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ASYMPTOTIC THEORY FOR SIMULTANEOUS
ESTIMATION OF BINOMIAL MEANS

Abdunnabi M. Ali and A. K. Md. Ehsanes Saleh
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Abstract: Efron and Morris (1975) considered a James-Stein (1961) estimator to
predict the batting averages of major league players after using an arc sine transfor-
mation of the batting average. In this paper, the relevant asymptotic theory assum-
ing unequal Bernoulli trials without transformation is considered. Under quadratic
loss the unrestricted, restricted, preliminary test and Stein-rule estimators are com-
pared. It is shown that although the Stein-rule estimator dominates the unrestricted
estimator uniformly, it does not dominate the preliminary test estimator except for
large dimensions and a range of significance levels, while both the Stein-rule and the
PTE perform well relative to the unrestricted and restricted estimators.
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1. Introduction

Let zi1,2i2,... ,Zin, (: = 1,2,...,p) be a random sample of size n; from
the ith set of Bernoulli trials with parameters (1,6;). The likelihood function for
the parameters given the vector € = (Z11,... ,Zinyy-++ s Tply- -+ s Tpn,) I8

L(zl0) = [] [T 6% (1 - 0=, (L1)

i=1j=1

where @ = (64, ... ,0,) . If we define n = ny+n3+- - -+n, and the null-hypothesis
Ho by

Ho:6, =02 = --- =0, = 6y (unknown), (1.2)
then the likelihood function under Hy is
L(z|0) = 62=1% (1 — 9oy~ Tlaa¥, (1.3)
where o
Y=Y zij, i=1,2,...,p. (1.4)

i=1
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We are primarily interested in the estimation of @ when we may have uncertain
prior information in (1.2). ‘
Let us define

0, = (61,....8,), '.-:—zi, i=1,2,...,p; (1.5)
]
0, = (bn,...,0,) =6,1,; (1.6)
where
. 1<
b =~ Z;y,-, 1, =(1,1,...,1). (1.7)

Then, for the global model (1.1), the unrestricted maximum likelihood estimator
(UMLE) of 8 is given by 0., while under the model (1.3), the restricted MLE
(RMLE) is given by 8,,. When Hp holds, §,, has a smaller risk (under quadratic
loss) than 0... On the other hand, when Hy does not hold, ,, may perform better
than 8,. Asa result, when the prior information on Hj is rather uncertain it may
be desirable to have either a preliminary test estimator (PTE) denoted by 6FT =
(67T, ... ,6° +T) or a shrinkage estimator (SE) denoted by 85 = (65, ... p)' of
6. In the case of a preliminary test the estimator On or Gn is chosen a,ccording as
Hy is accepted or rejected. The SE is based on the classical Stein-rule. Unlike the
case of @n, both the PTE and SE behave robustly against departures from the null
hypothesis in (1.2) (see e.g. Sen (1986)) and have bounded risk even when n is
very large. From these four basic estimators two more improved estimators may
be defined; namely, Stein’s positive-rule shrinkage estimator (PRSE) denoted
by 85+ = (0S+ 0S+)’ and the modified PTE (MPTE) denoted by 8P T+ =
(0PT+, cee ,OET*’ )' The primary objective of this paper is to focus on the PTE
and SE and to compare them with the UMLE and RMLE.

We shall find it convenient to formulate this problem in an asymptotic setup.
For general linear models, the asymptotic theory of the PTE has been treated in
a nonparametric setup in Saleh and Sen (1978, 1983, 1984a, 1984b, 1985a, 1985b,
1985c) and Sen and Saleh (1979, 1985, 1987). Also, the asymptotic theory of
shrinkage estimation has been developed in a nonparametric setup by the same
authors among others. Finite sample studies on the subject have been carried
out by Albert (1984), Albert and Gupta (1981) among others. For some nice
accounts of the parametric theory of the PTE and the SE in the finite sample
case, we refer to Judge and Bock (1978), Anderson (1984), Arnold (1981) and
Berger (1980) among others.

Along with preliminary notions, the proposed estimators are all presented
in Section 2. The concept of asymptotic risk (AR) and its relation to asymptotic
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distributional risk (ADR) is outlined in Section 3. Asymptotic bias (AB) and
ADR results for the various estimators of @ are presented in Section 4; and the
related asymptotic dominance results and efficiencies are considered in Section
5. Data analysis of Efron and Morris (1975) baseball data are studied in Section
6.

2. The Proposed Estimators

For the preliminary test (PT) on Hp in (1.2), we consider the chi-square test
statistic

Ln=n(0, - 6,1,):1(6, - 6,1,), (2.1)
where
B = 1 A A= Diag(\i),
0.(1 - 6,)
Ani= 2 and  lim Ani = A (2.2)
n n—+00

Under Hy, for large n, L, closely follows the central chi-square distribution
with (p — 1) degrees of freedom (DF). Thus, for a given level of significance a
(0 < @ < 1), the critical value of L,, may be approximated by xg_l’a, the upper
100a% point of the chi-square distribution with (p — 1) DF. Then, the PTE of 8
is defined by

éf.T = énlp +[1~-I(L, < X%—l,a)](bn - énlp), (2.3)

where I(A) is the indicator function for the set A.
To introduce the SE we follow Arnold (1981) and propose

03 = 0,1, +[1— (p—3)L; (8, - 6,1,), (2.4)

where we need to assume that p > 3.

