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REGRESSION PERCENTILES USING ASYMMETRIC
SQUARED ERROR LOSS

B. Efron

Stanford University

Abstract: We consider the problem of estimating regression percentiles, for example
the 75th conditional percentile of the response variable y given the covariate vector
z. Asymmetric Least Squares (ALS) is a variant of ordinary least squares, in which
the squared error loss function is given different weight depending on whether the
residual is positive or negative. ALS estimates of regression percentiles are easy to
compute. They are reasonably efficient under normality conditions. There is an
interesting connection between ALS estimates and absolute residual regression for
detecting heteroscedasticity. Three examples are given to demonstrate the utility
of estimated regression percentiles for understanding regression data, particularly
when the covariate z is multi-dimensional.

Key words and phrases: Conditional percentiles, heteroscedasticity, absolute resid-
ual regression, regression quantiles.

1. Introduction

The data for a typical regression analysis is a cloud of points in Euclidean
space

(ziy9:), i1=1,2,...,n, (1.1)

where the z; are 1 X p covariate vectors, and the y; are scalar responses. The
primary output of the usual analysis is an estimated regression function i(z),
which describes the middle of the point cloud, in the y direction, as a function of
the covariate z. But what if the statistician is interested in the higher or lower
regions of the point cloud, as well as its middle? This paper describes a useful
method, borrowed from the econometrics literature, for estimating regression
percentiles, for example the 25th or 75th conditional percentile of y as a function
of z.

Figure 1 displays two simple regressions, “simple” meaning that the covariate
vector z; is a function of a one-dimensional regressand z;, so that the data can be
displayed by a scatterplot of the (z;,y;) pairs. The left panel concerns the four
divisions of major league baseball in the United States. The regressand z; is the
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lead at the half-way point of the baseball season of the first-place team over its
nearest runnerup (for each of the four divisions in each of the 18 years 1970-1987,
for a total of n = 72 cases). The response y; is that same team’s lead at the
end of the season, taken negative if that team did not finish in first place. For
example the arrow shows a team that was two games ahead of its division at the
half-way point, but finished the season 22 games behind the division champion.
The line marked “OLS” is the ordinary least squares regression line for the model
yi = bo + by z; + error;.

The right panel of Figure 1 concerns a clinical trial in which subjects received
cholostyramine, a drug believed to lower blood cholesterol levels. The regressand
z; is the compliance of the ¢th patient, defined as the percentage of prescribed
packets of cholostyramine actually taken; response y; is the observed reduction in
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Figure 1. Two simple regression problems. Left panel: regressand z; is the lead at
mid-season of first-place baseball team; response y; is that same team’s lead at the end
of the season, taken negative if the team did not finish in first palce; n = 72 data points,
coming from 18 years of data for each of the four major league divisions. Right panel:
regressand 2; is the observed compliance of patients in a clinical trial of cholostyramine,
a drug intended to reduce blood cholesterol levels; response y; is the observed reduction
in blood cholesterol; n = 164 data points, after removing one outlying patient (boxed).
(From the Lipid Research Clinics Primary Prevention Trial, with thanks to Drs. D.
Feldman and J. Farquhar for generous help with the data retrieval.)
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blood total cholesterol level. The OLS curve is the estimated quadratic regression
¥i = bo +b12; + by 2? + error;. {Only the treatment arm of the Stanford portion of
the study appears in Figure 1, n = 164 patients after removal of the boxed outlier.
See Lipid Research Clinics Program (1984) for a discussion of the entire project
and its results. This data appears courtesy of Drs. D. Feldman and J. Farquhar
of the Standford Medical School and the Lipid Research Clinics Program.)
Figure 2 shows regression percentiles for the two examples, as estimated
by the asymmetric least squares method that is the subject of this paper. The
regression percentiles convey more information than the OLS line by itself. For
instance the 25th regression percentile for the baseball data is seen to cross
the horizontal axis at z = 6.5, so if your favorite team is 62 games ahead at
the half-way point of the season it has about 75% chance of winning or tying
for the division championship. For 60% compliance in the cholostyramine trial
(about average), the central 80% of the response, 10th through 90th percentile,
is estimated to be a decrease of between -~6 to 54 units in total cholesterol count.

Baseball reg %iles Cholostyramine reg %iles
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Figure 2. Regression percentiles for the baseball and the cholostyramine examples.
Regression precentiles for the examples of Figure 1 are estimated by the method of
asymmetric least squares described in Section 2. Marginal numbers indicate the ob-
served percentage of data points below the regression percentile curves. The regression
percentiles are nearly parallel to the OLS line in the baseball example, but diverge
toward the high end of the compliance scale for the cholostyramine data.
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The usual method of assigning regression percentiles goes as follows: assume
that the error term in the regression model is homogeneous and normal, error; ~
N(0,0?) for i = 1,2,... ,n; estimate 6 by &2 in the usual way; then estimate
the 100ath regression percentile by

M=) + 62, (1.2)

where ji(z) is the OLS estimated regression and 2(®) is the 100ath percentile of
a standard normal distribution, 2{®) = $~1(a). The curves (1.2) are parallel to
f(z), displaced by amount 2z(®),

Method (1.2) agrees reasonably well with the regression percentiles in the
baseball example, but not for the cholostyramine data where the regression per-
centiles diverge noticeably toward the high end of the compliance scale. ( The
curves are slightly more than twice as far apart at z = 100 as at z = 0.) Re-
gression percentiles offer an easy way to account for heteroscedasticity in a linear
model. A surprising theoretical connection between asymmetric least squares and
Glejser’s (1969) test for heteroscedasticity using absolute residuals is discussed
in Section 3.

Another approach to estimating regression percentiles is to group data along
the 2-axis, estimate the 100ath percentile value for each group, and connect the
values between groups by the use of some smoothing device. This approach will
usually be practical only for simple regression, like our two examples, where the
data can be displayed as a two-dimensional scattergram.

Asymmetric least squares, like ordinary least squares, is just as easy to apply
in general regression situations, where the covariate vectors z; are not functions
of a one-dimensional regressand z;. Section 4 describes an example of this type,
which illustrates an interesting point: how a covariate which is important for
the OLS curve, that is for describing the middle of point cloud, can have little
predictive value at the higher or lower percentiles of the data set.

The basic idea of this paper was invented by Koenker and Bassett (1978,
1982a, 1982b), who used asymmetric absolute loss, rather than asymmetric
squared loss, to define what they call regression quantiles. Breckling and Cham-
bers (1988) consider asymmetric M-estimators. Newey and Powell (1987), fol-
lowing earlier work by Aigner, Amemiya, and Poirier (1976), use asymmetric
squared error as in this paper, calling the resulting curves ezpectiles. (The term
“regression percentiles” is intended to apply to all the various forms of this same
basic idea, though in what follows it refers mainly to curves calculated by asym-
metric least squares.) These authors’ results are further discussed in subsequent
sections. Their papers are primarily, though not exclusively concerned with us-
ing regression percentiles to test and to robustify the usual OLS model, as in
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Ruppert and Carroll (1980), going back to Bickel (1973). Here we will be more
interested in regression percentiles for their own sake, as useful descriptors of a
regression data set. In this spirit, we give a simple and efficient algorithm for cal-
culating all the asymmetric least squares regression percentiles for a particular
data set.

2. Asymmetric Least Squares Regression

This section concerns the definition and calculation of regression percentiles,
such as those in Figure 2, by the method of asymmetric least squares. As Figure 2
indicates, it is useful to compute all of the regression percentiles, or at least a
wide range of them. Fortunately this turns out to be computationally quite
simple to do. Except for computational methods, the discussion here follows
that of Newey and Powell (1987), who go into considerably more detail on the
formal properties of asymmetric least squares percentiles.

We begin with the data set (z;,¥:), ¢ = 1,2,... ,n, as in (1.1), thought of
as a point cloud in (p+ 1)-dimensional Euclidean space RP*!, the z; being 1 x p
covariate vectors and the y; being scalar responses. All of our calculations relate
to the usual linear model

v =28 + ¢, 1=1,2,...,n, (2.1)

where § is an unknown p X 1 parameter vector, and the ¢; are error terms. For
convenience we can write (2.1) in matrix form

y=XB+e¢, (2.2)

¥y=(1,..-,¥n), €= (€1,... ,€), and X being the n X p matrix having z; as
tth row, with X assumed to be of full rank p.

