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THE COVARIANCE OF RANK SCORES
IN ORDER-STATISTICS MODELS
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Abstract: Order-statistics models may be used to estimate rank covariances, and
the choice between the various models is determined by general considerations such
as maximum entropy and/or the symmetry of the ranking process. In practical
cases these covariances are fairly close to the sample covariances, and may be used
in preference to sample covariances when the sample sizes are small (of order 10 to
20).
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1. Introduction

To specify the general distribution of rank preferences of n objects, we would
clearly require n! — 1 probabilities. Usually, however, we are given the rank pref-
erences from only N judges, where N may even be smaller than n! — 1 and the
problem is how to make reasonable inferences using a much smaller number of pa-
rameters. Linhart (1960), Koch, Freeman and Lehnen (1976), and Hollander and
Sethuraman (1978) all suggest using the n means and n(n + 1)/2 covariances in
various ways. In practical cases, even this may involve too many parameters, and
a popular alternative is to use the so-called order-statistics models which require
only n — 1 parameters. Thus Pettitt (1982) uses a normal order statistics model
for the permutation probabilities, but due to the computational complexity of
the maximum likelihood equations he makes a further numerical approximation
to the rank order probabilities. Moran (1950) also considers the normal order
statistics model, in particular the trend case in which the parameters 6; are pro-
portional to i. Moran also gives results for the covariance of the ranks in this
case, but because of the numerical labour involved does not take the method any
further.

Mak (1985) indicates that the order-statistics parameters could be estimated
using only the average ranks of the objects. Although it is clearly not possible to
consider questions about the goodness of fit of the model if we are given only the
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average ranks, it is possible to give some idea of the variance of estimates of the
parameters and even to compare estimates from the average ranks of different
samples if we know the covariance matrix of the ranks. In this paper we present
the general formula for the covariance of the ranks and base most of our remarks
on the logistic order statistics model for which the covariances may be calculated
without recourse to numerical integration. This theoretical covariance matrix
can then be used in place of the sample covariance matrix when we are dealing
with very small samples and further analysis can then proceed along the lines
of Hollander and Sethuraman (1978) for example. For an instance of inference
using only average ranks we use some data of Snell (1983), and to give some idea
of how closely the logistic order-statistics models predict the sample covariance
matrix in practical examples, we look at the data of Hollander and Sethuraman
(1978). We shall conclude that such differences as appear are only apparent
for very large samples and that the logistic model may be used with confidence
for small samples provided that the ranking process has a suitably sequential
structure.

2. Order-Statistics Models

In order-statistics models, we assume that there is an underlying random
variable Z for each object which can be thought of as a measure of preference for
a particular object. However the value of Z is never observed directly — only
the relative order of the objects. Usually it is assumed that the distributions of
the Z’s differ in location only, in which case we write Z; = Y; + 6, where 6; is the
location parameter and the Y’s are independent identically distributed random
variables.

Since the variables Z are never observed, it is not clear how best to specify
their distribution. Indeed since any monotonic transformation of Z would pre-
serve ranks, there is considerable arbitrariness in the choice of Z. Within the
class of order-statistics models therefore, Henery (1986) suggests using maximum
entropy principles in the search for an optimal order-statistics model for the av-
erage ranks problem, and, independently, Joe (1988) makes the same suggestion
for average scores in tournaments. In particular, the principle of maximum en-
tropy leads to the Plackett (1975) type I model for rank probabilities and by
implication to an order-statistics model with an extreme-value distribution for
the Z;’s. Frequently the Z’s are assumed to have a normal distribution, but for
most purposes the main distinguishing feature between the normal and logistic
models is the symmetry or otherwise of the rank variance as a function of the
mean rank.

3. Variance of Average Rank Scores
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Without loss of generality, consider an order-statistics model, with the Z’s
now not necessarily independent nor identically distributed. To rank n objects,
for example, the Z’s might be chosen without replacement from the integers
1,...,n. We will write P(ijk) for the probability that Z; < Z; < Zj, and
write &; for the rank of Z;. We give the highest rank to the highest Z. In the
context of a race among n athletes this would correspond to giving the winner
(with the lowest time) a rank of one. In other circumstances it might be more
appropriate for the winner to be given the highest rank, for example in long jump
competitions. Then the rank of Z; is

&=1+) H(Z - Z),
J#i
where H(z) = 1if £ > 0, and H(z) = 0 if z < 0. Taking expectations of both
sides of the above equation we find

E(&) =1+ Y P(ji). (3.1)
J#i
Moran (1950) and Daniels (1950) consider special cases of the variance of the
ranks when the variables Z; have a normal distribution. By extending the argu-
ment of Moran (1950), we find for the moment of order m:

E(")=1+01 ) P(ji)+az > P(jki)+...
J#i JEk#i
tam Y. P(r-..jmi)- (3.2)
n#Fim#i
Using combinatorial arguments or by special cases, the coefficients ay,... ,a,
are easily shown tobe a; = 2™ -1; a3 = 3™ -2.2"+1; a3 = 4™ -3-3™+3-2™ —1;
etc.
The covariance of §; and §;, ¢ # j, can similarly be found:

Cov(&i,€;) = 1+ P(i5) P(5i) — P(if)E(&:) — P(3i)E(E;)

+ Y {2P(kij) + 2P(kji) — P(ki)P(kj)}. (3.3)
k#4,j

We shall write W for the covariance matrix of the ranks, i.e. W;; = Cov(;,§;).
W has rank n — 1 in general, since the sum of the ranks is constrained to be
n(n +1)/2.

Apart from the obvious difficulty that the sums in (3.3) may involve rather
many terms, there is the added difficulty that, in general, the P(ijk) term in-
volves a numerical integration. Thus for a normal order statistics model P(ijk)
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is a bivariate normal integral, which can be simplified to a univariate integral
by the reduction formula of Plackett (1954). Fortunately, however, the evalua-
tion of P(ij) and P(ijk) is particularly easy for the logistic model, since this is
just Plackett’s (1975) Type I model. Writing F(z) = 1/(1 + exp(—z)) for the
distribution function for the logistic distribution, we find

P(ij) = F(6; ~ 0) = -

P(ijk) = —2 . _Bi
pi+p;i+pe p;i+pi

where p; = exp(—6;).
The mean rank E(;) can then be written simply in terms of the p;:

E(&t)— 1+Z

J#i

3.4
,+p. (34)

In practice the sample mean ranks §; are used in (3.4) in place of E(&:); the
requisite p; can be found by an iterative procedure. An appropriate starting
point might be p; = exp(—6?) where

6] = 4n7(€; - (n +1)/2).

In terms of the Bradley-Terry model, we might allocate preferences p; (for being
first) to the n objects. The full ranking is then decided sequentially in the order
L,2,...,n. Object i is ranked first with probability p:/(p1 + p2 + -.. + pa);
once rank 1 has been decided, the remaining objects are independently ranked
among themselves and the highest ranked of the remainder is given rank 2, and
so on. We shall refer to this model, Plackett’s Type I model, as the forward
logistic model. The backward model, which has the same expected rank scores,
is obtained by ranking the objects sequentially from last to first, with preferences
for being last of 1/p;. Given only the mean ranks there is no way to distinguish
between these two models. However their covariances are different and this may
enable us to choose between the two.

When the distribution of the underlying variables Z is symmetric, it is im-
mediately obvious that the variance-covariance matrix is unchanged if the pa-
rameters 6; are reversed. This is most easily seen by observing that Z; < Z; <

. < Zj implies that —Z; < ... < —Z; < —Z;, and, using the symmetry of
Z, that this is the order statistics model with parameters —6y,... , ~0;,—6; and
with the ranks reversed. Note that the covariance matrix of n + 1 — §; is the
same as that for §; itself. Thus the basic structure of the model is unchanged
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if we reverse the ranks of symmetric models, such as the normal for example.
A simple way to obtain a symmetric covariance matrix, which has the benefit
of avoiding numerical integration, is by averaging the covariances of the forward
and backward logistic models.

4. Comparing the Mean Ranks from Two Samples

Given the mean rank vectors X; and X; from two independent samples of
rank vectors, of sizes N; and N, respectively, from the same population with
probabilities defined by the order statistics model with parameters 6;, we first
calculate the pooled mean rank vector

£ = (N1X1+ N2 X3) /(N1 + No),

then estimate the parameters 8; using £ in place of E(£) in (3.4). Mak (1985)
observes that there is always a unique solution to these equations (only n — 1
of which are independent since the mean ranks must sum to n(n + 1)/2). The
covariance matrix of the rank vector is then found from (3.2) and (3.3). We can
now compare the two mean rank vectors by calculating the statistic Q:

Q= %}’%—(}cl — X)W (Xp - X) (4.1)
which is distributed asymptotically as a x*(n — 1) random variable. Since W is
not of full rank it is most convenient to take the first (n — 1) mean ranks for the
mean vectors and the corresponding covariance of order (n — 1) x (n — 1). This
procedure is identical to that of Hollander and Sethuraman (1978) except that
(i) we use the theoretical covariance matrix W in place of the sample covariance
matrix C; and (ii) we are assuming as null hypothesis that the samples come
from an order statistics model with the same parameters.