Note that whereas in (2.3) we have a dichotomous indicator function, in
(2.4), (p—3)L;! may be regarded as a smoother version. Thus, the SE might be
considered from a “pre-test” point of view. Also, (2.3) is a convex combination of
8, and 0, while (2.4) need not be especially because (p — 3)L;! may be greater
than 1. In the spirit of Sclove et al. (1972), we may introduce the following
positive-rule SE (PRSE):

63t =0,1,+[1-(p—-3)L;Y (8, - 6,1,), (2.5)

where y* = max{0,y}. Note that (2.3) and (2.5) may not agree even if we let
xf,_l'a = p — 3. The justification of (2.3) lies in the preliminary test of Hy,
whereas (2.5) is intended to control possible overshrinking in (2.4).
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Finally, we propose the MPTE of 0 as follows:
é£T+ = énlp +[1- (»- 3)L;1]I(Ln 2> Xi—l,a)(éﬂ - énlp): (2.6)

where the restriction X?J-—l,a < (p — 3) is required. This estimator uniformly
dominates 82T but now we have the restriction p 2 4. For p < 4 we are left
with the PTE to improve over 8, or ,. It is well-known (see e.g. Sclove et al.
(1972)) that the positive-rule shrinkage estimator (PRSE) dominates the usual
shrinkage estimator (SE), while the MPTE dominates the usual PTE.

In this context, one may also mention the Bayes and empirical Bayes es-
timators of @ with a mixture of a product of Beta distributions due to Albert
(1984) and Albert and Gupta (1981,1983).

3. Asymptotic Risks and Pitman Alternatives

Let 6, be an estimator of @, W be a positive semi-definite (p.s.d.) matrix,
and consider the quadratic loss function

L1 (6n,0) = n(6, — 0)'W(6, — 0) = nTr[W(5, — 0)(6, — 8)'], (3.1)
where Tr(A) =trace of A. Then the risk of §,, is given by
R.(6,,0) = EL,(6,,0) = Tt(WV,), (3.2)

where

V, = nE(6, — 0)(6. — 0)'.

For the p-dimensional unit cube 2, let w(C ) be the subspace for which 8
satisfies the hypothesis in (1.2). Then, by virtue of the consistency of the L, test,
we note that for any fixed 8 ¢ w, L,2» +00,as 1 — 00 (—P—+ means convergence
in probability). Thus, for any fixed 8 ¢ w, as n increases 057,685,603+ and GET+
are equivalent in probability to the UMLE 8,,, while 8,, will have unbounded risk.
The situation is different, however, when @ € w, i.e., @ belongs to a shrinking
neighborhood of w. For this reason, we consider a sequence {K, (n)} of Pitman-
alternatives:

Kiny: Omy=001,+n712%& €=(&,...,6), 6l,cw, (3.3)

where the §; are fixed numbers. Note that for £ = 0, O(n) = 601, € w, so that
(1.2) is a particular case of (3.3).
For the estimator 6., the asymptotic risk (AR) under K{,) is defined by

R(5;¢) = nlg%o Rn(6;0(n))’ (34)
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whenever the limit exists. We introduce the asymptotic distribution function
(ADF) of 6, by ‘

Gsy(®) = lim P{n} (6, — O(n)) < 2| K(ny}, (3.5)

whenever the limit exists. We let

5 = / .. / 2a'dGl5 (). (3.6)
Then, the asymptotic distributional risk (ADR) of §,, is defined by
R*(6,¢) = Tr(WV’("6)). 3.7

One may need extra regularity conditions to evaluate (3.4) rather than (3.7). This
point has been explained in detail in various other contexts, e.g. in Sen (1984),
Sen and Saleh (1985) and Saleh and Sen (1985), among others. Fortunately, in
this specific contexts, e.g., we shall see that both (3.4) and (3.7) can be evaluated
under the same set of regularity conditions, although it is a lot simpler to work
with (3.7). As such, in Section 4 we shall study the ADR results for the various
estimators.

4. Asymptotic Risks and Bias
First, we consider the case of fized alternatives. Note that by (2.3),
n(éET - én)’W(é}:T - én)
= n(8n — 0n1,) W(B, — 6,1,)[(Ln < X3_1.0)
= {LnI(Ln < X3-1,0)Hn(Bn — 021,)' W(8, — 6,1,) L7}

<A{L.I(Ln < Xi-l,a)}ChmaX(WA—l)
S{LnI(Ln < X3_1,0)}Te(WA™T)

< {LnI(Ln < X?)—l,a)} Z(wjj’\j_l), (4'1)
j=1

where chpax(A) = largest characteristic root of A. Also, note that
E{LpI(Ln < X5-1,0)10 # @} < Xj_1,a P{Ln < Xj_1,4|0 ¢ w}.
Therefore, by the consistency of the test based on L,

E{L.I(L, < x?,_lya)lo gw}—0, as n— oo. (4.2)
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Thus, for fixed 0 ¢ w, OPT and 0, are a.symptotlca,lly risk-equivalent. A very
similar treatment holds for 63, @S+ and @FT+. For 63 we note that on the set
{L, >0}

(63 — 0,)W(B5 ~ 8,) = (p— 3’ L2 {n(Br — 0,1,) W(B,, — 6,1,))
< (p - 3)2L;1Chmax(WA_l), (43)

~

while on the set {L, = 0}, we have 85 = 8,, = 6,1,. Thus, if we can show that
E{L;'I(L, > 0)|0 gw} —0, as n— oo, (4.4)

then éi and 8, become asymptotically risk-equivalent for every 8 ¢ w. Now L,

is non-negative and for every 8 ¢ w, L, 2, +o00, as n» — 00; hence, to show
(4.4) holds, it suffices to show that for every positive € > 0, we have

E{L7'I0< L, <e)|0 gdw} >0, as n— +oo. (4.5)

We prove (4.5) in the Appendix.
Next, note that for any 6 ¢ w, 6,1, — 0 == n(# 0), as n — 00 (=2 means
convergence almost surely), so that as n — oo

n(0,1, — ) W(0,1, — 6) 2 +00, (4.6)

consequently, the asymptotic risk of énl,,, for any 6 ¢ w, approaches +o00. Also,
note that

nE(8, — 6)(0, — 6)' = Diag{ (01(1); 01),.. O 0”(1/\: 0”)) }

so that the asymptotic risk of UMLE is bounded for every @ € Q; hence, we
arrive at the following theorem.