A trial value b for the unknown parameter vector § produces a residual
vector r(b),

ri(b) = yi — z;b, 1=1,2,...,n. (2.3)

A good choice of b is one that makes the residuals small. To quantify this notion

in a manner appropriate to regression percentiles define the asymmetric squared
error loss function )
T r<0,

2.4
wr? r>0, (2:4)

Quir} = {

w is a positive constant. A trial value b for 3 results in total asymmetric squared
error loss

S.u(b) = Z Qu{ri(b)}. (2.5)
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By definition the best choice of b for a given value of w is §,,, the minimizer of
Sw(b) over b, ‘

Bu=0b: ZQw{r;(b)} = min!. (2.6)

We call §,, the a,symmetnc least squares (ALS) estimate of 3. Notice that for
w =1, Qyu{r} = r? so B, is the OLS estimate of 3,

b= (X'X)"1X'y. (2.7

We will present an algorithm for computing B,, for all values of w ranging
from 0 to co. The p-dimensional hyperplane £, defined by 3, in the (p + 1)-
dimensional (z,y) space,

Ly ={y = 2B,z € R?)}, (2.8)

called the “w-regression plane”, moves smoothly from the bottom to the top of
the data point cloud as w increases from 0 to co. (See Remark L in Section 6.)

Let p(w) indicate the proportion of data points (z;,;) lying below £, that
is the proportion of points having r;(8,) < 0. For p(w) = a, some given value
between 0 and 1, define

B = 3,. (2.9)

In other words, for a given a, B(®) is the vector B, for that value of w having
proportion a of the data points lying below L,,.
The plane corresponding to 3(®),

L&) = {y=2f,zeR?}  (p(w) = ), (2.10)

is by definition the 100ath regression percentile. In the simplé fegression situation
where z is a function of a scalar z, the curve y = z(z)ﬁ(“) in the (z,y) space will
also be called the 100ath regression percentile, as on the right side of Figure 2.

Notice that there are two distinct parts to the definition of the regression
percentiles: (i) the method of asymmetric least squares, (2.6), determines the
family of w-regression planes £,,, 0 < w < 0o; (ii) the various planes £,, are la-
belled £() according to the proportion of data points (z;,y;) lying below them.
In other words, we are using regression methods to estimate conditional per-
centiles of y given z, for which we may have few or no direct observations y;|z,
but are calibrating these estimates by the overall empirical percentiles of the £,,,
which are based on all n observations (Az,-,y,-).

How can we calculate the vector 4, minimizing S, (b) = Y1, Q.{ri(b)}?
It is easy to show that §,,(b) is strictly convex and continuously differentiable as
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a function of b, and goes to 0o as b goes to infinity in any direction. This implies
that the minimizer 3, exists umquely, and equals the solution of

5u(0)=ViSu(0) = | 252 | =0, (2.11)

Define the step function

1 ifr<0,
w ifr>0.

W(r)= { (2.12)

Then Qu{r} = W(r)r? and dQ,{r}/dr = 2W(r)r, a continuous function of r.
We conclude that the gradient vector S,,(b) is a continuous function of b,

$u(b) = ;vwa{y. — b} = ~2 Z“’ @@ ) 15

= —2X'W (b)r(b),

where W (b) = diag[W(ri(}))], the n X n diagonal matrix having W(r;(b)) as its

ith diagonal element. Combining (2.11) and (2.13), we see that 3,, is the solution
of

X'W(b)r(b) = 0. (2.14)
Iterative methods are needed to actually solve (2.14). Define
B(w,b) = [X'W(b)X] ' X'W (b)y. (2.15)

Notice that §(w,b) is the Gauss-Markov solution for choosing 8 to minimize the
modified sum of squares )° W; - (y; — zi8)?, when the weights W; = W (r;(b)) are
considered fixed. Then

B(w,b) — b= [X'W(B)X'|"1X'W (b)r(b), (2.16)

and we see from (2.14) that B is the stationary value of 3(w,b),
Bu = B(w, Bu)- (2.17)
This last result can be thought of as follows: a trial value of b determines

a plane in the (z,y) space; say £(b) = {y = zb,z € RP}; this plane determines
weights W; on the data points (z;,y;), weight w if (z;,3;) is above £(b) and
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weight 1if (z;,y;) is below £(}); these weights produce a weighted Gauss-Markov
solution vector f(w,b) according to (2.15), and thus a new plane L£(8(w,bd)) =
{y = zB(w,b),z € R?}. The solution vector B,, is that value of b for which the
plane L£(b) that produces the weights coincides with the plane £(B(w,b)) that
these weights produce.

The second derivative matrix is

0 (828,(b) -
S,(b) = ( 55 50r )j,h=1,2,... = 2X'W(b)X. (2.18)

This formula assumes that none of the r;(b) = 0, a necessary assumption to avoid
evaluating the discontinuous second derivative of Q,,{r} at r = 0.

Starting from a trial value b, the usual Newton-Raphson updating formula
suggests bygw as the solution to Sw(b) = 0, where

bnew — b = =54, (b) 7185, (b) = [X'W(5)X] ™[ X'W (b)r(b)]
= ﬂ(w, b) - ba

or equivalently bygw = ((w,b). In this problem the obvious iterative method
for solving (2.17), by = B(w,bo), by = B(w, b)), b3 = B(w,bs), etc., is the same
as a Newton-Raphson search for the minimizer of 5,,(b).

There is another way to search for solutions 3, to (2.17): by letting w vary
as well as b. The following useful formula is verified in Section 6:

(2.19)

By 1 e
dw - 1+ w[X W(ﬂw)X] X |r(ﬂw)|a (220)
where |r| indicates the vector of absolute values (|ri],|r2|,...,|rs|)’. Having

found J,, for some value of w, we can approximate the solution at a nearby value
w+ Aw by )
B 2 fu+ Dep 2.21
wtAw = Pw dw w. ( . )

The regression percentiles for the baseball and cholostyramine examples were

found by an algorithm that alternated steps (2.21) and (2.19). Starting from a
solution f,,, two new values were found,

50 3 df A1 3(0
Bl aw = Bu+ SO0 and B0, = Bw+ Aw, D) 4,).  (222)
Keeping Aw small, ﬁgl Aw Was then a quite satisfactory approximation to

,Bw+ Aw, the solution for w now equal to w+ Aw. It is convenient to start the cal-
culations at w = 1, for which 8,, = [X'X] ! X'y. The two-step algorithm (2.22)
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was then executed for 39 successively larger values w;y1 = w; - (1 + A) and also
for 39 successively smaller values wjt1 = w;/(1 + A). The choice A = .15 gave
excellent accuracy over the range of w values necessary to construct Figure 2.
The Fortran program ran in 6.8 seconds, on a SUN 3/50 workstation. A more
cautious version of the program, which iterated the second step in algorithm
(2.22) until convergence was recorded, took about twice as long.

Remark A. If ,@ﬁ?}_ Aw 3gTees with ,Bw+Aw in the sense that for i = 1,2,... ,n
the residuals r;(ﬁff_?_ Ayw) and r;(ﬁw+Aw) have the same sign, then ﬁfﬁ A €Zactly
equals the true solution Bw+Aw. This occurred most of the time in the calcu-
lations for the baseball and cholostyramine examples. The underlying reason
for this nice behavior, and the generally tractable character of asymmetric least
squares calculations, is that S, (b) in (2.5) is “ piecewise quadratic” in b.

Table 1 shows the first ten steps in the computation of the 3, vectors for
the cholostyramine data. Altogether (2.22) was executed 79 times, for w ranging
from (1 + .15)73 to (1 + .15)%. (Notice that (2.22) included one step each of
(2.21) and (2.19), neither of which by itself was sufficient.) Linear interpolation
in @ = p(w) was used to compute regression percentiles for the “nice” values of
a, e.g. a = .67, displayed in Figure 2. The covariate vectors were expressed as
z; = (1,(2i — 2), (2i — Z)?), where Z was the average compliance 60.116, in order
to better condition the calculations.

