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Abstract: In public health research, it is common to follow a cohort of subjects
over time, observing a vector of health indicators and a set of covariates at each
of many visits. An objective of analysis is to characterize the inter-dependencies,
in particular, the feedback of one response upon another while accounting for the
covariates. With Gaussian responses, multivariate autoregressive models that incor-
porate feedback are commonly used. This paper discusses analogous Markov models
for multivariate discrete and mixed discrete/continuous response variables. One spe-
cial case is an extension of seemingly unrelated regressions to discrete and continuous
outcomes. A generalized estimating equations approach that requires correct spec-
ification of only conditional means and variances is discussed. The methods are
illustrated by a study of infectious diseases and vitamin A deficiency in Indonesian
children.
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1. Introduction

In public health research, it is common to follow a subject over time, observ-
ing a vector of health indicators and a set of covariates at each of many visits. If a
univariate response is the scientific focus, regression methods for time-dependent
data (e.g. Laird and Ware (1982), Liang and Zeger (1986), Zeger (1988)) can be
applied to characterize its mean as a function of the predictor variables. With a
vector of responses, their inter-dependencies, in particular, the feedback of one
variable upon another is typically important. When the vector can reasonably
be assumed to follow a Gaussian distribution, multivariate autoregressive and
moving average (ARMA) models can incorporate feedback and are in common
use. See for example Tiao and Box (1981) for a discussion of ARMA models
and Geweke (1982, 1984) for measures of feedback with ARMA processes. Feed-
back models have received far less attention, however, when the response vector
includes both discrete and continuous variables as is common in public health
research. The broad objective of this paper is to indicate how generalized esti-
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mating equations (Liang and Zeger (1986)) can be used to study feedback in a
wide range of problems. ‘

Before turning to specific statistical issues, we briefly consider a motivating
example for which multivariate time series models with feedback may be im-
portant. It is from a study by Sommer et al. (1984) of pre-school Indonesian
children who were medically examined quarterly for eighteen months. A study
objective was to assess the role of vitamin A deficiency in children’s morbidity.
At each visit, it was determined whether a child had xerophthalmia, an ocular
condition due to vitamin A deficiency, respiratory infection or diarrheal infection.
A number of covariates such as age, weight and height were also determined. An
interesting issue is whether there exists a feedback mechanism whereby vitamin
A deficient children are more likely to suffer respiratory and diarrheal infections
which in turn deplete stores of vitamin A and increase their risk of subsequent
infections. This hypothesized relationship is feasible since vitamin A is neces-
sary for maintaining epithelial cells, the first defense against infection. It has
public health importance because respiratory and diarrheal infections are among
the leading causes of children’s mortality in developing countries and also since
vitamin A deficiency can be prevented with supplementation programs. To in-
vestigate whether such a feedback exists, we must simultaneously model the
conditional distribution of respiratory and diarrheal infections as a function of
previous vitamin A deficiency as well as the conditional distribution of vitamin
A deficiency in terms of previous infections while also adjusting for covariates.

Models for multivariate time series must necessarily originate from models
for time-independent multivariate observations. There has been active develop-
ment in both the statistics and econometrics literature in recent years of models
for multivariate discrete response vectors. Goodman (1973), Nerlove and Press
(1973), Schmidt and Strauss (1975) and Lee (1981) have formulated log-linear
models for multivariate binary or categorical responses in terms of the conditional
distributions for each response given the others. More recently, Dale (1986) and
McCullagh and Nelder (1989) have parameterized the joint distribution of mul-
tivariate categorical data in terms of the marginal distributions of the individual
responses as well as the higher order marginals.

There is also substantial literature on independent mixed continuous and
categorical responses, much of it focused on the discrimination problem. Olkin
and Tate (1961), Krzanowski (1982) and Little and Schluchter (1985) have as-
sumed that conditional on the discrete variables, the continuous responses have
a Gaussian distribution and that the marginal distribution of the discrete re-
sponses follows a log-linear model. Lauritzen and Wermuth (1989) have recently
termed these CG (“Conditionally Gaussian”) distributions and have discussed
mixed variable analogues of graphical models for contingency tables. Probit-
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Gaussian models have been preferred in the econometrics literature. See for
example Heckman (1978). °

This paper discusses time series analogues of the models above. A flexi-
ble class of feedback models can be obtained by specifying only the form of the
conditional mean and variance of each response given a subset of the remaining
responses at the same time and given the past. Reference to particular joint
distributions will be necessary only to establish parameter constraints in some
examples. Otherwise, the proposed methods are time series extensions of multi-
variate quasi-likelihood models (McCullagh and Nelder (1989)). The generalized
estimating equations (GEE) approach (Liang and Zeger (1986), Prentice (1988))
will be used for estimating parameters while taking into account dependencies
among the responses not explicitly modelled in the conditional means and vari-
ances.