Theorem 4.1. For any fized 0 ¢ w, b, 1, has asymptotic risk +oo, while
63,03+ 0PT GPT+ 4nd @, are asymptotzcally risk-equivalent, with bounded risk.

Next, we consider case of Pitman alternatives in (3.3). As we pointed out
earlier we shall ma.lnly study ADR properties though similar AR properties hold.
Note that 6, 1, and 0., both have non- negative elements bounded by 1, so finite
moments of \/_ (6~ 6) and \/n(6,1, — Ef,1,) of all finite orders exist and have
finite limit as n — oo. Also, under {K(,)} in (3.3),

Elf,1,K ()] — 0 = O(n™ ),
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so that in this case, n||@, — ,1,||> = O(1), in Lo, norm. Thus, for (2.3)-(2.6),
the convergence in distribution will ensure the convergence in second moment,
and hence (3.7) will ensure (3.4). For the SE in (2.4), PRSE in (2.5) and MPTE
in (2.6) we need a more refined treatment. Note that (4.3) applies as well for
{K(n)}, and hence, if we are able to show (4.4) holds under {K(,)} (as well
as Hyp), then again (3.7) would ensure (3.4). Thus for our purpose it suffices to
consider the ADR in (3.7) through the asymptotic distribution in (3.5). We work
out the ADR results in this section. For the study of the asmyptotic distribution
theory and the ADR results, we assume the usual regularity conditions hold.
Further, we define 61, as in (3.3) so that 6p1, € w, then we have the following
theorem.

Theorem 4.2. Under {K()} in (3.3) and assumed regularity conditions, the
following hold:

(1) X(n) = V(05 — 001,) ~ Np(€, o), where Tg = 05(1 — 6o)A~?

(A defined by (2.2)); (4.7)
(il) Yin) = Vn(On — 021,) ~ Np(JE, SoJ'), where J = I, — 1,1,A
(1, defined by (1.7)); (4.8)
(iii) Z(n) = V(fal, — 601,) ~ Np(0, B), where A = (A, ..., A,),
B = 0o(1 - 69)1,1}, and we assume X'€ = 0; (4.9)
. X(n) f Eo Eo.” N
@ [yl { g [ 2]} (410
Z(n) of |B o0 |].
o]~ (s [ =]} (an

(v) Ly is distributed asymptotically as a noncentral chi-square with (p — 1) DF,
and noncentrality parameter

A=8T;t8, 6=J¢ (4.12)

We denote a multinormal distribution function with mean vector g and
dispersion matrix X by ®(x; u,X) and the corresponding density function by
¢p(x; 1, X). Also, let Hy(x;A) denote the noncentral chi-square distribution
function with p DF and noncentrality parameter A(> 0) and E(x;27(A)) =
Jy. 2 "dHm(z; ). Note that by (2.3) and Theorem 4.2 we have

V(OET — 801,) = Xy — Yy I(Ln € X3_1.0)- (4.13)

By (4.10)—(4.13) and the general formulation of Saleh and Sen (1984a), we arrive
at the following theorem:




278 ABDUNNABI M. ALI AND A. K. MD. EHSANES SALEH

Theorem 4.3. Under {K ()} in (3.3) and the assumed regularity conditions, the
asymptotic distribution of \/ﬁ(ézT — 0p1,) is given by

Gy (@) = ®5(2;0, B)Hp_1(X3_1,0: D)
+ / .. / b, (x— € - 2;,0,B)dd,(2;0,5,T), (4.14)
M(8)

where
M(8) = {z;(z+ JE) (2 + JE) 2 x5_1,0}» (4.15)
and J, B and A are all defined as in Theorem 4.2.

Note that the density function corresponding to G (z) is
;le(m) = ¢P(z; 01 B)Hp"l(xg—l,a; A)
+ / - / dp(® — € — 2;0, B)ddp(2;0,50T').  (4.16)
M(6)
Next, by virtue of (2.1), (2.4) and Theorem 4.2, we obtain the following theorem:
Theorem 4.4. Under {K(,)} in (3.3) and the assumed regularity conditions,
\/ﬁ(éi —0o1,) = Xn) — (p— 3)1/(71){an)2(;1},(11)}—1

2 (X +6) - (p-3)(Y+ TE)x
{(Y+ 7= (Y+ J€)} 7, (4.17)

RE R

D
and — means convergence in distribution.

where

Very similar representations hold for the positive rule estimator in (2.5).
Under {K(y)} in (3.3), and by virtue of the general equivalence result in (3.4)
and (3.7) and by Theorems 4.2, 4.3 and 4.4, we arrive at following expressions
for the asymptotic bias and risks. Since the derivation of these formula are very
similar to the general case treated in Sen and Saleh (1985), we omit these details
of the derivation. The asymptotic bias expressions for the first four estimators
in (1.5), (1.6), (2.3) and (2.4) are given by

