a(3) 0.53 0.46 0.55
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A simpler form of the reweighted estimator uses a value of a that does not
depend on r. An estimator of this form is obtained for our example by fixing
a at a(3). The values of a(3) are 0.9805, 0.9850, and 0.9775 for chickens, acres,
and Weibull, respectively. Thus the estimator weights the large observations by
about one third to two thirds of the post stratified weight. Table 6 contains the
relative mean square errors of the simple mean, the two reweighted estimators,
and the test-and-estimate procedure that modifies the three largest observations.
The relative mean square error of the test-and-estimate procedure is taken from
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Table 4. The comparison is for a sample size of 100 so that the expected frac-
tion greater than A for the reweighted estimator is the same as the fraction of
observations modified by the test-and-estimate procedure.

The test-and-estimate procedure is superior for the acres population. The
reweighted estimators are superior for the Weibull and for chickens. These re-
sults are very supportive of the simple test-and-estimate procedure because the
test-and-estimate procedure uses no information outside of the sample. The
first reweighted estimator is based upon the optimum value of a(r) which used
knowledge of the means and variances of the two parts of the population and of
the fractions falling in the two parts. The second reweighted estimator requires
almost as much knowledge of the population.

The efficiency of the preliminary test procedures is greater than 99% for
the exponential distribution, no outside information is required for these estima-
tors, and large gains in efficiency are possible for skewed distributions. Therefore

these procedures are highly recommended for samples selected from skewed pop-
ulations.

7. Estimators for Finite Populations

In the preceeding sections we have discussed estimation for an infinite pop-
ulation mean. To extend the results to a finite population mean, we assume the
finite universe, Un, to be a random sample of size N selected from the distribu-
tion, Fx(z). Assume that a simple random nonreplacement sample of size n is
selected from Uy, and that an estimator of the mean of the finite population is
desired.

We shall use z; to denote an element of the sample of n or of the population of
N and adopt the convention that the indexing is such that the sample is composed
of elements indexed by ¢ = 1,2,... ,n. Let u and o2 be the superpopulation mean
and variance. Let Z,, be the sample mean and let X 5 be the finite population
mean.

The following lemma enables us to choose an estimator for the finite pop-
ulation mean given estimators for u. The origin of the estimator of the finite
population mean that is a linear combination of the sample mean and an estima-
tor of the superpopulation mean is uncertain. Brewer and Ferrier (1966) cite a

book review by Fisher (1942) in which Fisher states that if ji,, is the maximum
likelihood estimator of u then

ﬁmN,: N~'nz, + N"YN - n)fin (7.1)

is the maximum likelihood estimator of X n.
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Lemma 5. Let the finite population, Un, be a random sample from Fx(z). Let
i1 and Ji; be two estimators of the superpopulation mean u defined for samples

of sizen. If E{(fi1 — p)*} < E{(fiz — p)*} then

E{N7? [nZ, + (N — n)i1 ~Xn]"} < E{N"? [nZ, + (N — n)iz —-Xn~]"}.

Proof. We have

E({N"'[nZn + (N = )] - Xn}°) = E([N"Y(V = n)]* (B1 =X n-n)?)
= NN =n)? (E{(Bx )’ }+ E{(Br ~ p)(XN-n— ) }+ E{(Xn-n—1)’}) ,

where Xx_p = (N — n)~! Zf;n +1 %i- Since fiy and X ny_, are unconditionally
independent and E{X y_,} = u, we have

MSE(fiin) = E({N " [nZ + (N - n)fii]) - Xn}’)

(7.2)
- 2 ~
= (VN = ) (E {(i - w)? + (N = m)o?})
and the result follows.
Corollary. If i is the minimum mean square error estimator for u, then
fin = N7 nZ, + (N - n)i] (7.3)

is the minimum mean square error estimator for X n.

The unconditional mean square error of fiy, defined in (7.3) as an estimator
XN, is given in (7.2). Let nV(f) be an unbiased (or consistent) estimator for
nE{(j — p)*} and let s2 = (n - 1)"1 T (zi — Z,)%. Then

AN = ) {V (@) + (N - n)"'s2} (7.4)

is an unbiased (or consistent) estimator of nE{(ix — Xn)?}. See Bellhouse
(1987) for extensions of some of these results.
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Appendix: Experimental Populations

Probability Probability

of Y-value Chickens Acres of Y-value Chickens Acres
1 .0665 0 5 47 .0005 88 1520
2 2195 1 25 48 0005 90 1540
3 0700 3 60 49 .0005 92 1560
4 .1080 4 90 50 .0005 94 1580
5 .1060 5 120 51 .0005 96 1600
6 .1020 7 160 52 .0005 98 1640
7 .0610 9 200 53 .0005 100 1670
8 0510 11 240 54 .0005 102 1700
9 .0400 13 280 55 .0005 105 1740
10 .0365 15 350 56 .0005 110 1770
11 .0300 18 400 57 .0005 115 1800
12 .0180 22 500 58 .0005 120 1850
13 0170 27 550 59 .0005 125 1900
14 .0135 32 650 60 .0005 130 1950
15 0110 37 750 61 .0005 135 2000
16 0075 42 850 62 .0005 140 2100
17 .0055 47 950 63 .0005 145 2150
18 .0005 51 1000 64 .0005 150 2200
19 .0005 52 1010 65 .0005 155 2300
20 .0005 53 1020 66 .0005 160 2400
21 .0005 54 1030 67 .0005 165 2500
22 .0005 55 1040 68 .0005 170 2600
23 .0005 56 1050 69 .0005 175 2700
24 .0005 57 1070 70 .0005 180 2800
25 .0005 58 1090 71 .0005 185 2900
26 .0005 59 1100 72 .0005 190 3000
27 .0005 60 1120 73 .0005 200 3100
28 .0005 61 1140 74 .0005 220 3300
29 .0005 62 1160 75 .0005 240 3500
30 .0005 63 1180 76 .0005 260 3700
31 .0005 64 1200 77 .0005 280 3900
32 .0005 65 1220 78 .0005 300 4100
33 0005 66 1240 79 .0005 340 4500
34 .0005 67 1260 80 .0005 360 4800
35 .0005 68 1280 81 .0005 380 5200
36 .0005 69 1300 82 .0005 400 5800
37 .0005 70 1320 83 .0005 440 6200
38 .0005 71 1340 84 .0005 470 6800
39 .0005 72 1360 85 .0005 500 7500
40 .0005 73 1380 86 .0005 550 8500
41 .0005 74 1400 87 .0005 600 9600
42 .0005 76 1420 88 .0005 650 15000
43 .0005 78 1440 89 .0005 700 25000
44 .0005 80 1460 90 .0005 1000 35000
45 .0005 84 1480 91 .0005 2000 45000
46 0005 86 1500
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