The organization of this paper is as follows. Section 2.1 discusses a series of
specific models for discrete and continuous multivariate time series; and Section
2.2 gives a general formulation in terms of conditional means and variances.
The GEE approach will be briefly reviewed and extended to include parameter
constraints in Section 3. The methods will be illustrated with an analysis of the
Indonesian children’s data in Section 4 followed by discussion.

2. Multivariate Time Series Models

To establish notation, let y; = (¥1¢,-.- ,¥nt)’ be an n x 1 vector of responses
at time ¢ and define y_j; to be the (n — 1) X 1 vector with the jth response
left out. Let c;; be a subset of y_;; containing the responses to be explicitly
used in predicting y;;. Also let zj; be the p; X 1 vector of covariates associated
with y;; and define P, = {y,, s < t} to be the past outcomes. Finally let
pit = E(yjtlcjt, P:) and v;; = var(yjt|cjt, Pt). Dependence of these moments on
the covariates is obvious and is suppressed in the notation.

2.1. Examples

We now consider four specific examples of multivariate time series models
which incorporate feedback. To simplify notation, we will restrict attention to
the case where y: = (¥1¢, y2¢)’ and to first order time dependence.

(i) Multivariate autoregressive (AR) models
In a multivariate regression with AR errors, it is assumed that conditioning
on P;, y; is Gaussian with mean u: = (p1¢, p2:)' given by

st = E(yie| Pe) = 21,81 + v11(%1e-1 — 214-161) + 112(¥2e—1 — 25,1 82)

2.1
B2t = E(y2¢| Pt) = 2382 + Y21(y1e-1 — 214_151) + 722(¥2e-1 — h;_102) (21)
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with var(y;|P;) = E. Here c1; and cy; are taken to be null, that is, we have not
conditioned y;; on the other outcome at time ¢, only on the past. However, p;:
does depend explicitly on y;_1 through the parameters v allowing for feedback
of each series on the other. See Tiao and Box (1981) for a detailed discussion of
ARMA models like (2.1). In the econometrics literature, (2.1) is referred to as
“seemingly unrelated regression equations” or SURE models (Zellner (1962)).

(ii) Log-linear Markov models

Suppose both y;; and y;; are binary (or more generally categorical) variables.
A log-linear model for Pr(y:|P;) can be obtained by letting ¢;; = y—j¢, J =
1,...,n (=2 in this case) and specifying a logistic model for p;: = E(yjt|cjt, Pt).
With two dichotomous outcomes, we have for example

logit E(y1¢ly2t, yt-1) = 2161 + 61%2¢ + T11¥%16-1 + Y12¥2¢-1

. (2.2)
logit E(y2¢|y1t, yt-1) = z9,02 + G291 + Y21¥16-1 + Yo2Y2:-1

and vz = pj(1 = pjt), j = 1,2. Liang and Zeger (1989) have shown that (2.2)
uniquely determined a log-linear model for Pr(y:|P;) subject to the constraint
61 = é,. Nerlove and Press (1972) and Lee (1981) discussed the analogous model
with 7;; = 0 for time-independent responses.

In (2.2), 712 represents the feedback of y2¢—1 on y;: conditional on y3¢:. When
there is serial dependence within each series y;;, the feedback of y2;_1 on i,
marginalized with respect to y¢, may be of more scientific interest. We believe
this is the case in the Indonesian children’s example discussed in Section 4. The
next example may be more appropriate in such cases.

