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Abstract: This paper discusses canonical forms of vector ARMA representations for
a linear, time-invariant system. Both the Kronecker index and the scalar-component
model (SCM) approaches are presented and discussed. The Kronecker index ap-
proach results in an Echelon form. For the SCM approach, a canonical SCM repre-
sentation is introduced. The relation between Kronecker indices and orders of scalar
component models is also established.
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1. Introduction

Consider a k-dimensional linear time-invariant process
o0 [o o]
z=) Wia,;  with Y | ¥? < oo, (1.1)
=0 =0

where ¥o = I, the k x k identity matrix, ||A|| is a matrix norm such as the
largest singular value of the matrix A, and {a:} is a sequence of innovations
satisfying

E(a:) =0, Cov(a;) = X positive definite, E(ata,)=0 t+#v. (1.2)

In application, one often assumes that z; of (1.1) can be described by a vector
autoregressive moving average, ARMA(p, q), model

®(B)z: = ©(B)ay, (1.3)

where B is the usual backshift operator such that Bz, = z;_;, ®(2)=(I-P12—
oo = @p2P) and O(z) = (I — ©12 — - -+ — @,27) are two matrix polynomials in
z of degree p and g, respectively. Alternatively, an ARMA model for z; can be
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written as

9
Eoz: + Zsuzt—v = Eoa; + Z Q.a;_, (14)

v=1 v=1

where =y is lower triangular with unity on the diagonal. The ARMA represen-
tation, (1.3) or (1.4), is equivalent to assuming that ¥(z) = Yoo, ¥;2* of (1.1)
is rational. The ARMA parameterizations, however, may encounter several diffi-
culties. For instance, the model may not be unique for a given process z; or the
model may contain an excessive number of parameters. A key problem therefore
is to understand the structure and parameterization of the vector ARMA model
for a given linear time-invariant process z;.

When k = 1, the structure of an AMRA(p, ¢) is well understood. One simply
assumes that (a) there are no common factors between &(z) and ©(z), and (b)
all of the zeros of the preceding two polynomials are outside the unit circle. For
the multivariate case, the situation becomes much more complicated. The direct
generalization of the univariate case, which assumes that ®(z) and ©(z) are left
coprime and all of the zeros of the determinantal polynomials |®(z)| and |©(2)]
are outside the unit circle, is insufficient. There remains the problem of identifi-
ability (or exchangeable models). Two vector ARMA models are exchangeable if
the probability distributions of z; they imply are equivalent. This identifiability
problem has been discussed by many authors, e.g. Akaike (1976) and Hannan

(1969). Some simple yet informative examples of exchangeable models can be
found in Tiao and Tsay (1989).

The goal of this paper, therefore, is to discuss two canonical forms of vector
ARMA representation of a linear time-invariant process. By a canonical form,
we mean a well-specified ARMA model satisfying (a) ®(z) and ©(z) are left
coprime, (b) the model contains no redundant parameters, and (c) the orders
of the polynomials involved are as small as possible so that the total number of
parameters that need estimation is minimized. The discussion is centered on two
methods: one from the engineering literature that uses Kronecker indices and
results in an Echelon form, and the other from the statistical literature that uses
the idea of model for a scalar component and ends up with a canonical SCM
representation. The relations and differences between the two approaches are

also given.
2. The Kronecker Index Approach

2.1. Hankel matrices and Kronecker indices

Let I, be the lag-£ autocovariance matrix of z¢, i.e. I'y = E(z,2}_,). Post-
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multiplying model (1.3) by z;_; and taking expectation, we have

A; ifj<q

e (2.1)
0 ifj>q+1,

Fj—@Tj - = &T; = {
where A; is a k X k matrix depending on ©;'s and ¥ such that A, # 0. This
moment equation plays an important role in describing the structure of a vector
ARMA model.