Table 1. Regression percentile calculations: cholostyramine data

W om-e-ee-oooo- R a = p(w)
constant linear quadratic
1.000 27.789 0.634 0.00415 0.49
1.150 29.069 0.640 0.00410 0.52
1.322 30.342 0.646 0.00405 0.52
1.521 31.599 0.652 0.00400 0.54
1.749 32.848 0.657 0.00394 0.55
2.011 34.083 0.662 0.00388 0.57
2.313 35.330 0.666 0.00381 0.62
2.660 36.566 0.670 0.00374 0.63
3.059 37.775 0.675 0.00369 0.65
3.518 38.949 0.679 0.00364 0.66
4.046 40.083 0.684 0.00361 0.68

Note: First ten steps of the regression percentile calculations for the cholostyramine
data are given. Each successive line was produced from its predecessor via the two com-
putations in (2.22). The columns constant, linear, quadratic refer to the coefficients
in the linear model y; = 8(0) +8(1) - (zi — Z) + B(2) - (z; — Z)*+ error;, 7 = 60.116. The
last column gives o = p(w), the proportion of data points lying below the regression
percentile.
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Remark B. In order to get a rough idea of the relationship between w and a,
consider the following special case: there are no covariates (all z; = 1); n — oo;
and the histogram of %, %2, ... ,y» goes to a standard N(0,1) density. We denote
Buw by B in this case. Let w(® indicate the value of w such that Bw equals
Z(%) = $-1(a), the 100ath standard normal percentile point. Then formula
(2.7) of Newey and Powell (1987) gives

w(®) =14 209/ {$(2(?) — (1 - a)z({V}, (2.23)

#(z) = e=%%* /\/2x, which can also be derived easily from (2.13).
Formula (2.23) yields values

a: 5 67 75 .84 .90 .95
(2.24)
w®: 1 3.02 552 12.81 28.11 80.04

(with w(1=®) = 1/w(®)). These values can be compared with those from the
cholostyramine calculations, e.g., w(67) = 3.60, &(-7%) = 5.00, @(%) = 15.84,
H(-99) = 40.13. See also the w values in Table 2, Section 4.

Consider changing a standard normal density ¢(z) to

#79)(z) = { #(z))e  z2< AT =674 (2.25)

5.52¢(2)/c z > .674,

where the constant ¢ is chosen to make [ ¢(-7®)(z)dz = 1. Then ¢(-"® has
expectation

/ ~ 2807 (2)dz = .675, (2.26)

this being relationship (2.17). Interestingly enough, it can be shown that ¢(®
always has variance 1, i.e.,

¢ ~ (2(D)1), (2.27)

for all values of a, so ¢{® behaves somewhat like a location family. This result
is special to the normal case.

Remark C. The asymmetric squared error loss function (2.4) leads to an im-
portant invariance property, as mentioned in Theorem 1 of Newey and Powell
(1987): if the response vector is changed from (y1,... ,ys) to (cy1,¢¥2,... ,¢¥n)
then the solution vector (2.6) changes from 3, to cﬂw (We actually have scale
and location invariance: y — cy + d1 implies B, — ¢fuy + (d,0,0,...,0), as-
suming that the covariate vectors z; have first coordinate equal to one. )
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Without the scale invariance property, our estimates of the regression per-
centiles would depend on the scale we chose to work with. In order to control the
properties of the estimates we would need to augment the percentile estimation
procedure with a supplementary estimate of scale. This is a familiar difficulty in
the theory of robust estimation, discussed in Chapters 6 and 7 of Huber (1981).
However it would be considerably more vexing here since we are particularly
interested in situations where the scale varies with z;, as in (3.12) and Section 5.

Scale invariance is not an exclusive property of asymmetric squared error
loss. Any power loss function

7P <0
>0 2.28
w|r|? r>0, »>0) (228)

Quir} = {
results in scale invariance for the corresponding estimates 3,,, the crucial property
of (2.28) being Q {cr} = [¢|?Q. {r}. Koenker and Bassett’s regression quantiles
(1982) are based on the choice p = 1. Some interesting asymmetric loss functions
which have appeared in the econometric literature are ruled out by the invariance
requirement: in particular Varian’s LINEX loss, see Zellner (1986). Breckling and
Chambers’ (1988) asymmetric M-estimates include some non-invariant choices.

The power loss function with p = 1.5 is appealing as a compromise between
the robustness of p = 1 and the high normal theory efficiency of p = 2 (see
Section 5). Most of the calculations in this paper go through for all values of
p > 1, though the case p = 2 has definite computational advantages (see Remark
G of Section 3). The clerical workers example of Section 4 was investigated
using p = 1.5 regression percentiles, but the results were similar to the p = 2
percentiles, and will not be reported here.

Remark D. One might worry that asymmetric least squares regression per-
centiles are estimating something other than the true regression percentiles
¥(¥)|z, the 100ath percentile of y given z. However in cases where y(®)|z is
linear in z, as in model (3.12), discussed in Section 5, it is easy to show that
the regression percentiles calculated by asymmetric least squares are consistent
for y(®)|z. Newey and Powell (1987), in their Lemma and subsequent remarks,
present a much more general consistency result for the convergence of regression
percentiles to their population counterparts.

3. Absolute Residual Regression and the Tilt Statistic

The formula for the derivative of 3,, with respect to w, (2.20), is particularly
simple at w = 1, )
dBy

2]y = S(XX)X'R, (3.1)




104 B. EFRON

R being the vector of absolute values of the ordinary residuals r;(6;),

Ri = |ri(B)l- (3:2)

Statistic (3.1) is interesting in its own right on three counts: it is very easy to
compute, and gives a quick approximation to B for values of w near one, f, =
,31 + jg-'u'-lwzl(w —1); it helps answer questions like whether or not the decrease
in curvature of the regression percentiles for the cholostyramine data, observed
as we move upwards on the right side of Figure 2, is statistically significant; it
is equivalent to Glejser’s (1969) test for heteroscedasticity in the ordinary linear
model.

In this section we assume that the covariate vectors are of the form z; =
(1,2(1)i), where Y7, 2(1)i/n = 0 (but see Remark C). Then we can write

X=(1,Xy) @'Xq=0), (3.3)

X (1) being the n X (p — 1) matrix with ith row z(;) ;. It is more convenient to
deal with a multiple of statistic (3.1), namely

T=c¢X'X)'X'R  (c=+/7/2>1.25). (3.4)

The motivation for the constant ¢ = /7 /2 goes as follows: let

_ Bu(0) - $1(0) (5 = ( z:; R} /n) %> , (3.5)

where ,,(0) is the first coordinate of §,,, and 3(0) is the same quantity evaluated
at w = 1. Because of (3.3), 2, is the difference of intercepts between the w-
regression plane £,, and the OLS regression plane £;, measured in units of the
empirical standard error of the ordinary residuals, &.

The first coordinate of equation (3.1) is

dB.(0) 1 e =g
dw Iw- 2R (R - ;Rt/n) ’ (3°6)
because of (3.3), so
dzy _ R
™ |l ey = 5 (3.7)
Therefore A
Ziw Iw_ =X'X)'X'R=T (¢ = /R). (3.8)
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The statistic dfy/dzw|w=1 is a little easier to interpret than (3.1). It measures
how quickly the w-regression planes £,, “tilt” relative to L1, the derivative being
taken with respect to units of the standardized intercept z,,. We could use 7'
directly, but in our examples ¢ nearly equaled its normal theory value o/E|z| =
V7/2, 50 T = T. We will use the term “Tilt Statistic” for both (3.4) and (3.8).

The tilt statistic is easy to calculate: ordinary linear regression provides 5,
and the ordinary residual vector #(f#;) = y — X f;; this gives R = |7(81)|, and
also ¢; then an ordinary linear regression of R on X gives (X'X) ! X'R as
regression coefficients, providing T and 7.