B (8) = nll’n;o E{\/ﬁ(én - o(n))} =0, (4.18)
B:(6) = nh—{%o E{\/"—l(énlp - e(n))} = -6, (4'19)

B3(6) = lim E{va(8;" - 6(n))} = —6Hp+10x}-1,0; D), (4.20)
By(8) = lim E{v/n(8; - 6(n))} = —(p - 3}6E(x;11(L)),  (4.21)
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where A is defined by (4.12). Also, the asymptotic distributional covariance
matrices of the first four estimators in (1.5), (1.6), (2.3) and (2.4) are given by

Ty(6) = lim E{n(6,, — 0())(0r — 6(n))'} = o, (4.22)
T3(8) = lim E{n(0,1, — 0(n))(fr1, — 6(»))'} = B + 66', (4.23)
I3(6) = lim E{n(65T — 0(,))(85T - 6(.))'}
=X - 20HP+1(X?:—1,0:;A)
+66' {2H,11(X2 1,05 8) = Hpy3(x2o1,05D)} 5 (4.24)
[4(6) = lim E{n(6] — 6(n))(63 — 6(r))"}
= To — (p— 3)Z0 {2E(x771(D)) - (p— 3)E(x74:(2))}
+(p—3)(p + 1)68'E(x;}5(D))- (4.25)

Consequently, the asymptotic distributional risk function under quadratic loss in
(3.1) for the first four estimators are given by

R(0,,W) = Te(WX,), (4.26)
R(6,1,,W) = Tr(WB) + §'W§, (4.27)
R(O7T, W) = Tre(WEo) — TH(WEo) Hp41 (1,05 L)
+8'W6 {2H,41(X5-1,0: 8) — Hpa3(Xp-1,0: D)}, (4.28)
R(6},W) = TH(WXo) — (p — 3)Tr(WE,) {2E(x;71(D))
-(» = )E(;11 ()}
+(p = 3)(p + 1)’ WEE(x;13(D))- (4.29)

For some numerical work and graphs we consider the particular case W = X 1
Then the expressions in (4.26)-(4.29) reduce to

R(Bn 55" = p, (4.30)
R(6,1,, 5 =1+A, (4.31)
ROET, 55" = p— pHps1(X3 1,03 D)
+ A {2Hp11(35 1,05 D) — Hpys(Xi_1,0:D)},  (4.32)
R(63,=5") = p - p(p— 3) {2E(; 11 (D)) - (p - 3)E(x;11(D)}
+(p - 3)(p + 1)AE(x; {3(D)). (4.33)
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5. ADR and Efficiency Analysis for Various Estimators

We now proceed with an analysis of the risks of the estimators and determine
their asymptotic dominance properties. Firstly, we note that

R(0r £(6.1,, W) S according as  §'W§ S Tr(WA), (5.1)
R(Gn, w) > >
where A = X — B. Secondly,
PT
R(6; £, , W) ) according as
R(6,,W) s1
§'Ws {2HP+1(X3>—1,0; A) - HP+3(X?)—1,a;A)}
<
S Tr(WEO)Hp+1(Xi—1,a; A), (5.2)
and
R(6; ,VV) e according as
R(o IP,W) >
&'Wé {1 - 2HP+1(X?;——1,0:; A) + HP+3(X?)—1,0;A)}
<
S TH(WA) = T(WE0) Hpt1 (18 -1,050). (53)

Finally, note that J is an idempotent matrix with rank (p — 1), and the rank of
o is greater than (p — 1). Thus, by the Courant theorem (Rao (1973)),

§'Wé

—‘J_EO_-TE < Chmax(WE()) for all &,

where chp,x (W) stands for the largest characteristic root of W. For convenience,
we characterize a class W by

W= { Wi THOVS0) chman(WE0) > 2H 3 (5.4)

Then, we obtain from (4.26), (4.29) and (5.4) the result:

M_l Vé and WeWw. (5.5)
R(en’W)

Note that for the dominance of 9§ over @, for all p 2> 4, we need the typical
choice of W given by (5.4). For an arbitrary choice of W, the inequality in (5.4)
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may not hold simultaneously for all 3. In such a case, to induce the dominance
of 85 over 0, one may introduce the modified Stein-estimator, M5, given by

OMS = 0,1, + (I, — cd, L;'W1E:1(8,, - 6,1,), (5.6)

where c is the shrinkage constant and dp, = chpin(W ~1£:1). The modified

Stein-estimator is similar to the normal theory case treated by Berger et al.

(1977) and to the nonparametric case discussed by Sen and Saleh (1985). Sen

(1986) provides a detailed discussion of a general form of the shrinkage estimator,

with arbitrary W, which is also quite applicable to categorical data. In the sequel

we assume W belongs to W given by (5.4) and the remaining discussion follows.
In the above we may note that Tr(WA) > 0 and

§'Wé

chmin(VVEDO) S S Chmax(WEO),

where chpin (W) stands for the minimum characteristic root of W. Hence, (5.1)

implies that §,1, has a smaller ADR than that of the ADR of 8, if A <
E,%%%T)’ ie., énlp performs better than 8, in the interval [0, ﬁi}%‘)ﬁ)
Tr(WA the
~ hmin_(wzo) ’
ADR of 6,1, grows and becomes unbounded whereas the ADR of 8, remains
bounded. Hence departure from the null hypothesis, i.e., A € (Fl%i.(:—vﬁ%,—)’
is fatal to énlp but is of very little concern to 0,. For W = =y 1 we obtain
Te(WA)  _  Tr(WA)  _ 1
chmax(WX0) ™ chpin(WXo) — p—L
Similarly, we note that H,,(z;A) is a decreasing function of m (DF) and A.