5. Examples

Example 1. This is an example of inference when only the average ranks are
given. Smell (1983) quotes the results of a company survey in which participants
were asked to score from 1 to 20 each of seven possible aims of companies accord-
ing to how important they saw the item in their company. The scores were then
ranked from 1-7 for each participant, and it is required to assess whether the
rankings given by the accountants differed from those of supervisors/foremen.
Snell quotes only the mean ranks for the groups, which we give in Table 1 to-
gether with their variances as estimated from order-statistics models with the
same pooled mean ranks.
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Table 1. Mean ranks‘for two groups and estimated variances

Mean ranks Estimated variances
Item no.  Group 1 Group 2 Pooled Forward Backward
1 5.333 4.583 4.958 2.789 2.279
2 3.833 5.167 4.500 2.799 2.564
3 3.083 4.000 3.542 2.441 2.801
4 5.667 3.917 4.792 2.808 2.395
5 1.167 2.667 1.917 1.106 1.961
6 2.750 2.167 2.458 1.611 2.422
7 6.167 5.500 5.833 2.363 1.495
Sample size 6 6 12

The asymmetry of the logistic models shows up here in that the forward
model gives minimum variance to item 5 which has the lowest pooled rank,
whereas the backward model gives minimum variance to item 7 which has the
highest pooled rank. Here the backward model fits the data as a whole since
the @Q-statistic for comparing the mean ranks of the two groups is Q = 10.98, as
against the 5% critical value of 12.59 (based on 6 d.f.). We may conclude that
the two groups have the same mean ranks according to the backward model.
From the description of how the data were gathered it would seem that high
ranks are more important and this is compatible with the backward model, with
high ranks determined first. In contrast the forward model gives a Q-statistic of
Q = 12.74, so that we should reject the null hypothesis of equal mean ranks in
this case (or conclude that the forward logistic model does not fit the data).

Example 2. Hollander and Sethuraman (1978) give the full set of rank pref-
erences for two groups for three leisure activities. The mean ranks for the two
groups, and the pooled sample covariance matrix C, are given in Table 2 along
with the theoretical covariance matrix W calculated from the pooled mean ranks
using a forward logistic model. The Hollander-Sethuraman statistic Qys is cal-
culated by using C in place of W in (4.1) and we find Qus = 13.8 (based on 2
d.f.) which is just on the borderline of being significant at 0.1%. However, note
that the true significance level is 0.02% for the permutation test suggested by
Hollander and Sethuraman.

The main reason for calculating the theoretical covariance W in this example
is to gain some additional insight into the mechanism by which rankings are made.
In this case the variances predicted by the forward logistic model agree closely
with the sample variances. To give some idea of how close the agreement is, let us
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Table 2. Mean ranks and (common) covariances for two groups

Mean ranks Covariance matrix
Option  Group 1 Group 2 Sample C Forward Logistic W
1 2.93 2.31 0.396 —0.259 —0.137 0.416 —0.266 —0.150
2 1.43 2.46 0.533 —0.274 0.495 —0.228
3 1.64 1.23 0.410 0.379
Sample size 13 14

NOTE: Using (4.1), i.e. with the theoretical covariance W instead of C, the Q-statistic
is Q = 14.65 (2 d.f.), and the conclusion is the same: reject the hypothesis of equal
mean ranks at the 0.1% level.

assume that the sample variance is proportional to a x? random variable with 25
d.f. This would give 95% confidence limits for the true variance of 0.6s? < 0% <
1.9s? approximately. Clearly the elements of W are well within these implied
limits and this means that a forward logistic model fits this aspect of the data.
However it should be remembered that the null hypothesis of equal mean ranks
(and, in the forward logistic model, equal covariance matrices) is rejected for the
above example. Each group should therefore be treated separately, with its own
distinct mean ranks and covariance matrix.

If the forward logistic model is correct, and the approximate equality of C
and W implies that it is nearly correct, the ranking procedure would appear
to be sequential in structure: choose the object which is to be given rank 1;
independently of this choice choose from the remainder the object which is to be
ranked 2; and so on. Vice versa if we know that the ranking process is likely to
have this type of structure we may use the logistic model with some confidence
even if the sample sizes are so small, as in example 1, that covariance estimates
are quite unreliable.

The ranking process may have a more symmetric structure if there are many
factors which influence the ranks, so that an order statistics model based on a
normal score would be appropriate. The examples discussed by Koch, Freeman
and Lehnen (1976) are of this type and the normal model does fit reasonably well
although there are noticeable departures from the predicted variances for some
“alternatives, perhaps indicating that relatively few factors influence the rankings
of these objects.
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