Example: The cholostyramine data. Writing the quadratic regression of Table
1 in centered form y; = §(0) + B(1)(zi — Z) + B(2)[(z: — Z)? — 1207.9]+error;,
1207.9 being the average of the (z; — Z)?, ordinary linear regression gave

B = (32.80, .634, .00415). (3.9)
Regression of R as the response variable in the same quadratic model then gave
T = (22.29, .112, —.00093) (3.10)

(almost the same as T since & = (R?)% /R = 1.254).
The interpretation of T as (approximately) equal to dB3,,/dzy|w=1 allows us
to approximate the regression percentiles. For example

BUT =B+ T 2™ = By 4+ T 674 -

= (48.28, .709, .00353). (3.11)
The actual value of §(-7®) for the cholostyramine data was (49.53, .704, .00348).
The reader is warned that not all cases work as well as this one. Whenever
possible, this actual calculation of the regression percentiles is preferred.

Calculation (3.11) tacitly assumes that if z,, = 2(-"%) = .674, then about 75%
of the data points lie below £,,. This is an obvious, though crude, interpretation
of (3.5). We avoid using this interpretation if we calibrate the approximate
regression percentiles obtained from the tilt statistic, by directly counting the
proportion of data points lying below them, as we did with the actual regression
percentiles.

The first coordinate of the tilt statistic relates to the intercept, and provides
no tilting information, so we can concentrate on the last (p — 1) coordinates, say
T(1). T(1) estimates the tilting parameter vector (1), as discussed below in Sec-
tion 5. The regression of R on X, which gives T, also gives standard errors and
t-values in the usual way. In the cholostyramine example T;) = (.112,-.00093),
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with estimated standard errors (.040, .00153) and t-values (2.80, -.61), on 161
degrees of freedom. The t-va.luetcorresponding to the linear term in the regression
is quite significant, but not the t-value corresponding to the quadratic term. We
have good reason to believe that the increasing slope of the regression percentiles
with increasing a, observed on the right side of Figure 2, is genuine, but not the
decreasing curvature.

Example: The baseball data. Ordinary least squares gave ,[;1 = (-3.15, 1.274)
as the estimated coefficients in the model (final lead) = bo + b, - (lead at half) +
error. The tilt statistic for the slope b; was T(1) = .045 + .250, giving a t-value
of only 0.18 on 70 degrees of freedom. The regression percentiles for the baseball
data in Figure 2 look parallel to the OLS line. This impression is verified by the
tilt statistic being not significantly different from zero.

Remark E. Formula (3.4) for T gives the same value for the last (»-1)
coordinates 7(;)y whether or not 1'X(3) = 0, that is whether or not we have
centered the regression problem. It is a convenient fact, which we used for the
baseball data, that no centering is necessary to carry out the estimation and
testing theory for Ty or T(l).

Remark F. An extension of the normal linear model which allows for hetero-
geneous variance is

yt'lzi ~ N(z;‘y,(z;'r)2), 1= 1,2,... » 1, (312)

where 7 is the unknown regression parameter vector and T is an unknown param-
eter vector such that z;7 > 0 for all i. The true absolute residuals lr7:(7)] = Ri(v)
have expectation vector

E{R(7)} = 1 Xr, (3.13)

SO
(X' X" H)X'R(7) (3.14)

is an unbiased estimate of 7.

Comparing (3.14) with (3.4), we see that T is an obvious estimator for T, 50
T(y) is a candidate test statistic for heteroscedasticity. (The first coordinate of
7 has no effect on heteroscedasticity.) In fact, Glejser’s (1969) absolute residual
regression test for heterogeneous variances is based on a generalized version of
(3.4). Newey and Powell (1987) compare a difference analog of df; /dw|yp=1,
namely S, — b1 Jws With Glejser’s test, and note almost identical behavior in a
Monte Carlo study. This is now explained by equation (3.4).
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Remark G. For asymmetric power loss Q,{r} = W(r)|r|?, (2.28), formula
(3.1) becomes

4B
dw 'w=1 2(p 1)

[X'diag(RP~2)X] 1 X'RP! (3.15)

(for p > 1), where diag(R?~?) is the n X n diagonal matrix with ith diagonal

element R?™? = |r;(1)|P~2. Notice that for p < 2, small values of R; can cause
numerical dlfﬁcultles

4. Influence Calculations

Regression percentiles based on asymmetric least squares minimization can
be sensitive to outlying data points, especially for extreme values of a. This can
be seen in the baseball example, left side of Figure 2, where the two extreme
regression percentiles tilt sharply away from the inner ones. This section gives
simple formulas for the influence of an individual data point as a given regression
percentile. The section includes a multiple regression example, illustrating the
influence calculations and how they might be used to robustify the regresssion
percentiles.

We will derive, in Section 6, two measures of influence for the ith data point
(zi,%:) on the w-regression plane £, = {y = 28,z € R?}:

D}, ; = [W(ri(Buw)) - r:(Buw))?z: Mz
M = [X'W (B,)X] X' X[ X'W(8.,)X]!
and (4.1)
= [W(ri(Bw)) - ri(Bu)]*z: M <!
= [X'W(B.,) X X' X[ X'W (3.)X],

where X = X — 1%, 7 = ¥ z;/n. The notation here follows (2.12)—(2.14).

Both D2 ; and D? ;i are closely related to Cook’s distance, as described
in Section 4.2.5.1 of Cha.tterjee and Hadi (1988). These “distances” are overall
measures of influence of the ith data point on the entire w-regression plane : ﬁfu’,
relates to the tilting of £, relative to the OLS plane, discounting the influence
of (zi,y;) on the intercept of £,. See Remark M in Section 6.

The left panel of Figure 3 displays a summary of the data for our third
example, a multiple regression in which the two regressands z; = age and z, =
years clerical experience are used to predict y = log salary, for n = 122 clerical
workers at a large pharmaceutical firm. The OLS estimate in the model

= B(0) + B(1)z1; + B(2)z3; + error; 1=1,2,...,122 (4.2)
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is

B = (9.69, —.0181, .0319).
The horizontal axis in Figure 3 is the predicted log salary using model (4.2),
B(0) + B(1)z1i + B(2)z2i. )

The estimated slopes §(1) = —.0181 and 3(2) = .0319 are both significantly
non-zero, with ¢-values 4.09 and 6.15 respectively, on 119 degrees of freedom.
The age slope is negative, so for a given level of experience, the predicted log
salary decreases with increasing age.

The right panel of Figure 3 displays the maximum percentage influence of
each point. The plotted number is

122
12 2
max 100- Dy, ;/ E Dy, i (4.3)
i=1
Clerical workers (n=122) Maximum percentage influence
6 1T 11 0
8 1 0
o et 4 0g %00 g0
S 426,900 8 54 -
e e 0 900
58 °
= o 0
DI 10 0
T . . : T 19 4,0 0o (l)l% ’
2o ol 0
& o 122,000 8 S 0% o O s
8 - 3 o o 0000
. oo po ©
g g 0 0 5
= " ° o o ® o,
5 @ 118,000 * ~ . E L 0 o0 ° 1 !
LT i < 8 ° T o:og(:o .
. 0 d,o0 0
. 1 00 O
01 0
. 1 3
@ 114,700 . & 1 12 *
<. . 2 16
$14,700 $18000  $22,000  $26,900 2
Ll T 1 T T L] T T
9.6 98 100 10.2 9.6 9.8 10.0 10.2
predicted log salary — predicted log salary —

Figure 3. The clerical workers example. Left panel shows data for 122 clerical
workers; vertical axis is log salary, horizontal axis is predicted log salary using model
(4.2). Right panel: each of the 122 points is labelled with the maximum value of its
percentage influence, (4.3), the maximum over o = .10, .16, .25, .33, .50, .67, .75, .84,
.90. Four of the points are seen to have percentage influence > 20% for at least one of
the nine a values.
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the maximum being taken over the nine values of w corresponding to the re-
gression percentiles for a =.10, .16, .25, .33, .50, .67, .75, .84, .90. Four of the
points, two above and two below the central cloud, are seen to have maximum
percentage influence > 20%.

Regression percentiles were calculated for the clerical workers data, using
algorithm (2.22). Table 2 show 3(® for & =.05, .10, .16, .25, .33, .50, .67, .75,
.84, .90, .95. Two analyses were run, one for all n = 122 points and one for the
118 points remaining after deletion of the four outlying points having maximum
influence >20%.