In fact for fixed z we have

Alternatively, when A deviates from the null hypothesis beyond

o)

"}1_1’1100 Hy(z;0) = All_r*noo Hp(z;0) =0,
and in particular, we have

Hp1(X5-1,0i D) < Hpo1(X3_1,0i0) € Hpoa(Xio1,430) =1 -« (5.7)

foreveryp > 2,0 < a < 1and A > 0. Using these results in (4.28), we may point
out some important characteristics of the ADR of él:r. For § = 0, i.e., under
the null hypothesis, the ADR of 8T reduces to Te(WXo){1 - HP+1(X§)—1,0; 0)}
which is smaller than the ADR of 8,,. Also, for large deviations of § from 0 (null
hypothesis), i.e., as A — oo the ADR of 9ET approaches the ADR of 0, from
above. Similar results hold when p — oo. Further, as § departs from 0, i.e., as
A grows, the value of ADR of 95T increases to a maximum after crossing the
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ADR of 8,, then decreases towards the ADR of 0,. Furthermore, we find that
the ADR of the 8T is smaller than the ADR of 8, when

Tr(WX,) _ Hppa(X3_1,0: D)

A< , =
Chimax(WX0)(2 ~ 10) vo HP+1(X%—1,¢1; A)

<1

and for A > mm}"&gg‘g o) the opposite conclusion holds, but as soon as

A — oo, the ADR of 8ET converges to that of 8,. For W = 35!, we obtain
chrI:,(:{v}v:go) = ch’,r:.(,:’:vf;:)o) = p. In this case, for A € [0,p(2 — 15)~1), the PTE

OPT has a smaller ADR than that of 8,,, whereas the opposite is true for A €
(n(2 - vo)~1, 00).

Now, we compare OPT and 6, 1,. First, under the null hypothems ie,6=0
the ADR of 6, 1, is Tr(WX,) — Tr(WA) and R(On y W) — R(0 lp,VV) >0

whenever

Tr(WA
Hpy1(X3o1,430) < —Tr(LWE_O)S

Hence, we conclude that under the null hypothesis 6, 1, performs better than
6ET for a range of a for which (5.8) is satisfied. However, for a fixed § as a — 0,
the ADR of OPT approaches §'W§é while the ADR of 6, 1, remains unchanged.
In such a case 6, 1, performs poorer than OPT In the sequel we assume « to
be bounded away from 0 satisfying (5.8) and the remaining discussion follows.
Then, 6, 1, performs better than OPT for

(5.8)

Tr(WA) — Te(WXo)Hpi1(X3_1 o3 D)

A<
Chimax(WE0){2(1 = Hp+1(X3_1,0: D)) — (1 — Hp3(X2_1 o; A))}
and for
A Tr(WA) - Te(WEo)Hpy1(X3_1 43 D)

Chumin(WZ0){2(1 - Hp41(xXp-1,0i D)) = (1~ Hpr3(x-1,4i D))}
the opposite conclusion holds. For W = X!, the right-hand quantities equal

P{l1— Hpi(x2_1,0:0)} -1
2(1 ~ Hp41(X3-1,0: D)) — (1 = Hpya(x2_1 05 D))

For large p, this expression approaches p — 1. Con51der1ng the discussion above
we conclude that none of the three estimators 8,,,6,1, and 8F7T is asymptotically
inadmissible with respect to the other two.

The picture is somewhat different with respect to the shrinkage estimator.
First, note from (5.5) that the ADR of 83 is uniformly smaller than the ADR of
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0,., where the upper limit is attained when A — oo. This shoyvs the asymptotic
inadmissibility of @,, (under K, (n)) telative to 85. To compare 65 and 6,1, under
the null-hypothesis in (1.2) (§ = 0) we have

R(85,W) = R(6,1,,W) + Te(WA) — z: ::Tr(WEO)

> R(6,1,,W). (5.9)

Thus, the asymptotic risk of 92 is greater than that of énlp for 6§ = 0. However,
as § moves away from 0,8'W§ increases while E(X;$1(A)) and E(x;_:s(A))

decrease, so the opposite conclusion holds. In general, éﬁ does not dominate
6.1, for A in the interval [0,A,), where

A = Tr(WA) — (p — 3)Te(WEo) {E (x;51(D)) + AE (x;13(D)) }
. chmax(WEo) {1 - (p - 3)(p + 1)E (x;{3(2)) } ’

however, it does so for A € (A*,00) where

. _ TH(WA) — (p - 3)Te(WEo) {E (x5{1(D)) + AE (x545(2)) }

A
chmin(WEo) {1 - (p - 3)(p+ 1)E (x;13(D)) }

Hence neither éﬁ nor énlp asymptotically dominates the other (under K,)).