(iii) Simultaneous logistic regressions
As an alternative to (2.2), let each c¢;; be null leading to the specification

logit E(y1:|P;) = 2101 + Yi1%1t-1 + Y12%26-1

2.3
ogit E(yatl Pr) = wheB} + Vi1916-1 + Via¥2e-1 (2:3)

with vjs = (1 = p};), j = 1,2. The starred notation in (2.3) is to accentuate
that the parameters in (2.2) and (2.3) are distinct. For example, 7y, represents
feedback of y3;_1 on y;; averaged over the two possible states of y3:. The model
in (2.3) is a Markov analogue of the one discussed by Dale (1986), McCullagh and
Nelder (1989) and Liang, Zeger and Qaqish (1989). Note that the conditional
dependence between y;; and y; given P; is not explicitly modelled in (2.3). To
completely specify Pr(y:|P:), we must also model all higher order marginal dis-
tributions (second order in the case n = 2). For example, we might assume that
the log odds ratio of y;; and y; is a linear function of a subset of the explanatory
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variables with coefficients a. These “marginal” models for multivariate responses
are discussed in detail by Liang, Zeger and Qaqish (1989).

Equation (2.3) involves two logistic models to be fit simultaneously along
with a model for the covariance of the responses. However, the approach applies
to any quasi-likelihood model for Pr(y;;|P;). That is, we can simultaneously
estimate a series of models for discrete and continuous responses in which no
response is an explanatory variable in another equation but where the correlation
among the outcomes is simultaneously modelled. This class is an extension of
SURE models which might be referred to as “seemingly unrelated generalized
regression equations” (SUGRE).

(iv) Models for mized binary and continuous responses

Suppose now that y;+ is a continuous variable while y,; is binary. Lauritzen
and Wermuth (1989) have reviewed properties of the class of “conditionally Gaus-
sian” or CG distributions where y;; given y,; is assumed to be Gaussian and the
distribution of y;; follows a log-linear model. One attractive feature of the CG
class is that y;; given y;; is then also in the log-linear family. In particular, if
Y2t is univariate, then assuming E(y;:|P;) follows a logistic model implies that
E(y2¢|y1t, P;) also has a logistic form. Thus, two distinct models for mixed
binary-Gaussian time series data are suggested. In the first, we let ¢;; = {y2:}
and ¢3¢ be null. One such formulation in which all effects are assumed to be
additive has the form

E(y1tlyae, Pr) = 21,01 + 8192¢ + y11(¥1e—1 — 141 61) + Y12¥2¢—1 (2.42)

logit E(ya¢| Pt) = 25,82 + Y21(¥1t—1 — Z14-161) + Y22¥2¢-1 (2.4b)

where vy; = 0% and vy = pg(1 — p2¢). Models with interaction can similarly
be defined. Here 721 represents the feedback of y;:—; on y2t averaged over the
distribution of y;; given P;. An alternate approach is to condition on Y1¢, that
is let ¢3¢ = {y1:}, and replace (2.4b) by

logit E(ya¢|11¢, Pr)

N . . (2.4¢)
= 23405 + 82(v1: — 21:61) + 131 (Y181 — z1-181) + Y32 ¥2t-1-

In this case, §; and 6; must satisfy the constraint 6, = o~24;.

2.2. General formulation

In each of the models above, a “link” function h; of the conditional mean
Wjt is assumed to be linear in the covariate z;; and in the elements of cj: and Py.
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The conditional variance is also assumed to be a known function g of the mean.
The general formulation has the following assumptions:

hi(pjt) = 2585 + Eicjty Pe; 65, 7;)

. (2.5)
vit = gi(Kit) - di, F=1,...,n,

where h;, g; and {; are known functions; Bj, 6;, v; are parameters characterizing
the dependence of y;; on Zjt, cj+ and Py respectively and ¢; are nuisance scale
parameters. Note that {; may also depend on previous values of the covariate,
zjt—1 as in Example (i). Here the £;’s depend on 8 = (8i,...,8,). This
requires slightly special treatment in model fitting as is described in Zeger and
Qaqish (1988). With a linear model, it is preferable in our opinion to use the
residual (yi;—1 — z},_,0) instead of y;;_, as a predictor as in (2.1). With binary
responses, the prior responses y;;_; themselves are used in (2.2) to (2.4). In
non-linear models, the definition of a residual is ambiguous. Furthermore, with
discrete responses, the occurrence of the event may be of greater importance
than a relative measure which includes how likely the event was. Finally, with
responses of low prevalence, the results will be similar whether or not a residual
is used.