Both analyses give the same picture, but in a smoother way after the out-
liers were removed: the estimated regression slope for experience, ﬁ(“)(2), stays
reasonably constant as a changes. However the slope for age, ,3("‘)(1) becomes
almost negligible at the larger values of a. This says that age is not an impor-
tant predictive variable for the better-paid workers, though it is important for
the middle and poorly-paid workers.

Table 2. Regression percentile analysis for the clerical workers
— (@) al 122 points — — (@) all 118 points —

o w (B0), F(1), B2)  (B(0), BV), B(2) w

05 .0075 ( 9.20 —.0248 .0191)  ( 9.74 —.0258 .0295) .0064
10 .03 (977 —.0221 .0234) (978 —.0212 .0308) .022
16 .06 ( 9.80 —.0212 .0256)  ( 9.81 —.0208 .0323) .056
25 .13 ( 9.84 —.0211 .0281)  ( 9.84 —.0210 .0332) .11
33 20 (9.8 —.0208 .0203)  ( 9.87 —.0217 .0335) .21

.50 1.00 ( 9.96 —.0181 .0319) (996 —.0198 .0352) 1.00

67 3.48 (10.04 —.0122 .0324) (1002 —.0152 .0360) 3.22
75 5.55 (10.07 —.0098 .0323)  (10.06 —.0127 .0365) 5.95
84 261 (10.15 —.0006 .0297)  (10.10 —.0107 .0365) 12.60
90 49.4 (10.18  .0022 .0287)  (10.17 —.0065 .0355) 52.07
95 354 (10.23  .0028 .0200)  (10.21  .0010 .0392) 233

intercept age experience intercept age experience

Note: Left: 3(®) based on all 122 workers. Right: 3(%) based on 118 workers after
removing the four workers with the largest influences, as shown in the right panel of
Figure 3. The estimated regression slope for experience is reasonably constant, but the
slope for age approaches zero as o gets large.

Remark H. The geometry of the clerical workers point cloud is moderately
complicated, generally sloping upwards in experience and downwards in age, but
with the age slope flattening out toward the top of the cloud. It is difficult to
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spot this structure by eye, even using a good 3-dimensional scatterplot rotation
and viewing program. Also, this geometry is not consistent with a simple model
of heteroscedasticity, like (3.12), where a tilt below the OLS plane must be bal-
anced out by a reverse tilt above (Theorem 2 of Newey and Powell ( 1987)). The
methods of regression percentiles are particularly useful in multiple regression
situations, where simple scattergram pictures like those in Figure 1 are generally
not available, and visual inspection is difficult.

The tilt statistic T(y), the last p — 1 coordinates of expression (3.4), based
on all 122 workers, for (age, experience), was

Ty = (-0093 £ .0025, .0025 + .0029). (4.4)

(The standard errors are obtained from the usual formulas applied to regression
(3.4), as in Section 3.) We see that the age tilt is significantly non-zero, while the
experience tilt is not. This conclusion agrees with the actual tilting, as shown in
Table 2. Using only the data for the 118 workers gave

Ty = (.0066 + .0023, .0010 + .0027), (4.5)

leading to the same qualitative interpretation.
5. Efficiency Calculations

Asymmetric least squares turns out to be a reasonably efficient way of es-
timating the true regression percentiles, in a normal-theory model like (3.12),
where we compute asymptotic efficiencies relative to the maximum likelihood es-
timates. This section presents the main results, with details and proofs deferred
until Section 6.

We first consider a simple case where there are no covariates. The data
consists of n observations from a scale-location family

vi=p+oZ;, t=1,...,n, (5.1)

Z1,23,... ,Zy being independent and identically distributed (ii.d.) variates
drawn from a known probability density function f°(2) on the real line. The
Z; are assumed to be standardized, that is E{Z;} = 0, var{Z;} = 1.

Let 82, indicate the “true w-mean for Z”, i.e., the minimizer of £Q,,{Z — b}
over the choice of b, as in (2.4)~(2.6). (Notice that #) = EZ = 0.) The w-mean
for y = p + 0Z, the minimizer over b of EQ,,{y — b}, is easily seen to be

Buw=p+apl. (5.2)




ESTIMATING REGRESSION PERCENTILES 111

In other words, the w- mean is scale and location invariant. Our first efficiency
result compares the asymptotic variance of two consistent estimates for Bw :
ﬂw, the sample asymmetric mean, versus ﬂw, the maximum likelihood estimate
(MLE).

The Fisher information matrix for estimating (1,0) in (5.1) is

_ 1 (i g
Tno)= 5 (1 53)
where the i); are computed in terms of h(z) = dlog f°(z)/dz: i1y = Eh(Z)?,
t12 = ER(Z){h(Z)Z — 1}, and iy, = E{h(Z)Z ~ 1}*. The asymptotic variance
AVAR(By) = limp—oo 1 - var(f3,) of the MLE §,, = i+ B2 [ii and & being the
MLEs of 1 and o] is then

AVAR(Bw) _ 22 — 201283 + i11(82)?

= . 4
02 ‘iuin ad 1%2 (5 )
The sample w-mean (,, based on Y1,¥2,-.. ,Yn is by definition the minimizer
over b of
n
ZQw{y.- — b}, (5.5)

asin (2.6). A standard argument based on the theory of M- -estimation, Corollary
2.5 of Huber (1981), shows that 3,, has asymptotic variance

AVAR(B.) _ EIW(Z - B%)-(Z - )1
o2 " [14 (w-1)Prob{Z > §9}]?"

(5.6)

The asymptotic relative efficiency (ARE) of 3, also called the asymptotic effi-
ciency, compared to the fully efficient estimate f,, is

AVAR(B,,)

AREsL(B,) = AVAR(,)’

(5.7
The subscript SL indicates the scale-location family situation (5.1).

We are particularly interested in the case where the Z; in (5.1) are standard
normal vanates, Z; ~ N(0,1). Suppose we set w equal to w(®), (2.23), so that
B = () = l(a) Formulas (5.4), (5.6), (5.7) become

AVAR(B ) )?

—— = [1 + 27 /9]

AVAR(Byor) _ [1+29J[1+ (w9~ 1){(1-0) - ¢(=))- 20/ (14 20"}
o? - 1+ (w®-1)1-0a)

(5.8)
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and

[1 4+ 2 /2][1 4 (@ — 1)(1 = o)
T4 7)1+ (0@ — 1) {(1 =)= $(z)70] (14 7]

AREsy (By)) = (5.9)

Table 3 presents AREg;, (ﬂw(a)) for several values of a. The efficiency is seen
to be quite high, especially for .25 < o < .75. For comparison, the asymptotic
relative efficiency of E(a), the 100ath sample percentile of y;,¥s,... ,¥n, is also
presented based on the standard formula

AVAR(B™) _ o(1-a)
o2 PYEC I

(5.10)

Kendall and Stuart (1958), Section 10.15.
In this simple situation, 8 ®) corresponds to Koenker and Bassett’s regres-

sion quantile estimate. As might be expected, estimates E(a) based on asym-
metric least absolute deviations are less efficient than asymmetric least squares
estimates, in a normal scale-location model. This comparison ignores one fact
discussed later, Remark K: for a given value of a we need to know w(®) in order
to calculate ,éw(a), which in this case means knowing that the Z; are normally

distributed. No such knowledge is required for E(a).

Table 3. Asymptotic relative efficiency of Bw(a) and B(a)

a: .50 .67 or .33 .75 or .25 .84 or .16 .90 or .10 .95 or .05
AREgy (B ) 1 .98 .95 87 T4 55
AREsp, (). 64 .65 66 66 62 53

Note: Table shows asymptotic relative efficiency of the asymmetric least squares estima-
tor B,() compared to the MLE, in the scale-location model y; = p+oZ;, Z; ~ N(0,1)
independently for ¢ = 1,2,... ,n. Also shown is the asymptotic relative efficiency of

E(a), the sample 100ath percentile. Efficiency of the asymmetric least squares estima-
tor is quite high in this model, especially for .25 < a < .75. The sample percentiles,
which are Koenker and Bassett’s regression quantiles here, are less efficient.

