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REGRESSION MODELS FOR RIGHT TRUNCATED
DATA WITH APPLICATIONS TO AIDS
INCUBATION TIMES AND REPORTING LAGS
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Abstract: This study of right truncated data was motivated by problems in which
individuals can experience two events in time and where the distribution of the time
between events, the lag, is of interest. If individuals come under observation at
the occurrence of the second event and the time of the first event is retrospectively
ascertained, the observed lags are right truncated. Two examples from data on
AIDS and HIV infection are considered.

Regression models are specified which lead to simple tests and estimation of
covariate effects based on right truncated data. The regression models are simply
expressed in terms of a reverse time hazard function in both the discrete and contin-
uous cases. In the continuous case, the proportional hazards model for the reverse
time yields a power model for the c.d.f. and a simple parameter interpretation.
A complementary log-log link in the discrete case admits the same interpretation.
Inference techniques based on the full likelihood in the discrete case or the partial
likelihood in the continuous case are developed and illustrated in the two examples
mentioned above.

Key words and phrases: truncated data, reverse time hazards, regression models
for truncated data.

1. Introduction

Truncated data arise in many contexts. This investigation, however, was
motivated by problems in which individuals can experience two events. The
first, termed the initiating event, occurs at random at time ¢, and the second,
termed the consequent event, occurs at time t + z > t. The time z between the
two events is termed the lag. We focus on situations in which individuals are
observed at the occurrence of the consequent event and, at that time, the time
of the initiating event is ascertained. Estimation of the distribution of the lag is
of interest, but observations arise from truncated versions of this distribution.

Examples of this type of data arise in many contexts. In insurance applica-
tions a liability claim may arise as a consequence of an incident at time ¢. The
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claim, however, is not reported to the insurer until time ¢ 4+ z. This is referred
to as the incurred but not yet reported problem (see e.g. Kaminsky (1987)).
Two examples discussed further in this paper arise in connection with Acquired
Immune Deficiency Syndrome (AIDS). In the first, t represents the time of di-
agnosis of an AIDS case and t + z is the time it is reported to the organization
responsible for surveillance. Estimation of the distribution of the reporting lag z
is important in estimating current numbers of cases (see e.g. Morgan and Cur-
ran (1986), Harris (1987), Karon et al. (1989), Brookmeyer and Damiano (1989),
Zeger et al. (1989)). In the second example, t is the time of infection with the
human immunodeficiency virus (HIV) that is a cause of AIDS, and ¢ + z is the
time of diagnosis of AIDS. Estimation of the distribution of the incubation time
¢ is important in estimating the number of infectives in the population. When
the mode of infection is by blood transfusion, for example, the time of infection
t is sometimes ascertainable when the case is diagnosed at ¢t + z. In all of these
examples, the lag data are right truncated in that individuals are observed only
if they experience the consequent event prior to some specified calendar time.

In this paper, we consider a response X (e.g. a lag) and a covariate vector
z; the distribution of X given z has c.d.f. F(z|z) = Pr{X < z|z}. We assume
that there is a truncation mechanism operating such that each individual has
a truncation time 7 and (z,7) is observed if £ < 7. It is assumed that the
distribution of z given 7 and z has c.d.f.

F(z|z)
F(rl2)’ <z<T. (1)

F(z|r,2) =

The data consist of triples (z;,7i,2;), ¢ = 1,...,n, for n individuals for whom
z; < 7;. We assume that the process generating the observations is such that the
pairs (z,7;), ¢ = 1,... ,n, are conditionally independent given z,... ,Zn and n.

Figure 1 illustrates the situation for initiating and consequent events with
events observed if and only if ¢ + z < T. Here an individual with initiating event
at time ¢; has 7; = T — t; and the data consist of (z;,7;) for those individuals
with consequent event prior to time 7. Covariates may specify gender, age at
the initiating event, time of the initiating event, etc. It is also convenient to
consider a plot of z; versus 7; as in Figure 2 which illustrates the same data as
Figure 1. This graphical display carries over to the more general situations in
which truncated data occur.