A direct approach to introducing the Kronecker index is to consider the
Hankel matrix of the autocovariance matrices of z; defined by

r, I, ceo Ty
r, I's RI VP

= ) (2.2)

I‘l I‘¢+1 I‘21-1

where £ = 1,2,... ,00. In Hannan and Deistler (1988), the Hankel matrix is
defined in terms of the coefficient matrices ¥; of (1.1). However, autocovari-
ance matrices are more convenient for the purpose of this paper. For a given
vector ARMA(p, ¢) model, by using the moment equation (2.1), it is clear that
Rank(H) is finite and Rank(Ho) = Rank(H,) for £ > max{p,q}. On the
other hand, as will be seen later, if H., of z, is of finite rank then z; follows a
vector ARMA(p, q) model, i.e. ¥(B) is rational.

Let h(i,5) be the [(i ~ 1)k + jlth row of Ho. We say that h(u,v) is a
predecessor of h(%, j) if (u—1)k+v < (i—1)k+j, that is, the row h(u, v) appears
before A(%, 7). The Toeplitz form of (2.2) provides a nice property for Hy, namely,
if h(4, j) is a linear combination of A(41, 5;), ... , h(i,,7s), then h(i+1,5) is a linear
combination of k(41 + 1,71),... ,h(4; + 1,j,). For convenience in reference, we
summarize some properties of H, into a theorem (see Theorem 2.4.1 of Hannan
and Deistler (1988)).

Theorem 1. The Hankel matriz H,, defined in (2.2), of the linear time-
invariant process z; in (1.1) has the following properties:
(i) If h(3,5) is a linear combination of h(iy, j1),... ,h(is, js), then h(i + 1,7) is
a linear combination of h(iy + 1,71),... ,h(is + 1,7,).
(ii) The rank of H, is finite if and only if W(B) is rational.
(iii) If Rank(Ho) = m < oo, then Rank(H,,) = m.

Since this paper is concerned with vector ARMA models, in what follows
let us assume that Rank(Ho) = m < co. The problem then is how to obtain
a canonical form of a vector ARMA process with Hankel matrix H,,. Based
on the rank assumption, a basis for the row-space of H,, consists of m linearly
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independent rows. Due to the property Theorem 1(i), we consider a particular
basis for the row-space of Ho, that has the following property: if A(i + 1,7) is in
the basis then A(%, ) is also in the basis for all i and 1 < j < k. In other words,
the particular basis considered consists of the first m linearly independent rows
of H,,. Denote by B this particular basis which can be constructed by checking
the linear dependence of each row of H,, from a top-down fashion beginning
with the first row. More specifically, B can be obtained as follows.

1. Begin with the first row hA(1,1) of Hoo. If (1,1) = 0, then, by Theorem 1(i),
h(i,1) = 0 for all i > 1. In this case, set d; = 0; otherwise, set B = {h(1,1)}
and proceed to the next row.

2. For any other row A(¢, 7) of Ho,, if it is linearly dependent of its predecessors,
that is, if h(%,7) is a linear combination of those rows prior to it, discard
h(%,7); otherwise, augment h(%,7) to B and check the next row in H,

3. The checking procedure stops when B contains m rows.

Note that Theorem 1(i) is useful in checking the linear dependence in Step 2.
We shall refer to B as the fundamental basis for the row-space of H,.,. Write

B = {h(1,1),... ,h(d1,1);h(1,2),... , h(dz,2);
sh(1,K), ..., h(dx, k)}, (2.3)

where it is understood that if d; = 0 then no row in the form of A({, j) appears
in B. The d;’s of (2.3) are pivotal quantities in understanding the structure of
vector ARMA models of z,.

Definition 1. For a linear time-invariant process z; with Hankel matrix H
defined in (2.2) and the fundamental basis B in (2.3), the nonnegative integer d;
is called the jth Kronecker inder of z;.