Now, we compare @,S, and éET. First, consider the case when § = 0. In this
case R(65,W) = 2(p— 1)"1Tr(WXo). Hence we have

R(8S,W) - R(BE™, W)

-3
= ’I-‘I(WEO){HP"‘I(X?)—I,Q;O) - I;Tl‘}, ¥4 Z 4. (5.10)

Thus the PTE 6ET has a smaller ADR than that of the ADR of 65 até=0
whenever
2 p—-3

Hp11(Xp-1,050) > ot (5.11)
otherwise the opposite conclusion holds. Thus, éi does not dominate éﬁT when
the null hypothesis holds provided that H,11(x2_; 4;0) > (p—3)/(p—1). Under
this situation we can order dominance of the estimators under the null-hypothesis
in (1.2) as follows

0.1, > 0FT - 65 » 0, (5.12)
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where the notation > means dominates. However, the dominance picture changes
to 6,1, > 65 > GET - B, whenever Hp1(x%_1,6;0) < (p—3)/(p—1). Further,
we can specify the condition in (5.11) equivalently as

2
2hp41(Xp-1,0:0) < It (5.13)

here hpy1(-;0) is the p.d.f. of a chi-square variable with (p + 1) DF and « is
the level of significance of the test of the null-hypothesis in (1. 2). Thus, (5.13)
specifies a range of the values of a for given p > 4 for which the PTE GP T
dominates OS The picture changes as § moves away from the origin (i.e., under
the null- hypothes1s) Note that 6, has a constant risk equal to Tr(WEo) and
the risk of 4, 1, depends on §; its risk becomes unbounded as § moves further
away from 0. As for 85T, the risk increases from the initial value Tr(WX(){1 -

Hpy1(x3_1,4;0)} to a maximum after crossing the risk of @,, then decreases
to the value Tr(W)]o) which is the ADR of 8,. Similarly, the risk of 65 with
the initial value —Tr(WEo) increases monotonically towards Tr(WX,) as A

moves away from 0. The ADR of 8 and OET intersect at the point A = A,
for each a (0 < a < 1), if the condition in (5.11) is satisfied, otherwise there is
no intersection. If A € [0,A,), then the PTE dominates the SE while outside
this interval the SE dominates the PTE. Thus under the condition in (5.11)
neither the PTE @ET nor the SE 63 dominates each other under {K(n)}. The SE
6% dominates the PTE 6ET uniformly if the condition in (5.11) is not satisfied.
However, OPT and 05 share a common property as A — 00, namely, their ADR’s
converge to Tr(WX,) which is the risk of 8,. But the risk function of 6 is

always below this limit, whereas the risk function of OPT exceeds this limit for
some intermediate values of A depending on a, the level of significance of the
test of (1.2).

To improve over GET(8S) one may use OET+(63+) as studied by Sclove,
Morris and Radhakrishnan (1972) in the multivariate normal mean problem.
This relative dominance of (2.5) over (2.4) remains intact under our asymptotic
setup, hence, we may advocate the use of this modified SE. In terms of ordering,
MPTE comes in between the usual PTE in (2.3) and SE, while in general the
relative ADR picture with PTE and SE remains applicable to this case as well.
Finally, from the point of robust-efficiency both OPT and OS may be advocated,
leaning more towards 05, since the size of A is generally unknown and unlikely
to be small.

Next, we consider the relative efficiency analysis of the estimators for the
specific case W= X1 Using (4.30)—(4.33), the relative efficiency (R.E.) of the
RMLE 6, 1, to the UMLE 8, is defined to be
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R(6n,%5") _ _p
R(6,1,,=5Y) 1447

R.E.(0nl,:0,) = (5.14)

Similarly, the relative efficiency of éﬁT and the SE éﬁ to the UMLE @, are given
by (5.15)—(5.16) respectively:

R(0.,25") 1

R.E.(ET:0,)= — = ,
( ) R(ET, =71 1+ g1(e, D)

(5.15)
where
A
g(e L) = — {2Hp11(x2 1,05 D) = Hpya(Xo1,0: )} = Hps1(Xoo1,03 D)5

R(6,,%7) 1

R.E.(65:0,) = — = ,
( ) R(63,35Y)  1+9:(D)

(5.16)

where

(D) 2%(,, ~ 3)(p+ DEGG(D))
—(p-3){2E(GE(D) - (P - 3E(GH (D)}

Tables 5.1-5.2 provide the maximum relative efficiencies (at A = 0) for
0,1,(E,), 05T (E;) and 63 (E,) relative to ,,, the intersecting relative efficiencies
denoted by Ea, of 65 and 6ET (which is the common efficiency of the PTE
and the SE) and the A,-values at which the intersection occurs. For example,
using Table 5.1, with p = 6, = 0.10 and A € [0,1.1514], it appears that
6ET dominates 65, but outside the interval domination is reversed. While, if
the hypothesis in (1.2) is correct, i.e., A = 0, then énlp has larger efficiency
(Ey = 6.0000) than 8ET(E3 = 4.2350) and 83 (E, = 2.5000) relative to 8,. Note
that A, = 0 in Tables 5.1-5.2 means that no intersection between 85T and
9ﬁ occurs, and the corresponding relative efficiencies E5_ are equal to Ej, i.e.,
the SE @S in (2.4) dominates the PTE 6ET in (2.3) when p-values or a-values
are large. Figure 5.1 exhibits plots of the relative efficiency (R.E.) curves for
0,1,,0ET and @S relative to 8, versus A for various values of @ and p = 5.
Apparently, 88T dominates @S for a range of a (0 < @ < 1) and for small
values of A. Figure 5.2 exhibits plots of the relative efficiency (R.E.) curves for
énlp,égT and 65 relative to 8, versus A for various values of a and p = 20.
Apparently, éi dominates égT for large values of p.
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6. Baseball Data Analysis