Returning to regression problems, we consider a generalization of the het-
eroscedastic normal linear model (3.12),

¥i =z + (257) Z;, (5.11)

where, as in (5.1), Z1, Z,,... ,Z, is an i.i.d. sample of standardized variates with
density f°(z); v and 7 are unknown px 1 parameter vectors controlling the mean
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and standard deviation of y as a function of z; and 7 is assumed to satisfy z;7 > 0
for all i. The parameter v is the usual regression vector. Note: The efficiency
results below are particularly simple for the usual homoscedastic linear model
where z;7 equals a constant.

The true w-mean of y; given z;, i.e., the minimizer of E{Q.{y: — p}|z:}
over the choice of y, is

2y + (2:7)BY, = zi(y + 762), (5.12)
where as before 39 is the true w-mean of Z. The vector
Buw=74+T10, (5.13)

is defined to be the true w-regression vector. Qur main efficiency result compares
the asymptotic variance of two estimates of §,,: the asymmetric least squares
estimate 3,, versus the MLE 3, = ¥+ 769.

The efficiency results depend on two p X p matrices,

M, = [X'diag(z;7)"2X]™?
and

M, = [X'X] X' diag(z;7)* X[ X' X] 72, (5.14)

where the diagonal matrices have ith diagonal elements 1/(z;7)? and (z;7)?
respectively. Assumptions 1-4 of Newey and Powell (1987), which we will follow
here, imply that nM, and nM; approach limiting matrices in probability as
n — 00, say

nMy — mg and nM; - m,. (5.15)

(In the homoscedastic case z;7 = o, both mg and m; equal limo?(X'X)~1/n.)
We then have the following results:

AVAR(B,) = lim n - cov(fu) = ao(w)mo, (5.16)
where ag(w) is the right side of (5.4);
AVAR(By) = a3 (w)m,, (5.17)
where a;(w) is the right side of (5.6); and

ARE(B,) = AVAR(B,)"* AVAR(B.,)AVAR(3,,) "} 518)
= ARESL(Bw)m;%mOm;%, )
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where ARESL(ﬁw) is (5.7), the asymptotic efficiency of §,, for estimating (3, in
the scale-location family (5.1)." (In the homoscedastic case, z;7 = 02, we have
ARE(f,) = AREsy(8w).)

The case where the Z; in (5.11) are N(0,1) variates (3.12), is a heteroscedastic
version of the usual linear model which allows the standard deviation of y; to
depend linearly on the covariate z;. In this case the OLS estimate 4 for 4 has
asymptotic efficiency L L

ARE(¥) = m; *mom, ?, (5.19)
relative to the MLE 4. (5.19) is just the familiar expression for the efficiency of
ordinary least squares compared to weighted least squares, using the optimum
weights (z;7)~? appropriate to (5.11).

For the normal case, (5.18) can be written in the following evocative form:

ARE(f.) = AREsy,(B.) - ARE(%), (520)

where AREgr(B,(«)) is given by (5.9), with the numerical values shown in Table
3. In other words, the asymptotic relative efficiency of 3, is composed of two
factors: the ARE of asymmetric least squares estimation in the scale-location
problem, times the ARE of ordinary least squares for estimating 4. It is not sur-
prising that this last factor appears, since the asymmetric least squares estimate
B is the OLS estimator 4 for w = 1.

Remark I. It is not difficult to obtain a “Gauss-Markov” version of the asym-
metric least squares estimation procedure which eliminates the factor ARE(%)
from its asymptotic relative efficiency.

In a certain sense (5.20), and Remark I, say that the asymptotic efficiency of
the asymmetric least squares estimator 4,, in the normal regression model (5.11)
is the same as its efficiency in the normal scale-location model (5.1), as given in
Table 3. For example, the 25th and 75th regression percentiles, which were of
particular interest in the clerical workers salary study described in Section 4, are
estimated with 95% asymptotic efficiency, ignoring the factor ARE(¥). A result
similar to (5.20) holds for regression quantiles, at least in the homoscedastic case
discussed in Theorem 3.2 of Koenker and Bassett (1982), so that the 25th and
75th percentiles would be estimated with 66% efficiency by that method.

We now give a different way of writing (5.18), that applies whether or not
the Z; in (5.11) are normal:

ARE(7)"% - ARE(B,) - ARE(3)~¥ = AREs.(B,)/AREs(5),  (5.21)

where ARE(9) is the asymptotic relative efficiency of the least squares estimate
4 for 4. This result, like (5.20), says that the asymptotic efficiency of 8, in
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the heteroscedastic regression model (5.11) is determined by its efficiency in the
corresponding scale-location model (5.1). Result (5.20) is simpler than (5.21)
because

AREsL(9) = [in1 = i35 /i22] ™} (5.22)

equals 1 when the Z; are N(0,1).
We now consider the asymptotic behavior of the tilt statistic T, (3.4), under
the assumptions of model (3.12), which is model (5.11) with the Z; ~ N(0,1).
The absolute residuals R; = |riy(¥)| are asymptotically independent with mean
and variance
R; ~ [zim]c,(z:7)2(1 — 1/¢%)). (5.23)

(Formula (5.23) gives exactly the mean and variance for |r;(7)| = (zi7)Z;, Z; ~
N(0,1).) Then T = ¢(X’X)~1X'R has asymptotic mean vector and covariance
matrix

T - (1,(c* = 1)my/n), (5.24)

where ¢ = /7 /2 = 1.253 as in (3.4), and m, is the limit of n times matrix M, in
(5.14). Moreover a symmetry argument, Section 6, shows that T is uncorrelated
with 4,

cov(¥,T)=0. (5.25)

Taken together, (5.23)-(5.25) provide a convenient way to test for tilting
effects of the regression percentiles relative to the OLS regression plane. Suppose
that z; equals (1,z(1);) as in Section 3, and write 7 = (70,7(1))'- The hypothesis
of no tilting effects is equivalent to

Ho : 71y = 0. (5.26)
If Hy is true then true w-regression planes C,, = {y = zf,,} are parallel to each

other, L, = {y = zv + 1003}, according to (5.12), (5.13).
Under Hy, (5.24) becomes

T — ((’;’) ,Te(c? - l)moo/n) (moo = lim(X'X /n)71). (5.27)

We can use T{,), the last p — 1 coordinates of T, to test Ho. This was done

in Sections 3 and 4 by approximating the null-hypothesis covariance matrix of T
by

CHERYX'X)TT (PR = (- X(X'X) T X)R|*/(n - p)) . (5.28)
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In other words we treated 7' = ¢(X'X)"'X'R as if R was a response vector

in an ordinary linear model. This is justified by the null hypothesis version of
(5.23),

Ri — (mo/c,7¢(1 = 1/¢?)), (5.29)

in which the R; are homoscedastic.

Individual tests for the coordinates of 7(1) being zero were used in Sections
3 and 4, based on the approximate t statistics 7;/{c?6*(R)(X'X);;'}3. An
omnibus F-test is also possible of course, but won’t be discussed here. Newey
and Powell (1987) present a more elaborate testing theory.

Remark J. The estimated w-regression vectors §,, are highly correlated with
one another, especially for nearby values of w, which complicates hypothesis
testing. If all the coordinates of 4 = f; are significantly non-zero, how should
we assess the significance of the coordinates of say 85?7 The tilt statistic offers
an uncorrelated local decomposition of the [iw values,

P w-—1 . ow=1
Po=fh+——T=7+ 5T (5.30)

for w near 1, (3.1), with 4 and T uncorrelated, (5.25). This simplifies the testing
problem. We can decide in the usual way the significance of coordinates of %,
and then, nearly independently, test for differences between v = §; and 3,,.

Remark K. The efficiency calculations (5.17), (5.18) for 4, require correction
if they are to be applied to the regression percentiles £(®) rather than the w-
regression planes £,. We need to take account of the fact that (® in (2.9)
is chosen to have proportion a of the n data points lying below L=, Roughly
speaking, this makes the intercept of £(®) have the asymptotics of Koenker and
Bassett’s regression quantile intercept, while the p — 1 slopes of £(®) behave as
indicated by (5.17).