For an alternative definition of Kronecker indices, see Solo (1986). Denote by
K = {dj|j = 1,... ,k} the collection of Kronecker indices of z;. Obviously, m =
> i=1 di, which is called the McMillan degree of the process z; in the engineering
literature. From the construction of B, the Kronecker index d; implies that
h(d;,j) is linearly independent of its predecessors whereas h(d; + 1, ) is a linear
combination of its predecessors. Thus the Kronecker index d; can be interpreted
as the smallest nonnegative integer v such that h(v+1, ) is a linear combination
of its predecessors. Furthermore, using the above property of the Kronecker
indices d; jointly, h(d; + 1,7) can be rewritten as

—1dj+1

h(d; +1,5) = Z Z Boijh(v,%) + E Zﬂ,, i,ih(v,7)

i=1 v=1 i=j v=1
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j—1min(d;+1,d;) k min(d;,d;)
= E Z ‘ auvivjh(v’ i) + E Z a”’i»j h(v’ i)’ (2'4)
i=1 v=1 i=j v=1

where the a, ; j’s and 3, ;’s are real numbers. As will be seen later, this equation
provides a means by which one can determine the structure of the autoregressive
matrix polynomial £(z) = Y°F_ E;2' of (1.4). It suffices now to note that the
number of coefficients a, i ;j in (2.4) is

i1 k
8= min{d; +1,d;} +d; + Y min{d;,d:}. (2.5)
i=1 i=j+1

2.2. A predictive interpretation

For a given time index t, define the past vector P;_; and the future vector
F; of the process z; by

Pi_y = (24_1,2i_g,...) and F; = (24, 2441,... )" (2.6)
The Hankel matrix H,, can then be written as
Hy = E(FtP;-l)’ (2'7)

which implies that H, is the covariance matrix between the past and the future
vectors of z;.

Let a; be an infinitely dimensional, real-valued vector with aff; 2 as its

[(v — 1)k + 7]th element. For each Kronecker index d;, from (2.4), we can define
a vector a; as follows:

1. Let agl_l'j =1.

2. For each h(v,%) appearing in the right hand side of (2.4), set af,’;z = —Q,ij
3. For all other (v, 1)’s, set aff} = 0.
By (2.4), we have
a;He = 0. (2.8)

To see the implication of this result, let uj¢4q; = aF;. Note that, from (2.4)
and (2.6), t + d; is the time index corresponding to the last non-zero element
aff;_)ﬂ'j of aj. This explains the subscript ¢ +d; of u; ¢4q4;. From (2.8) and (2.7),
uj t4+4; is uncorrelated with the past vector P;_; of z;. Thus, corresponding to
each Kronecker index dj, there is a linear combination of the future vector F;

that is uncorrelated with the past P;_;.
On the other hand, by using the innovational representation (1.1) and the
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definition of uj¢4.4q;, it is easily seen that

[o o]
Ujt+d; = Zu?)atw,—i, (2.9)
=0
where u(" )’s are k-dimensional row vectors such that
ui) = [0, 5,0P,15,...,1,0,...,0]

with 1 being in the jth position, and all the other ugj )%s are linear functions
of elements of ¥,’s and non-zero elements of o j- However, since Ujt+d; 1S
uncorrelated with P;_,, it follows that

d;
Ujt+d; = zu?)atwj—;- (2.10)
i=0

This says that the scalar process u; ;44; is at most an MA(d;) series.

By (2.10) and the definitions of u;,¢;4, and a;, we have for each Kronecker
index d; that

—1 min{d;+1,d;} k min{d;,d;}
j J
Yjt+d; = Zjrrd; + Z Z 513 Zit+v-1 t Z E 05,,2 Zijt+v-1
=3 v=1
d;
J j
= @Gjt+d; + Z ag,.).H,iai,ﬂdj + Zus )at+d,-—i- (2.11)
(i<i)N(d; +1<d;) i=1

By taking conditional expectation based on P;_1, (2.11) implies

—1min{d;+1,d;}

(7)
Zjt4d;jt-1 T E E Qg i Zittu—1]t-1

k mm{d, i} .
+ Z Z agj,:)zi,t+v-—1|t—l =0, (2.12)
i_] v=1

where 2; ¢ ¢t-1 = E(zit4¢|P;-1) is the conditional expectation of z; ;4 given
P:_,. Thus, for each Kronecker index d;, there exists a linear relationship among
the forecasts in Fy;_y = E(F|P;—1). Since d; is the smallest integer for (2.12)
to hold, one can interpret d; as the number of forecasts alt=1s e+ y Zjthd;—1|t—1
needed to compute all the forecasts Zjt4+¢jt—1 for any £. Of course, to compute
Zj t4+¢|¢t-1, one also needs forecasts Z; t4o|t-1 With ¢ # j. However, these quantities
are taken care of by the Kronecker index d; with ¢ # j. In view of this, the
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McMillan degree m is the minimum number of quantities needed to compute all
of the elements in F;j;_; and the Kronecker index d; is the minimum number of
those quantities that the component z;; must contribute. This is the approach
used by Akaike (1976) in determining the ARMA structure. See also Tsay (1989).