The choice of c;;’s is largely determined by the scientific objectives of the
study. This choice however can place constraints on the forms of &; which are
consistent with the existence of a joint distribution Pr(y:|P;). When the c;;’s
are null sets as in Examples (i) and (iii), no constraints are necessary except
possibly to guarantee ergodicity of the process. More generally constraints are
unnecessary if the c;;’s are nested as in Example (iv), Equations 2.4a-b. In this
case, only the conditional moments in (2.5) and not the entire joint distribution
Pr(y:|P;) need be specified. However, when the cjt’s are not nested as in Exam-
ples (ii) and (iv), Equations 2.4a and 2.4c, the entire joint distribution Pr(y:|P)
is necessary to determine the constraints on the &;’s. These are given by the
Hammersley-Clifford Theorem (Besag (1974)).

3. Estimation

This section discusses an extension of the generalized estimating equation
(GEE) approach to estimating the parameters §' = {(85,6%,7%), 5=1,... ,n}in
Equation (2.5) when 6 may be on a lower dimensional subspace due to constraints.
See Liang and Zeger (1986) and Prentice (1988) for additional discussion of the
unconstrained case. Let §;; = vj_tl/z(y]-t — pj¢) and Sy = (S1zy... ,50:). We
will suppose Cov(S:|P;) = R(u:, @) where « is an a x 1 vector of unknown
parameters. Note in examples where the c;;’s are nested, R(u;, a) = I since the
Kjt’s are conditional expectations. The GEE approach is a multivariate analogue
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of quasi-likelihood ( McCullagh and Nelder (1989)). Define

!
Ugt = %Vfl(yt — Kt),
where V; is the working covariance matrix for y;. In the cases such as Example
(ii) above when @ is linearly constrained, there exists a vector #* of unconstrained
coefficients given by 6* = L(¢)6. In Example (ii), L is known; in Example (iv),
L depends on the unknown scale parameters. By the chain rule, the estimating
equations for 6* at time t are simply Ug.; = L(#)Us;. When L depends on an
unknown ¢, we use $ defined below.

To complete the specification, we require estimating equations for a and
¢. Moment estimators are adequate with larger data sets common in public
health. Let Zt = (51t52t,. . ,Su.S'nt, SztS:;t,... ,Sn_uSm)' be the vector of
cross-products and denote E(Z;|P;) = m:(a). Following Prentice (1988), the
equation for a is

ol _
Uat = a—oltWt 1(Zt - nt)

where W, is a weighting matrix that in most situations can be chosen as the
identity matrix. The scale coefficients ¢; can be obtained from the moment
equations

Usi = Y (S4/g9(pit) —¢;) =0, j=1,...,n.

t

Assembling the components and assuming t = 1,...,7T, we have

n ou’
S U\ [ LD TGy VT e - )
U= ( Et Uat ) = Zt %Wt—l(zt — ) = 0. (3.1)

ZtUt
’ S, (52 /g(ue) - )

Let § be the solution of (3.1). Then under the usual Crarher regularity conditions,
VT (6 - 0) converges to a multivariate mean zero Gaussian vector with variance

matrix V; = (a—g)—IVar(U )(E?%)_1 which can be consistently estimated by

substituting ), U;U{ for Var(U).
This asymptotic distribution can be derived in the same fashion as in Liang
and Zeger (1986) and is therefore omitted.

4. An Example

Data from the Indonesian children’s study (Sommer, et al. (1984, 1987))
illustrate the use of GEE for feedback models. Approximately 3,000 pre-school
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children were medically examined quarterly for up to seven visits. The possible
responses include presence/absence at the medical visit of diarrheal infection
Dy; respiratory infection Ry; xerophthalmia Z;, an ocular sign of vitamin A
deficiency; as well as weight for height W;, a surrogate for recent nutritional
status. The covariates include: age in months A; (centered at 36 months); sex
S; seasonal sine sin; and cosine cos; and height for age H; as a percent of NCHS
standard (centered at 90%). The first scientific questions of interest are: (i)
are children who are vitamin A deficient as indicated by xerophthalmia more
susceptible to infectious diseases; and (ii) do respiratory and diarrheal diseases
increase the risk of future vitamin A deficiency.