We now present a formula for AVAR(G(®)), in the case where the Z; in (5.11)
are N(0,1), (Model 3.12):

o o (o) —ela) 1 I — 20+
AVARG)= (rs®, ro)(T 7 10T (B8 ). G

The new definitions are as follows: a(la) is the right side of the lower expression
in (5.8); ¢ = {¢(2(*) + az()}/{1 + (w(®) = 1)(1 - a)}; I, is the p X p iden-
tity matrix; and 2° = E{z/z7}, the expectation being taken over the random
selection of z, as in Newey and Powell’s (1987) Assumption 1.
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Result (5.31) should be compared with (5.17), with w = w(%), for the nor-
mal situation Z; ~ N(0,1). In the special case z = (1, z(l)), 7 = (79,0), and
E{z(;)} = 0, (5.31) gives the same result as (5.17) with w =

6. Proofs and Details

We now complete some of the more important arguments that were left open
in previous sections.

Section 2. In order to verify the useful formula (2.20), define
§(w,b) = B(w,b) — b= [X'W(b) X] 1 X'W (b)r(b), (6.1)

as in (2.16). The solution vector §,, satisfies 6(w, B,,) = 0, according to (2.17).
If none of the residuals r;(b) = 0, then V,W (b) = 0 and so

Vié(w,b) = I, (6.2)

where I, is the p x p identity matrix. Formula (2.22) can fail if any of the
ri(b) = 0, but the more special result

Vib(w, b)lb:é, =-I (6.3)

is always valid. (6.3) requires a careful but straightforward accounting of bound-
ary cases r,-([;‘w) = 0, which is omitted here.

Write §(w,b) = AZ'B,,, where A, = X'W(b)X and B, = X'W(b)r(b)
are now thought of as functions of w with b held fixed. Then since

a—Wé% = I (ri(b)) (I+(T) = { (1) ii: i g) (6.4)
we calculate
(w,b) _ ,_[8Bu Ay ,_
g A [ dw  ow A'"IB“’] (6.5)
= [X'W(b)X]"" [x 1,6) - 2250w ,b)]

I (b) being the n x n diagonal matrix with ith diagonal element I (ri(b)).
If b = B, then é(w,B,) = 0, and (6.5) reduces to

), s, = (XW (B XI XL, (Bu)r(hu). (6.6)
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Notice that (2.14) can be written as X'[wIi(By) + (1- I+(,Bw))]r(,3w) =0,
which implies a further equality: X'|v(8y)| = X'[I4(8,) - (1 - L (Bu)r(Bw)
equals (1 + w) X', (B,)r(b). Substitution into (6.6) gives

06(w, b) ~ o
oo, = T X W (B X X (B 6.7)

The local linear expansion

36(10 b)lb_

§(w+ Aw, B, + AB) = Aw + Vy8(w,b)|,_5 (6.8)

implies that along the curve §(w, ,Bw) = 0 in (w, b) space, we have
% = - [Vbé(w, b)l;,:[a,,] [66(;;, b)|b=ﬁ“] . (6.9)
Result (2.20) follows from (6.3) and (6.7).

Some care is needed in interpreting (2.20) for values of w such that one or
more of the residuals r;(4,,) equals zero. Although both (6.3) and (6.7) are valid
at such w values, the local expansion can fail. At such points formula (2. 20)
gives different left and right hand derivatives for dg,, /dw, depending on how the
two possible values 1 or w for W(r;(b)) are assigned. This ambiguity made little
numerical difference in the baseball and cholostyramine examples, where (2.20)
performed its role in algorithm (2.22) excellently.

Remark L. The vector of fitted values corresponding to Bw, say fly, = X Bw,
has derivative

dﬁw = .d-’B_w = ! -1 7
Gw - dw 1+ ——X[X'W(B,)X]" X'|r(Bu)l.  (6.10)

For any vector €, = Xv, in the column space Leoi(X) of X, the weighted inner
product (z,,dfi,/dw), = = W(,Bw)duw/dw is given by

(zy, dj, [dw),, =

-’BLI?‘(ﬁw)I- (6.11)

If z, has all non-negative components, then (6. 11) says that (x,, dji,, /dw),
2 0 for all w. That is, dji,, /dw has non-negative inner product with any vector
x, in the intersection of L£.,)(X) and the positive orthant of R™. In this sense,
flw moves upwards as w increases. If the vector 1 = (1,1,..., 1) lies in Lo1(X),
which is usually the case, then (6.11) gives

7 (A ) — i Wi(ﬁw)’dﬂwi/dw
(1, dfiw /dw)] Y WilBu) = 122;1 Wih) 2O (6.12)
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so that the (weighted) average derivative of the predicted values is increasing
with w. ‘

It is easy to see that as w — o0, £,, approaches a bounding hyperplane to
the convex hull of data points, with all of the (zi,¥:) lying below L,,. Likewise
as w — 0, £,, approaches a lower bounding hyperplane to the convex hull.

Section 4. We now derive the two influence measures D2 ; and l"):"u’,- pro-
posed in (4.1). The influence of the ith data point (z;,y;) on a statistic of interest
like B, is, by definition, the differential change in the statistic corresponding to a
small measure in the mass, or weight, attached to (zi,¥:). For a vector of masses

m = (my, my,... ,my,), all m; > 0, define
Bm(w,b) = [X'{mW (b)}X]"' X' {mW (b)}y (6.13)
where {mW (b)} is the n X n diagonal matrix having ith diagonal element
m,—W(r,-(b)).
fm=1=(1,1,..,1) then fm(w,b) = B(w,b), as defined in (2.15).
For other values of m, By (w,b) is the value of B(w,b) when the ith data point

(zi,9:) is treated as if it occurred m; times in the sample. Corresponding to
(2.17) we define By o, to be the stationary value

Bm,w = ﬂm(wa Bm,w), (6-14)

80 B w is the value of b that minimizes Yie1 miQu{ri(b)}, as in (2.6).
A calculation much like (2.27) gives

0Bm(w,b)

am; = X {mWO)}X] Wi (b)ri(Bim (w, b)), (6.15)

Wi(b) = W(ry(b)). In order to smoothly increase the mass attached to the ith
data point, define the family of mass vectors

m(e;) = n(e;e; + (1 - ¢)1/n), (6.16)

e; being the ith unit vector (0,0,...,1,...,0)' with 1 in the ith place. Then

dm(e;) ‘
de, n(e; — 1/n). (6.17)
Combining (6.15) and (6.17) gives
8m (w, b)
85;

= n[X{mW ()} X] ™" [{Wi(b)ri(Bm(w,b)) — X' W (B)r(Bm(w,b))].  (6.18)
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In particular

[

e lemopp, = X' W(Bo)X]7 i Wi(Bu)ri(Bu), (6.19)

where we have used 3, (w,b) = 8(w,b), B(w, ﬂw) B, and X’W(ﬁw)r(ﬁw) =0,
(2.14). It is also true, as in (6.3), that

ViBm(w, b)l(,:fam,u =0. (6.20)
Together (6.19) and (6.20) show that

aﬂm,w |e =0 — n[X'W(ﬂw)X]—l ,M(/Bw)rc(ﬂw), (621)

assuming that no r,(,@w) = 0. Expression (6.21) is the empirical influence func-
tion of the ith data point on 3,,, as defined for instance at (6.16) of Efron (1982).
Now let /iy, indicate the entire vector of predictions z,ﬂm w corresponding

to ﬂm,w, R
ﬂm,w = Xﬂm,w- (622)

The empirical influence function of the ith data point on fw = 1 =X ﬁw is
the vector

O
O¢; '€i=0

U; = = nX[X'W (Bu)X] 12 Wi(Bu)ri(B(w)). (6.23)

Comparing (6.23) with (4.1), we see that D2 ; is a scalar summary statistic
for the vector influence Uj;,

1
D}, = Uil (6.24)

Changing the masses on the data points from 1 to m(e;) = n(e;ei + (1— €)1 /n)
makes an overall change in the vector of predicted values of magnitude

lime),w = Bull = |Uille; = nDy €. (6.25)

Comparison with formula (4.44a) of Chatterjee and Hadi (1988) shows that D2 .
follows the same basic definition as Cook’s distance.
Another motivation for D ; comes from the delta method (or infinitesimal

Jjackknife or influence functlon) estlmate of variance (see Efron (1982), formula
(6.18)).
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The estimated variance of the jth prediction z j,B.,, by any of these equivalent
methods is

—~ _1¢
var; = — EU?J Ui=(...,Uij,... )", (6.26)
=1
)

z,.: Di ;= zn:ﬁr,-. (6.27)
j=1 j=1

In this sense 100 - D? ;/ Y i=1 D2 ;, Figure 3, is the percentage of the total
variance of the estimated w-regression plane attributable to the ith data point.
The component of U; orthogonal to 1 is

ff,‘ =U;—ﬁ.‘l (ﬁ;E ZU,J/TL) (6.28)
i=1
From (6.23), ) ) ) )
Ui = nX[X'W(ﬂw)X]_lxzwi(ﬂw)ri(ﬂw)v (629)
and so )
B2 ;= 02 (6.30)

by definition (4.1). The version of (6.28) relevant to D; is
1PN (imeyw = Aw)ll = [Tille = nDu e, (6.31)

where P(1) = 1 — 11’ /n is the projection matrix orthogonal to 1.