Now, we illustrate the above theory with an analysis of the famous baseball
data of Efron and Morris (1975). In this data a James-Stein estimator is used to
predict batting averages of 18 major league players in the remainder of the 1970
season. The number of hits y; in the first 45 bats is observed for each player ¢
(1=1,2,...,18). The problem is to estimate & = (8,,... ,6;3)', where 8; denotes
the final season batting average of player . Efron and Morris (1975) used an arc
sine transformation on each y; to obtain approximate normality and then used
a James-Stein estimator on the transformed counts. This will be denoted by
6EM. Albert (1984) proposed an empirical Bayes estimator denoted by EB to
estimate . We present in Table 5.3 the true batting averages (8T), the UMLE
(8,), 6EM, OEB,OgT and 3. The true batting averages, obtained from Morris
(1983), have mean 0.267 and s.d. 0.037. In order to assess the performance
of the various estimators, loss defined by (8; — 6F)2/(0.037)? for each estimator

f; i(1 =1,...,18) along with the average loss (due to the estimators) have been
tabulated in Table 5.4. The PTE ET = (.265,...,.265)' is the result of testing
the null hypothesis Hy : 6, = 8; = --- = 0, at 15% level of significance. In

Table 5.4 we have denoted by LMLE,LEM,LEB,LPT and Ls the losses due to
the estimators, 6, (UMLE),9EM gEB GFT 5nd 65 respectively. A comparison
of the average loss of various estimators show that our estimator 03 is quite
comparable to that of 0EM and BEB (and 6ET is not far behind). If we apply
Morris’s ((1983), (3.8) page 32) approximation formula, M = .2086; + 0.2105
obtained by an empirical Bayes approach, we get exactly éf’ (1=1,...,18), which
supports the validity of our asymptotic theory as well.
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Appendix

Here, we prove (4.5). First, define

kn = Jpax n|6; — 6,]. (A1)
Then 4
L,> ;ki with probability 1. (A.2)

Now k, = 0 yields L, = 0 and hence, 92 =0, = énl,,. Thus, we exclude the
case k, = 0. In this case k, > 0 and it can be less than 1, with probability 1; in
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any case k, > %, with probahility 1 (excluding the case k, = 0). Thus, on the
set {L, > 0}, we may write

L7 I0< Lo<e€)=L7'I(0< Ly < %) + L,‘,‘I(% < L,<e). (A.3)
Let 1
kon = 5V/ne. (A.4)

Then, using (A.2) and (A.4) we obtain for every 6 (under K(,) as well)
Eg{L;'I(0 < Ln < €)}

< %{Eo [k;’I(% <kn<1)] +Eg[k;?I(1 < kn < ko,,)]}. (A.5)

Replacing ky by [k»], the largest integer less than or equal to kn, the second term
in (A.5) (for k, > 1) satisfies the inequality

Eg{k;2I(1 < ky, < kon)}

[kOn]
< Eg{k;2I(1 < [ka] < kon)} = Y k™ Po{[kn] = k}
k=1
[kOn]
<16 S k"3 Pg{lkn] < k} + [kon] *Po{lkn] < [konl}-  (A-6)
k=1

Now, the degrees of freedom for Ly is p — 1, hence there are kP! configu-
ration for which k, < k. For each configuration the probability is O(n=(»-1)/2),
Thus, Pg{kn < k} = O(k?~1n=(P~1/?) for every k < kon. Hence, by (A.5) and
(A.6),

2 Eg{kzI(1 < ka < kon)}

[kon]
{ Z O(k""n'(”'l)/z) + O(kg;:’n-(p—l)/?)}

k=1

<

3

i
o

(kon]
(om0 () +0(K5:")}
k=1
= O(n~(-3/2p5 3
= O(P=3)/2p~(p=3)/20(p=3)/2)
= 0(P~3/%), p> 4. (A7)

Since ¢ is arbitrarily small (A.7) may be made small. For the first term we set
[nk] = k3, so that on 1 <kn,<1,weobtainl< k; < n; thus,
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€

3
(R I( < kn < 1)) < T Eg{(k) I < Ky < n— 1))
3 n-1

= 1‘4_ > (k*) 2 Pg(ky = k*).

k*=1

By a similar argument utilized before, one may show that the last term is
O(n=(P=3)/2) p > 4. Hence, we have proved that Eg{L;1I(0 < L, < €)} — 0,
as n — o0o.

Table 5.1. Maximum relative efficiencies of the RMLE, PTE, and SE and the inter-
secting efficiencies for the PTE and SE for each a with corresponding A,-values for
p-values

a\p 4 6 8 10 12 14 16

.05 E; 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000
E; 5.9971 7.3761 8.3363 9.0666 9.6514 10.1362 10.5481
Ey 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000 7.5000

Ep o 1.2617 1.8128 2.4102 3.0680 3.8010 4.6266 5.5660
Aos 2.0988 1.8974 1.7020 1.5048 1.3048 1.1025 .8983

.10f E; 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000
E; 3.5396 4.2350 4.7092 5.0648 5.3466 5.5783 5.7739
E4 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000 7.5000

Ea o 1.2913 1.9996 2.9013 4.0761 5.3466 5.5783 5.7739
Ao 1.6932 1.1514 .7081 .3048 .0000 .0000 .0000

15} E; 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000
E; 2.6425 3.1003 3.4085 3.6375 3.8177 3.9652 4.0891
Es 1.5000 2.5000 3.5000 - 4.5000 5.5000 6.5000 7.5000

Ea g 1.3199 2.2163 3.4085 3.6375 3.8177 3.9652 4.0891
A5 1.3593 .5482 .0000 .0000 .0000 .0000 .0000

20 E; 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000
E; 2.1684 2.5038 2.7274 2.8925 3.0218 3.1272 3.2155
Ey 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000 7.5000

Ep,, 1.3511 2.4973 2.7274 2.8925 3.0218 3.1272 3.2155
Ao 1.0462 .0044 .0000 .0000 .0000 .0000 .0000

.25| E; 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000
E; 1.8729 2.1328 2.3049 2.4314 2.5300 2.6101 2.6771
Es; 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000 7.5000