One purpose of this paper is to discuss regression models and related semi-
parametric methods for right truncated data. A second objective is to develop
tests concerning the independence of z and r. Lynden-Bell (1971), Woodroofe
(1985), Wang et al. (1986), Lagakos et al. (1988), Kalbfleisch and Lawless (1989b)
and others have studied nonparametric estimation from truncated data in the
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absence of covariates, and we review and consolidate important results in Section
2. Sections 3 and 4 introduce 'regression models for discrete and continuous time.
In Section 5, quasi-stationarity of lag distributions is discussed, and the regression
methods are used to assess the stationarity of AIDS reporting lag and incubation
distributions.

2. Estimation of the Lag Distribution

Suppose that z;,...,z, are independent observations from the truncated
distributions defined by y,... , 7, where, for the moment, we assume a homoge-
neous population with no covariates z;. The likelihood function can be written
as

[ ar o/ Fir) ®
=1

and we consider nonparametric estimation of F.

As in Lagakos et al. (1988), it is convenient to define the reverse time hazard
function (r.t.h.) as g, = Pr{X = z|X < z}, z = 0,1,2,..., in the discrete
integer-valued case and

9(z) = Alirixo Pr{X € (z — Az,z]|X < z}/Az (3)

in the continuous case. The reverse time cumulative hazard can be defined as
G(z) = [;° g(u)du or G(z) = ¥, 5, gu- It can be seen that

F(z)/F(t) = Pz (1 + dG(u)]

M
=1lim [J{1 + [G(w:) - G(ui—1)]}, (4)
=1
where £ = 49 < w3 < ... < upyr = 7 and the limit is taken as M — oo and

max(u; — u;_1) — 0. The product integral (4) thus defined reduces to

F(z)/F(1) = exp {— /xT g(u) du} , 0<z<T, (5)

in the continuous case and
F@)/F(r)= [] -gu), z=0,1,...,7-1, (6)
u=z+1

in the discrete (integer valued) case. It follows immediately that, in either the
discrete or continuous cases, the likelihood (2) can be rewritten as a function of
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dG(z),0 < z < 7" = max{r;} and consequently only the reverse time hazards
are strictly identifiable with truncated data.
If the data are discrete, the likelihood (2) can be written as

n

H{az.. ﬂ (1—gu>}=H{a?"(l—gn"f-df}, (7)
i=1

i=1 u=z;+1

where d; = Y} I(z; = j) and n; = > I(z; < j < 7). Note that d; and n;
are respectively the numbers of observed responses exactly equal to j and the
number of observed responses less than or equal to j where the truncation is such
that a response of j could have been observed. It follows immediately that the
m.l.e. satisfies

g;i =dj/n;, j<T (8)

and corresponding estimates of F(z)/F(r) can be obtained from (6). The quan-
tities d; and n; are illustrated in Figure 2.

There is a very strong analogy with nonparametric estimation of the survivor
function based on left truncated data. In fact, by inverting the time scale this
analogy can be further exploited (see, for example, Lagakos et al. (1988)). In the
continuous case, the estimator of —dG(z) analogous to the Nelson-Aalen estima-
tor (see e.g. Andersen and Borgan (1985)) of the cumulative hazard function
is

—dG(3) = d; /3, (9)

where z] < 23 < -+ < z} < 7* are the distinct responses, df,... ,d} are the
associated multiplicities and n; = #{i:z; < z; < 7;}. It follows from (4) that

F(z)/F(r) = P [1 + dG(w)]
= [I a-ds/m). (10)

]:I;- >z

The discrete result above is a straightforward extension of (12) in Kalbfieisch
and Lawless (1989b). Continuous versions have been given by Lagakos et al.
(1988), Lynden-Bell (1971), Woodroofe (1985) and Wang et al. (1986). Harris
(1987) discussed an algorithm to compute estimates which give a special case
of (8) but did not notice the existence of a closed form solution. Similarly,
Brookmeyer and Damiano (1989) used a special case of (2) but did not notice
that closed form m.l.e.’s can be obtained.