Remark M. We see that f)w',- is a Cook’s distance type of influence function,
of (z;,y:) on fi,, where we exclude from the influence measure translations of
the regression plane in the y direction, i, — fiy + c1. To put it another way,
f)w,,- measures the influence of (z;,;) on the tilt of f,,. This is appealing in our
context for two reasons: the tilting of the regression percentiles relative to the
OLS plane is perhaps the most interesting output of our analysis; secondly, D2
more accurately portrays the influence of (z;,y;) on the regression percentlles
xﬂ("‘) as opposed to the influence on the w-regression planes z /3, .

Section 5. The asymptotic efficiency results of Section 5, (5.20), (5.21),
are easily derived as special cases of Newey and Powell’s (1987) Theorem 3.
Newey and Powell’s results apply far beyond model (5.11). The reason here for
concentrating on (5.11), and especially its normal-theory version (3.12), was to
derive specific efficiency comparisons such as those in (5.20)-Table 3.
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Here is a heuristic argument supporting result (5.31). We are dealing with
the heteroscedastic normal model (3.12), so with w(® given by formula (2.23),
the true w{(®)—mean of Z is ,32,(,,, = 2(®) = ®~1(a) as in Remark B, and the true
w(®—regression vector is

ﬂ(a) =By =7+ 1'2(“), (6.32)

as in (5.13). The notation 8(*) = B, is permissible here because the plane
L@ = {y = 2B} is the true 100ath regression percentile £(*) in model
(3.12). However we must distinguish between ), the sample w-regression
vector with w = w(®), and 3(®), the vector giving the sample 100ath regression
percentile £(®), (2.9). Usually £ (a), (2.8), will not have exactly proportion a
of the n data points (z;,y;) lying beneath it. An important part of variance
formula (5.3) comes from the difference between G, () and 5(%).
A “one-step” approximation for ,éw(a) is

ﬂw(ﬂ) - ﬂ(a) = ﬂ(w(o‘)’ﬂ(a)) _ ﬂ(a)

_ [X,W(f(a))x] -1 [ (6.33)

SXWE)r(pe)].

Formula (2.19), with b = 3(%), shows that (6.33) is the usual one-step approxi-
mation for finding the minimizer of S,,a)(b), and will err by only o,(n~%) under
reasonable regularity conditions. Assuming that the (i, yi) pairs are i.i.d. ob-
servations, as in Newey and Powell’s Assumption 1, then

[(X'W (BN X [n]" 1> E{X'X}~1/ D) (D(“) El+(w(°‘)——1)(1—a)) (6.34)

in probability as n — co. We can then use (6.33) to approximate ﬁw(a) - B in
the influence function form

u n ry -1
Buer =B = 2 S0F (U.-" = %%}—#W(ra(ﬂ‘“’))n(ﬂ‘“)))- (6.35)

=1
Next let

6o = gz_m(ﬂ(“)))/n (I.(r) - {

1 ifr<0
nrs ) (6.36)

0 ifr>0

80 Go is the proportion of data points lying below the true 100ath regression
percentile £, ). Then

& —a= % Y ue (U,.“ = I_(r;(8*)) - a) . (6.37)

=1
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The (p+1) X (p + 1) covariance matrix of (U,-p, U¥)is

U.p aPm;  —cl@y

COV(U;&) = ( _lrc(a)l a(l - a)) ’ (6.38)
as in (5.31). Formula (6.38) depends on these facts: r;(3(™) = (z;7)(Z; — ()
(from (5.11) and (6.32)); U = E{z'z} 1zlz;tW(Z;~2(*)(Z;—2())/D(); Z; ~
N(0,1), independent of z;; EW(Z; — 2(®))(Z; — 2(*)) = 0 (from the population
analogue of (2.14)); EW(Z;—2(®))(Z;—2(¥).1_(Z; = 2) = E(Z;—2(*)I_(Z;-
2®) = _[¢(2(?) + a); and EUPUF = {Ez'z}'E{z'(z7)*z}{E2'z} 1 E{W(Z

) A= z("'))}Z/D("’)2 = a(la)ml.
Let P{b} equal the probability mass, under model (3.12), lying below the
plane {y = zb}. If b; and b are approaching 3(®) at rate Op(n‘%), we compute

P{by} — P{b} = /R ooy - DAz = (b~ (D), (639)

with z° = E{z/z7} as in (5.31), the relative error in (6.39) being O,(n™%).
Choosing b; = B, and b = B(®) gives
P{By@)} — a = 2%(B @ — B )p(2()). (6.40)
Then )
& — o= (Go — a) + 2By — B(M)g((), (6.41)

where & equals the proportion of data points lying below £ ) = {y = z,@w(a)}.
We need two more relationships to complete the verification of (5.31),

dByar . T
a3 (6.42)
and
dP{B ) }/da = 1. (6.43)

Result (6.42) follows by taking the limiting value as n — oo of (2.20), or by a
continuity argument using (6.32). Then (6.43) is derived from (6.39) and (6.42),
and the fact that 2%7 = E{zr/z7} = 1.

By definition, the 100ath sample regression percentile is ,BAw(ax), where a;
is chosen so that the proportion of the data points lying below ﬁw(al) ={y =
28 ,a1)} equals a. From (6.43) and (6.41) we see that

@ —a=—(&-a) = (G — @) = 2°(B — B)P(). (6.44)
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Moreover (6.42) gives

~ ~

Butar) = Byta) = E(zz(a_))(al - a). (6.45)
Writing Bca — 8 = (Byan) — Butar) + (Butar — (), we have
R 3 — [la)
Butap — B = (Ip = 7% —7/$(2*)) (ﬂ"’(;)_ (f ) (6.46)

This verifies (5.31), by combining (6.35)-(6.38) with (6.46).

Remark N. Suppose that we use maximum likelihood to estimate 8(%) in
model (3.12), but that we empirically calibrate the 5(*); that is we estimate 5(®)
by B(*1), where a; is chosen so that proportion a of the data points lie below
{y = 28(*1)}. Then calculations like those above give

- (a) ) W0
AVAR(ﬁ(m)):(Ip—er,_.r/¢(z(a)))(a2q(‘:)l'o a(lq— a)) (_I:r/;(;z(:)))’ (6.47)

where a((,a) =1+ 2°/2 as in (5.8), so a‘(,a)mo = AVAR(F®), and ¢(®) =
moz? [#(zNH)(1 + 2)? /2)]. The asymptotic relative efficiency of 3(®) might
better be defined with respect to 5(*1) than ﬂ~(°‘), since both B(a) and 3(®1) are
empirically calibrated. This form of the ARE can be computed from (5.31) and
(6.47).

To verify (5.25), let ** = y — Xy = 7r(v), the true residual vector, so

L
P = (2i7)Zi. Then 4 — 7 = (X'X"H)X'r®) and T = (X' X)"1X'| P19,

where 1l> = (I - X(X'X)'X'). If Z; ~ N(0,1), (or any other distribution
symmetric about 0), then Z = (Z;,...,Z,) and —Z are equally likely. But
Z — —Z implies r® — —r% and so (¥ ~y) = —(§—7) while T — T'. This shows
that cov(%,T) = 0.
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