2.3. An ARMA representation

By the stationarity of z;, (2.11) can be rewritten as

—1min{d;+1,d;} k min{d;,d;} )
RS DS DI RFREIS S St P
i=1 =37 v=1
’ .
=ajt + Z a(di)+1','ai,t + Zu?)at_;, (213)
(i<i)N(d; +1<d;) i=1

where the number of coefficients afﬁ in the left hand side is §; given by (2.5)

and the number of elements of qu Vs in the right hand side is d; x k.
Next, for the Kronecker indices K = {d;}, by considering the equation (2.13)
jointly for j =1,... ,k, we have an ARMA model for the process z;

P P
Soze + ) Zozi—y = Boar + ) Quaiy, (2:14)

v=1

where p = max;{d;}, Zo is a lower triangular matrix, the (j,i)th element of
which, where ¢ < j, is unknown only if d; + 1 < d;, and the coefficient matrices
E, and £, are specified by (2.13). More specifically, we have the following:

1. For 2, with v > 0: (a) the jth row is zero if d; < v < p; (b) all the other
rows are unknown.

2. For E, with v > 0: (a) the jth row is zero if d; < v < p; (b) the (j5,5)th
element is unknown if v < dj; and (c) the (j,¢)th element with j # ¢ is
unknown only if d; + v > d;.

The preceding equation gives rise to an ARMA representation for z;, the jth
row of which contains §; unknown parameters in the AR polynomials and k x d;
unknown parameters in the MA polynomials, where §; is defined in (2.5). In sum,
for a linear, time-invariant process z; of (1.1) with Kronecker indices K = {d;}
such that m = 2] _1d; < o0, one can specify an ARMA representation to
describe the process. Such a representation is given by (2.14) which contains

k
N=m(1+k)+ Z[me{d,- +1,d} + Emin{dj,d,-}] (2.15)

j=1%i<i ]
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unknown parameters in the AR and MA matrix polynomials.

¢

2.4. An illustrative example

To better understand the preceding results, let us consider a simple example.
Suppose that z; is 3-dimensional with Kronecker indices K = {d; = 3,1,2 for
7 =1,2,3, respectively}. Here the fundamental basis of the corresponding Hankel
matrix H, defined in (2.3) is

B = {h(1,1), h(2,1),h(3,1); h(1,2); h(1,3), h(2,3)},

the three equations in (2.13) are

3 2 3
1 1 1 1
71t + 205,321,t+u—4 + ag,gzz,t—a + Zas,,:);z&t-{-v—-ai =at+ ZUE )at—i
v=1 v=1 i=1
(2) (2)

2
(2) (2) —
Z2,t + Qy121t4v-2 + @) 3221 + @y 32341 = G2t + U} @i
v=1

3 2 2
3 3 3 3
z3t+ z ai’}zl,t-{-u-—I& + a(l,gzz,t-z + Zaf,,;);zzs,tq-v—a =as;:+ Zﬂf )at—i

v=1 v=1 i=1

and the corresponding ARMA representation of (2.14) is

1 0 0 X 0 0 X 0 X X X X
X 1 0fz+ (X X X{z94+] 0 0 0fze24|0 0 0} 25
X 01 X 0 X X X X 0 0 O

3
=Eoa: + Z Qyai_y,
v=1
where “X” denotes an unknown parameter, £; is a full matrix, the second row
of £2; is zero, the second and the third rows of Q23 are zero, and all the other rows

of §2; and €23 are unknown resulting in a total number of unknown parameters
N=6x(1+3)+10=34.

2.5. The Echelon form

In what follows, we discuss some further information concerning the ARMA
representation (2.14) of z;. This provides a canonical form for the process z;.