As in Lagakos et al. (1988) and Keiding and Gill (1990), asymptotic results
for the continuous case can be obtained by appealing to results from counting
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processes and martingales. In so doing, it is necessary to consider the process in
reverse time so that one considers the counting process

N*(u) = EI(:B,' >71*—u), 0<u<".

There is, then, a formal equivalence between right truncation as here and results
obtained in the context of a standard survival model with left truncation.

3. Discrete Time Regression Models

Consider now the discrete time model where z and 7 are integer valued and
suppose that, given covariates z, ther.t.h. is g(z|2) = Pr{X = z|X < =z,z}, 2z =
0,1,2,.... A natural class of regression models to consider is of the form

W(g(z|2)) = (go(z)) + 2'8, z=1,2,..., (11)

where 1 is a specified 1:1 map of [0,1] onto [—00,o0] and z and § are column
vectors of covariates and regression parameters respectively. This model is anal-
ogous to those used in the analysis of right censored discrete survival data (e.g.
Lawless (1982), §7.3.2). The baseline r.t.h., go(2), is left arbitrary here but could
be modeled further.

Two natural choices for 9(-) are the logistic,

¥(u) = logit(u) = log (=), (12)

and the complementary log-log,

¥(u) = log{ - log(1 - u)}. (13)
For the latter model, the c.d.f. of z given z can be written as

F(z|z) = Fy(z)™*'P, (14)
where Fy(z) is the baseline c.d.f. (at z = 0) corresponding to go(z),
[ ]
Fo(z)= [T {1-g0(w)},
u=z+1

and this allows a simple interpretation of 8 in terms of its effect on the c.d.f.
The same relationship (14) also holds for truncated c.d.f.’s in that

F(z|2)/F(t|2) = {Fo(z)/ Fo(r)}*'P).
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For (12), on the other hand, there appears to be no similar interpretation in
terms of c.d.f.’s.

For the model (11) with 1(-) given by (12), there exists a partial likelihood
for # analogous to that given by Cox (1972, 1975). Specifically, components of the
partial likelihood are constructed by considering, at each time u, the conditional
probability that the observed individuals fail given the number of failures at that
time and the set of individuals that fail at times less than or equal to « and have
truncation times of at least u. The partial likelihood is obtained as a product
over u = 7*,7* — 1,...,1. In the next section, the construction of the partial
likelihood in a continuous model is considered. The extension to the discrete case
is straightforward. As noted above, however, the model (11) with (-) given by
(13) is more satisfactory from the viewpoint of parameter interpretation, but for
this model no partial likelihood exists. In what follows, therefore, we consider
the full likelihood as providing the basis for tests and estimation with general
9.

Let x = ¢~ and denote ¢(go(z)) = 6, and 6 = (61,...,0,-). Then, the
likelihood based on data (z;,7i,2), i = 1,...,n, is

L(6,8) = Hg(wtlzz) H {1 - g(ulz:)}

u=z;+1

= H H 9(ulzj) H [1 - g(ulz;)]

u=1 ]eDu JERu_Du

=TI I xi JI Q-xui)| ¢

u=1 Jj€D. JERu—-D,

where Dy = {i:z; = u}, Ry = {i : z; < u < 7}, and Xuj = X(0u + z]ﬂ) It
follows that the score vector has components

; ek Z X:‘j Z X;j u=1 ™
8 sep, Xedll = Xwi) - JeR 1= xus” e

and

Diogr=3 Y g Et

u=1j€eD, XuJ(l_XuJ) ]GR.,I—X"j

where x,; = Ox(0u + 2jB)/06,. Lawless (1982, §7.3.2) and Kalbfleisch and
Prentice (1980, §4.6) discuss joint estimation of 8, § by solving the associated
m.l. equations in a related problem.
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Simple tests of the hypothesis 8 = 0 can be based on the 8 score evaluated
at = 0 and the m.l.e. of @ at 8 = 0. This can be shown to give