Ep . 1.3873 2.1328 2.3049 2.4314 2.5300 2.6101 2.6771
A5 .7340 .0000 .0000 .0000 .0000 .0000 .0000
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Table 5.2. Maximum relative efficiencies of the RMLE, PTE, and SE and the inter-
secting efficiencies for the PTE ‘and SE for each a with corresponding A-values for

p-values

4 6 8

10

12

14

16

.30

.35

40

45

.50

Ey

EA.so
A so

4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000

1.6706 1.8788 2.0161
1.5000 2.5000 3.5000
1.4314 1.8788 2.0161
4109 .0000 .0000
4.0000 6.0000 8.0000
1.5234 1.6938 1.8057
1.5000 2.5000 3.5000
1.4875 1.6938 1.8057
.0678 .0000 .0000
4.0000 6.0000 8.0000
1.4119 1.5531 1.6457
1.5000 2.5000 3.5000
1.4119 1.5531 1.6457
.0000 .0000 .0000
4.0000 6.0000 8.0000
1.3248 1.4427 1.5199
1.5000 2.5000 3.5000
1.3248 1.4427 1.5199
.0000 .0000 .0000
4.0000 6.0000 8.0000
1.2554 1.3541 1.4187
1.5000 2.5000 3.5000
1.2554 1.3541 1.4187

.0000 .0000 .0000

2.1165
4.5000
2.1165
.0000
10.0000
1.8873
4.5000
1.8873
.0000
10.0000
1.7130
4.5000
1.7130
.0000
10.0000
1.5760
4.5000
1.5760
.0000
10.0000
1.4656
4.5000
1.4656
.0000

2.1946
5.5000
2.1946
.0000
12.0000
1.9507
5.5000
1.9507
.0000
12.0000
1.7652
5.5000
1.7652
.0000
12.0000
1.6194
5.5000
1.6194
0000
12.0000
1.5019
5.5000
1.5019
.0000

2.2578
6.5000
2.2578
.0000
14.0000
2.0019
6.5000
2.0019
.0000
14.0000
1.8072
6.5000
1.8072
.0000
14.0000
1.6543
6.5000
1.6543
.0000
14.0000
1.5310
6.5000
1.5310
.0000

2.3106
7.5000
2.3106

.0000

16.0000
2.0445
7.5000
2.0445

.0000

16.0000
1.8422
7.5000
1.8422

.0000

16.0000
1.6833
7.5000
1.6833

.0000

16.0000
1.5552
7.5000
1.5552

.0000
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Table 5.3. The true values (0;-1'), the maximum likelihood estimator MLE(§;), Efron
and Morris estimators (&™), Albért empirical Bayes estimator (6%B) and the proposed
estimators (65 T) and (6%)

Table 5.4. Computed values of the losses of the MLE(d;), Efron and Morris estimators
(6¥M), Albert empirical Bayes estimator (6B) and the proposed estimators (85 T) and

#?)
Table 5.3 Table 5.4
i| 6f 6 oM FB gFT 4§ i| Lmce Lem Les Lpr Ls

1(0.346 0.400 0.290 0.279 0.265 0.294 1| 2.130 2.291 3.279 4.793 1.975
2]10.300 0.378 0.286 0.277 0.265 0.289 2| 4.444 0.143 0.386 0.895 0.088
310.279 0.356 0.281 0.274 0.265 0.245 3| 4.331 0.003 0.018 0.143 0.844
410.223 0.333 0.277 0.272 0.265 0.280 4| 8.839 2.130 1.754 1.289 2.373
5{0.276 0.311 0.273 0.270 0.265 0.275 5 0.895 0.007 0.026 0.088 0.001
60.273 0.311 0.273 0.270 0.265 0.275 6] 1.055 0.000 0.007 0.047 0.003
710.266 0.289 0.268 0.268 0.265 0.270 71 0.386 0.003 0.003 0.001 0.012
8]0.211 0.267 0.264 0.265 0.265 0.266 8| 2.291 2.052 2.130 2.130 2.210
910.271 0.244 0.259 0.263 0.265 0.261 91 0.533 0.105 0.047 0.026 0.073
10}0.232 0.244 0.259 0.263 0.265 0.261 10| 0.105 0.533 0.702 0.795 0.614
11{0.266 0.222 0.254 0.261 0.265 0.256 11} 1.414 0.105 0.018 0.001 0.073
12(0.258 0.222 0.254 0.261 0.265 0.256 12§ 0.947 0.012 0.007 0.036 0.003
13(0.306 0.222 0.254 0.261 0.265 0.256 13| 5.154 1.975 1.479 1.228 1.826
14(0.267 0.222 0.254 0.261 0.265 0.256 14 1.479 0.123 0.026 0.003 0.088
15]0.228 0.222 0.254 0.261 0.265 0.256 15| 0.026 0.494 0.795 1.000 0.573
16(0.288 0.200 0.249 0.259 0.265 0.252 16 5.657 1.111 0.614 0.386 0.947
1710.318 0.178 0.233 0.257 0.265 0.247 17| 14.317 5.278 2.718 2.052 3.682
18]0.200 0.156 0.208 0.254 0.265 0.242 18] 1.414 0.047 2.130 3.086 1.289
mean|0.267 0.265 0.261 0.265 0.265 0.263 mean| 3.079 0.912 0.897 1.000 0.926
s.d.[0.037 0.068 0.019 0.007 0.000 0.014 s.d.| 3.565 1.346 1.045 1.270 1.051
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Figure 5.1. Dominance picture for UMLE, RMLE, PTE and SE for p = 5.
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