Degree of the individual polynomial. Let A;,(B) be the (4, v)th element of
the matrix polynomial A(B). Then, the degree of each individual polynomial of
E(B) = Eo + Y7, ZiB* of (2.14) is that deg[Z;,(B)] = d; forall v = 1,... ,k.
In other words, the Kronecker index d; is the degree of all the polynomials in
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the jth row of E(B). The same result holds for the individual polynomials in
Q(B). We remark that d; is the maximum order of =;,(B) and Q;,(B). The
actual order might be smaller after further estimation or analysis.

Number of unknown coefficients of the individual polynomial. Let n;,
be the number of unknown coefficients of =;,(B) in E(B) of (2.14). Then, from
the structure of Z(B), we have

{ min{d;,d,} ifj<w
jv =

2.16
min{d; + 1,d,} ifj>v. (2.16)

Similarly, let m;, be the number of unknown coefficients of the (j,v)th polyno-
mial in Q(B) = Y.7_, Q,B" of (2.14), where Q¢ = . Then, we have

v=0

{ d; ifj<wv (2.17)
m;y = .
v min{d; + 1,d,} if j > v.

Form of the individual polynomial. Denote by A(J'z the (j,v)th element
of the matrix A;. From the degree and the number of unknown coefficients of
each individual polynomial, one can easily specify the form of each individual
polynomial in E(B) of (2.14). More specifically, we have

d;
Zii(B) =1+ =B for j=1,...,k (2.18)
=1
d; )
EnB)= Y. ENBf j#v, (2.19)
i=dj—'n_,-.,+1

where nj, is defined in (2.16). For the polynomials in §2(B), the result is as
follows:

d;
Q;i(B)=1+> QB for j=1,... .k (2.20)
=1
d; .
Qi (B)= Y, QOB if j#u, (2.21)
i=d,——m,~.,+1

where mj, is defined in (2.17).

The preceding results show that, for a linear time-invariant process z;, the
Kronecker indices K = {d;|j = 1,... ,k} specify an ARMA representation (2.14)
for z;. This ARMA specification is complete in the sense that (a) all the unknown
parameters in the AR and MA matrix polynomials are identified and (b) each
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individual polynomial is specifically given. In the literature, this ARMA repre-
sentation is called a (reversed) Echelon form (see Deistler (1985) and Hannan
and Deistler (1988)) and has the following nice properties:

Theorem 2. Suppose that z; is a k-dimensional linear, time-invariant process of
(1.1) with Kronecker indices K = {d;|j = 1,... ,k} such that m = 2;?:1 d; < 0.
Then, z; follows the vector ARMA model (2.14) with Z(B) and 2(B) specified by
(2.16)-(2.21). Furthermore, Z(B) and Q(B) are left coprime, and deg[|Z(B)|] +
degl|(B)]] < 2m.

2.6. The example continued

For the 3-dimensional example of Subsection 2.4, the number of unknown
coefficients in the individual polynomials is as follows:

3 1 2 3 3 3
[niu]=12 1 1 and [my]=12 1 1].
3 1 2 3 2 2

Since ¢ = 2o, the total number of unknown coefficients N of (2.15) is different
from the sum of all nj, and mj,, as the latter counts the unknown coefficients
in Eg twice.

3. The Scalar-Component Approach

3.1. Scalar component models

In Tiao and Tsay (1989), an alternative approach to specifying the structure
of a vector ARMA model was introduced. This approach attempts to generalize
the model-structure of each component 2;; in (1.3) to obtain simplifying struc-
tures of the system so that a simple vector ARMA model can be identified. It
makes use of the idea that certain linear combinations of z; might shed some
light on the skeleton of a given vetor ARMA model.