0
U = 558 Ho-sio

- Zw(u) Z (ZJ - zu)v (15)

JED,

where W(u) = Xu/{Xu(l = X)¥'(Xu)}, Xu = du/na = x(6.(0)), X, =
X:;jlpzo,é(o)) and Z, = Y ;cp, Zj/nu. I ¢ is given by (12), w(u) = 1, whereas
if 1 is given by (13), w(u) = log(1 — X« )/X«. The variance of U can be evalu-
ated by obtaining the Fisher information matrix and determining the appropriate
submatrix in its inverse. An alternative and very simple approach is to use

V= Eu“)(u)2va.r { Z (25 = Zu)Iny, Ry, B = 0} lé(o)

u=1 JED,

—Z i(uy? Gele = ) ) S (s - 205 - 2 (16)

mu(m JGR

The variance computation in the uth term of (16) is conditional upon the set R,
and the fact that exactly d, of them fail. A statistic which can be used to assess
the hypothesis § = 0 is provided by

U'v-u (17)

which has an asymptotic chi-squared distribution with degrees of freedom given
by the rank of V..

Special cases of (15), (16) and (17) are easily obtained. Consider, for exam-
ple, the (m + 1)-sample test where z;; = 1 if the ith item is in the jth sample,

and 0 otherwise, j = 1,... ,m. In this case, the statistic U has rth element
T.
Up =Y o(u){dry — npudu/ny}, r=1,...,m, (18)
u=1

where d,, = #{i:2; = u,2z;y =1} and npy, = #{i : 2; < u < 73,2;, = 1}. The
matrix V has r, s element

Ves = Z ( )2 du(?uu _dl)) {6rsn‘ru - nrunsu/nu}, (19)
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where 6.5, = I(r = s). The test statistic (17) has m degrees of freedom.

In the context of initiating and consequent events described in Section 1,
hypotheses of stationarity for the lag distribution are of importance. To examine
stationarity, we might identify components of z with intervals of time for the
initiating events. This is discussed in Section 5.

4. Continuous Regression Models

With continuous right truncated data, it is natural to consider a propor-
tional relationship for the reverse time hazards. Thus, we suppose that the r.t.h.
satisfies the relationship

9(z; 2) = go(z) exp(#'B) (20)
which corresponds to a power model for the c.d.f. of the response z,
F(z|2) = Fo(z)™'A),

where Fy(z) = exp{— [° go(u) du}.

Let N7 (u) = I(z; > 7" —u) and Y;(u) = I(z; < 7* —u < ;). Let N*(u) =
(N{(w),-.. ,Ny(u)) and Y (u) = (Yi(u),...,Yn(u)). A partial likelihood for 3
can be based on Pr{dN*(u)| 3 dN}(u),F,-} where F,, = o{N*(s),Y(s):0 <
s < u} is a nested sequence of o-fields that specifies the sequence of responses

and truncations that equal or exceed z* — u. The approximate partial likelihood
for G is

exp(s} 3
1o =11 ) (21)
h=1 {EIER,. eXP(zzﬂ)}
where 0 < z] < --- < 2, < 7* are the observed responses with multiplicities

di,...,dy, Ry ={i:Yi(z}) = 1}, s = EieDh zi and Dy = {i : dN}(z}) = 1}.
The expression (21) is an exact partial likelihood if df = 1, h = 1,... ,m and
m = n, and is precisely of the form of the usual partial likelihood in the propor-
tional hazards model. If ties are numerous, as in the first example of Section 5,
analyses are better based on the discrete model (11). Asymptotic properties of
the partial likelihood (21) can be derived by arguments analogous to those which
can be found in the literature on the analysis of failure time data (for review see
Andersen and Borgan (1985)).
The score statistic for a test of 8 = 0 is

e 9D M CEEA) (22)

h=1j€D,
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where Z, = 30 .. g, 2j/n}, and n}, = |Ry|. This is of the same form as the statistic
(15) in the discrete model with w(u) = 1 or ¥(-) given by (12). An estimate of
the variance of (22) can be obtained from the observed information matrix based
on (21) at B = 0. Alternatively, (16) gives a valid estimate of the variance of
(22) and coincides with the information when all d’s are 1.