Based upon extensive preliminary analysis of these data (Sommer, Katz and
Tarwotjo (1984, 1987)) the following multivariate regression model was chosen:

logit Pr(D; = 1|Z¢, P:) = Pro + P11 Z: + Br2 At + BraHe + B4 sing +0;5 cos,
+ 5168 + 11 Di1 + 712 Re1 + 113281 + 11421 - 21y

logit Pr(R: = 1|1Zt, Py) = B20 + 8212 + Baz At + Baz Hy + Bag sing +825 cos;
+ B26S + 121 Di—1 + 122 Re1 + v23 Zio1 + 12421 - Zia

logit Pr(Z: = 1|P;) = B30 + P31 At + B2 Ht + BazS + Pag sing +035 cos;

+731Dt-1 + 132 Re—1 + 733 Zt—1 + Y34 Zt—1 - D¢y + V35 Z4—1 Ri—1.
(4.1)

Note we have chosen to model the conditional distributions Pr(D;|Z;), Pr(R;|Z:)
and the marginal distribution Pr(Z;) supressing for the moment conditioning on
the covariates X; and the past P;. Vitamin A deficiency may affect a child’s
propensity for both infections. If in studying the impact of vitamin A defi-
ciency on respiratory infection R;, we condition on the presence of diarrheal in-
fection Dy, some of the vitamin A impact on R; will be incorrectly attributed to
D;. Similarly it is more appropriate to estimate Pr(D¢|Z;) than Pr(D:|Ry, Z;).
However, in the other direction, we focus on Pr(Z;) rather than Pr(Z;|R;, D;).
Xerophthalmia signs of vitamin A deficiency take some time to develop since
longer-term supplies of vitamin A can be stored in the liver. The effect of infec-
tions might be to reduce stores but resulting ocular signs are unlikely to occur
immediately. Hence we estimate Pr(Z;|D;_1, Ri_1) rather than Pr(Z;|D;, R;).
Sommer (1982) gives a detailed discussion of xerophthalmia and its association
with infections.

Ignoring covariates and past outcomes, our model for (D;, R;, X ¢) is distinct
from more traditional log-linear models (Bishop, Fienberg and Holland (1975)).
The parameters in a log-linear model would have interpretation in terms of
the conditional probabilities Pr(D¢|R;, Z;), Pr(R:|Dy, Z;), and Pr(Z|D;, Ry).
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Time series models for these conditional distributions are discussed by Liang
and Zeger (1989). For the Indonesian data, we believe the conditional proba-
bilities are of less scientific interest than Pr(D;|Z;), Pr(R:|Z;) and Pr(Z;) for
the reasons above. A more detailed discussion of “marginal” model alternatives
to log-linear models can be found in McCullagh and Nelder (1989) and Liang,
Zeger and Qagish (1989).

The results of fitting Model (4.1) using generalized estimation equations
(GEE) are presented in Table 1. The working correlation assumption is that only
D; and R; are associated since Z; appears explicitly in the D; and R; regressions.
Hence the GEE reduces to fitting one model for the bivariate response (D, R:)
and a second ordinary logistic regression (OLR) with Z; as a response. Table 1
also lists the results of separate OLR’s for D; and R;.

First note that the GEE and OLR results are nearly identical. The estimated
correlation between D; and R; was 0.020, too small to create a substantial ad-
vantage for GEE. Note, however, a correlation of 0.020 corresponds to an odds
ratio of 1.36 at the mean propensities for D; and R; of .043 and .091 respectively.
That is, a typical child with diarrheal disease at a visit is roughly 1.36 times as
likely to have respiratory infection as well relative to the child without diarrhea.
This is one distinction of models for multivariate binary as opposed to Gaussian
data: efficiency gains by accounting for even scientifically important associations
are more limited.

These data are suggestive that a feedback system is operating. First both
infections are more common among children with xerophthalmia. The xeroph-
thalmia odds ratios for diarrhea and respiratory infections are estimated to be
4.5 and 1.6 respectively; both are highly significant. Given Z;, previous xe-
rophthalmia (Z¢_;) and the interaction Z; - Z;_; are not important in either
regression. Among the other covariates, age, sex, height for age and seasonality
are important predictors of both diarrheal and respiratory infection. Turning to
xerophthalmia as an outcome, the strongest predictor is previous xerophthalmia
with an odds ratio of 33 (95% confidence interval: 26 to 41). However among
children without xerophthalmia at the previous visit (Z;_; = 0) those with di-
arrhea at (D:-1 = 1) are 1.63 times more likely to become xerophthalmic (95%
interval: 1.03 to 2.58) at visit ¢. Hence xerophthalmia increases the risk of diar-
rheal disease which further increases the risk of future xerophthalmia in a positive
feedback cycle.

A second analysis using the responses weight for height and respiratory dis-
ease has been performed to illustrate a feedback model with continuous and
discrete outcomes. Weight for height was not included along with the three dis-
crete variables in (4.1) because the relationship between diarrhea and weight for
height may reflect short-term effects of dehydration rather than a nutritional
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status-disease relationship. The questions here are whether children with res-
piratory disease tend to lose weight for height in the near future and whether
they are then at increased risk of additional respiratory disease. Based upon
preliminary analyses, we have chosen regression models of the form:

logit Pr(R; = 1|W;, P;) = 1o + B114s + P12 Hy + Paa sing +514 cos;
+ Wi + 712Ri-1 + 113Wer + 11aWis1 Ry
E(Wi| Ry, P;) = B20 + B21A¢ + Ba2 Hy + B3 sing +B24 cos; +721 Ry
+ 722 Ri1 + V23 ReRe—1 + y24(Wim1 — E(Wi_1|Ry_y, Pi_y)).

(4.2)

Note we have modelled E(R:|W;, P;) and E(W:|R:, P;) as described in Equations
(2.4a,c). This dictates the constraint 413 = 0727, where o? is the residual
variance from the linear regression.

The results are presented in Table 2. In the linear regression for weight for
height, there is strong first-lag autocorrelation of 0.64 indicating that poor nu-
tritional status persists over time. Using the group with no respiratory infection
at the current or previous visit ((R¢—1, R:) = (0, 0)) as the reference, there is a
decrease in expected weight for height of 1.9% in children who had infection at
the same visit but not the last (0,1) and of 2.4% if they had respiratory disease at
the previous and current visits (1,1). Height for age and season are also strongly
associated with weight for height.

In the logistic regression for respiratory disease, there is again a strong
negative association with current weight for height reflecting the constraint. That
is, children who currently have poorer weight for height are at higher risk of
having respiratory infection. Having respiratory infection last visit is associated
with a 1.73 times increase in risk for the current visit. Among children without
infection last visit and with the same current weight for height, previous weight
for height is not a predictor of initiating an infection (3/s.e.=.81). But for the
subgroup who did have infection last time, those that lost ground in weight for
height (higher at last visit) had a substantially increased risk of infection. For
example a loss of 10% in weight for height is associated with a 44% increase
in risk of current infection. Among the covariates, age, sex, height for age and
season are all strong predictors of respiratory infection.

5. Discussion

The issue on how to deal with the problem of feedback has been studied
extensively in the literature of economics. Although this problem is also common,
as illustrated in Section 1, in biomedical and public health studies, much less
attention has been paid in the past. One important feature of feedback problems
in public health research is that responses include both discrete and continuous
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variables and are observed over shorter time periods for many subjects. In this
paper, a general Markov model that incorporates feedback was proposed. It can
be estimated using the method of generalized estimating equations. There are a
few important properties of the suggested approach that deserve mentioning.

(1) In many problems, the entire joint distribution of the vector of responses
need not be specified. Only the means and variances are modelled. Thus this
approach can be viewed as a multivariate time series analogue of the quasi-
likelihood method.

(2) The method has the flexibility to allow the investigators to decide, on
the basis of scientific interest, which subset c¢;; of y;: should be included in the
model as predictors.

(3) We have modelled the distributions of observable quantities rather than
of latent variables.

In the Indonesian example, we have modelled the conditional distributions
of infections given xerophthalmia. It might be more natural to condition on
vitamin A level and to treat xerophthalmia as a surrogate for vitamin A. Such
an analysis would be more realistic but also much more difficult to perform.
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Table 2. Regression results for a feedback model of respiratory disease and weight for
height for the Indonesian children’s data as described in Section 4

Response variable

Respiratory(t) Weight /Height(t)
Explanatory variable fi ,B /se. fi f3 /se.
Age —.0240 -13 .00772 1.1
Sex —.281 —4.1 211 .83
Height/Age —.0455 —6.2 —.142 —4.0
Seasonal Sine 24 4.9 272 4.0
Seasonal Cosine —.0194 —.42 —.582 —8.6
Respiratory(t) — — -1.89 —8.6
Respiratory(t — 1) .549 5.3 —.507 —2.2
Weight /Height(t) —.0291 —8.6 — —
Weight /Height(t — 1) .00318 .81 637 —
R e A I VRN
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