Again, in the context of initiating and consequent events, the arguments
above have simple interpretations from reversing the time scale. Lagakos et al.
(1988) exploit this and develop two-sample rank tests based on continuous data.

5. Testing Quasi-Stationarity with Application to AIDS Reporting
Lags and Incubation Times

In some contexts it is of considerable interest whether the response z and
truncation variable 7 are independent. In the context of initiating and consequent
events, for example, the question arises as to whether the lag distribution is
stationary over the interval [a;,a;] for the initiating event. That is, is f(z|t) =
f(z) independent of ¢ for ¢ € [a;,a2]?7 When the observations z; are truncated
at 7; = T — t;, all that we can examine is whether the r.t.h. is independent of t.
That is, we consider

g(z|t) = g(z), z<T-t, te[a,as]. (23)

The property (23) we term quasi-stationarity over [ay, ay]; stationarity of f(z|t)
over [a;,a;] implies (23), but (23) obviously does not imply stationarity.

Tests for quasi-stationarity can be obtained by using the regression models
of Sections 3 and 4 and allowing the covariate z to incorporate functions of ¢.
First we note, however, that in the discrete case an omnibus test of (23) versus
a general alternative, g(z|t) = g:(z), ¢ < T — t, t € [a1, az] can be obtained by
using the likelihood ratio statistic from the likelihood (7). This is

ag T-—t

A =2 Z Z dta: 108(dtx/etx), (24)

t=ay =0

where d¢z = Y I(ti = t,zi = z) and
ees = de{ f(2)/ (T - 1)}, (25)

where d; = E;I;:—(: diz and the bracketed term in (25) is obtained from (6) and
(8). If the d,’s are large and f(z) > 0 for z = 0,1,...,7%, A is approximately
x* with degrees of freedom (a; — @;)(2T — a; — a3 — 1)/2. We note that for
the case where a; = 1 and a; = T the test above is just the (T — 1)(T — 2)/2
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degrees of freedom test for quasi-independence in a triangular contingency table
(cf. Bishop et al. (1975), p.187if).

Omnibus statistics like (24) are generally not very powerful. If systematic
differences among truncated distributions and the reverse time hazard functions
are expected, more sensitive tests may be developed by using the regression
models of Sections 3 and 4, provided that the types of departures from quasi-
stationarity that are envisaged are reasonably well represented by models of the
form (11) or (20) with covariates suitably defined as functions of t. We illustrate
by considering the two problems associated with the AIDS data mentioned in
Section 1.

Ezample 1: Report Lags for TA AIDS Cases.

Between April 1983 and June 1988, 1760 cases of transfusion-associated
(TA) AIDS cases had been reported to the Centres for Disease Control (CDC)
in Atlanta, Georgia. To assess stationarity of the reporting lag distribution, we
compared the lag times of the 526 patients diagnosed before March 1986 to the
lag times of the 1,234 patients diagnosed during or after March 1986. We used
z; = I(March 1986 < ¢t; < June 1988) with discrete time regression models (11),
since report lags are recorded in months and there are many values with large
multiplicities. This yields the score statistic (18) and variance estimate (19)
corresponding to m = 1; this statistic has also been considered by Lagakos et al.
(1988). The logit model (12) gives w(u) = 1 and an observed value of the test
statistic (17) of (6.77)®. The log-log model (13) gives W(u) = (n,/d,)log(1 —
dy/n,) and an observed value for (17) of (7.04)2. Both tests provide a strong
indication of non-stationarity with larger reverse time hazards for cases diagnosed
later. This implies smaller conditional c.d.f.’s for this group or in other words,
a tendency toward longer reporting lags for the more recently diagnosed cases.
Figure 3 gives plots of estimated conditional c.d.f.’s F(z)/F(26) for the two
groups (see Section 2) where z = 0,1,...,26 represents the reporting lag in
months. (Note that g, for z = 1,...,26 is all that is estimable for the cases
diagnosed between April 1986 and June 1988). The smaller conditional c.d.f. for
later diagnoses is apparent in Figure 3. We remark, in passing, that report lags
for these transfusion-associated AIDS cases tend to be somewhat longer than for
the set of all AIDS cases that are reported to the CDC; see Brookmeyer and
Damiano (1989, Table 1) for some estimates based on all cases.

Ezample 2: Incubation Distributions for TA AIDS Cases.

Of the 1760 cases reported and used in Example 1 above, 976 cases had
unambiguous information on date of HIV infection by transfusion and these cases
are used for this example. Observations on the incubation time are truncated by
i =T —t; — r; where T represents June 30, 1988, ¢; is the date of infection and
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7; is the reporting lag. All times are measured in months. The validity of the
truncation model discussed here requires that the reporting lag be stationary and
we note that Example 1 provides evidence that this assumption is not entirely
satisfactory. We discuss this point further below.

We consider continuous time models of the form (20) with (a) 2 = ¢ and (b)
z = log(t + 1), where ¢ is the time elapsed from the start of 1978. Since times
are recorded in months, statistics based on (21), which include adjustments for
ties, are used. Use of a partial likelihood based on the discrete time model (11)
with 9 given by (12) yields the same results.

Earlier analyses of these data indicate possible differences in incubation dis-
tributions according to the age of the patient (cf. Kalbfleisch and Lawless (1989
a,b)). We therefore tested quasi-stationarity separately for four age groups: 0-12
years of age, 13-49 years of age, 50-69 years of age, and 70 years of age and
over, where “age” refers to age at the time of HIV infection. The results are
summarized in Table 1, which shows the approximate standard normal statistics
based on (22). Only in the age group 50-69 is there evidence of non-stationarity
and this is in the direction of a tendency toward shorter incubation times for the
more recently infected patients. This is in agreement with the analysis of Tsai
(1990), who uses a different kind of test to assess stationarity.

Table 1. Standardized score statistics for quasi-
stationarity of TA AIDS incubation distributions

Age Group (a)z =t (b)z =log(t +1)
0-12(n = 86) —45 —.74
13-49(n = 335) —1.17 ~1.56
50-69(n = 463) —2.57 —3.74
>70(n=92) —1.54 ~1.81

We reiterate our earlier comment that our analysis assumes that the report-
ing lag is stationary. Example 1 provided evidence to the contrary, and it is
possible that the tendency toward shorter incubation times seen here is in fact
a reflection of the non-stationarity in the reporting lag distribution; a tendency
toward longer reporting lags in later diagnoses would bias estimates of incubation
time probabilities for these patients down somewhat. More complex modelling
and an analysis that allows for simultaneous non-stationarity of both incubation
times and reporting lags can be based on the multiplicative Poisson models de-
scribed by Kalbfleisch and Lawless (1989a; 1989b, Section 6.1). The regression
methods of the present paper do not lend themselves to detailed analyses involv-




30 J. D. KALBFLEISCH AND J. F. LAWLESS

ing more than two types of events or investigations of the non-stationarity of two
or more lag distributions simultaneously.

6. Concluding Remarks

For problems involving right truncated data, regression analysis is conve-
niently approached through models based on reverse time hazard functions. The
methods introduced here allow the easy comparison of truncated distributions
for different populations. One important application is the assessment of quasi-
stationarity of lag distributions which arise in connection with pairs of events,
as described in Section 1. The fact that the regression models are based on re-
verse time hazards rather than the usual forward time hazards commonly used
with lifetime data does not seem to us a drawback. The latter models do not
lead to simple analyses of right truncated data. The former do, and they often
provide flexible and realistic representations of covariate effects for truncated
distributions; with proportional r.t.h.’s, they also yield simple interpretations for
regression parameters.
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