Let Ag') be the jth row of the matrix A;. The vector ARMA model (1.3)
says that, for the first component z;; of z;, there exist p k-dimensional row
vectors (I>(11), e ,<I>(1p ) such that the process

»
i
U = 21¢ — E <I>(1 Y2e s

i=1

is uncorrelated with a;_; for j > ¢, because uy¢ can also be written as

q o
Uyt = Qyg — E®§')at_.'-

=1
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This description, however, may fail to pinpoint the actual structure of zy¢, for
the values of p and ¢ may be too large. Motivated by such a consideration, Tiao
and Tsay (1989) define a scalar component model (SCM) of order (r,8) of z; as
follows:

Definition 2. Suppose that z; is a linear, time-invariant process of (1.1) with
W(B) rational. A non-zero linear combination of Z¢, denoted by y; = vjz, is a
scalar component of order (r, s) if there exist r k-dimensional vectors Vlyeeo ,Or
such that (a) v, # 0 if r > 0; (b) the scalar process

,
U = Y + szzt_; satisfies FE(a;_ju;)

=1

{=0 ifj>s
#0 ifj=s.

In other words, y; = vg2; is an SCM of order (r,s) of z; if the (transformed)
scalar process u; is uncorrelated with the past vector P,_ j for each j > s, but
correlated with P;_,. Obviously, the requirements of E(at—,ut) # 0 and v, # 0
if r > 0 are used to reduce the order (r,s). We shall refer to y; as an SCM(r, s)
of Zt.

By substituting (1.1) for z;_, and collecting the coefficient vectors of a;_;,
we can alternatively write

s
Uy = v{,at + E hzat_,-, (3.1)

i=1

where h, # 0. Thus, an SCM of order (r, 8) implies that there exists a non-zero
linear combination of z;,... ,2z;_, which is also a linear function of Qty... ,Qy_s.
With this interpretation and (2.11), it is seen that a Kronecker index d; of z,
implies the existence of an SCM(d;, d;) of z;.

Note that y; being an SCM of order (r,s) does not necessarily imply that
y: follows a univariate ARMA(r, s) model. The SCM model is a concept within
the vector framework and it uses all the components of z; in describing a model.
One should interpret an SCM from the vector framework. On the other hand, a
univariate ARMA model of y; only depends on the history of y;, i.e. y;_ j with
71>0.

From the definition, the order (r, s) of an SCM y; is not unique. For example,
multiplying u;,, with m > 0 by a non-zero constant d, then adding it to u;, we
obtain, from (3.1), a new scalar process

] 8
] ! [} !
uy = ug + dug_p, = vyay + E hea:_¢+ d(‘voat—m + E htat—m-—-l) ’
=1 =1
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which is uncorrelated with a;_; for j > s+ m. This type of redundancies should
be eliminated, so we define an SCM of minimal order as follows:

Definition 3. Suppose that y; is an SCM(r, s) of z:. The order (r, s) is minimal
if the sum r + s is as small as possible.

Even with the minimal order requirement, the order of a given SCM is still
not unique. For example, suppose that z; follows a bivariate AR(1) or MA(1)
model

Z: — 00 21 = A <= Z; = Qs — 0 0 a;_i.
2 0 -2 0

Then, it is easily seen that the second component 23, is an SCM of order (1,0) or
(0,1). Here both of the orders are minimal. In general, however, the sum 7 + s is
fixed when the order (7, s) is minimal. This sum has a special meaning which we
shall discuss shortly. For further properties of SCM’s, see Tiao and Tsay (1989).

3.2. Model specification via scalar component models

Suppose that y;; = vgi)lzt is an SCM(p;,q;) of z;, where ¢ = 1,...,k.
We say that these k& SCM’s are linearly independent if the k x k matrix
T' = [vf)l),... ,'v((,k)] is non-singular. Then, a vector ARMA model for z; is
specified once k linearly independent SCM’s are found. From the Definition
2, for each y;; there exist p; k-dimensional vectors v(l'), ces ,vg,'..) such that the
scalar process u;; = fizo vgi),zt_g is uncorrelated with a;_; for j > ¢;. Let
us = (s, .. ,uke), r = max{p;}, and s = max{g;}. We have

r
u =Tz + Y Geziy, (3.2)
=1

where G = {vgl),. .. ,vgk)] with vg'.) = 0 for p; < £ < r. Furthermore, from
(3.1), u; can also be written as

s
us = Ta; + E Ha;_,, (3.3)
=1
where Hy is a k X k matrix whose ith row is zero if ¢; < £ < s. Combining (3.2)
and (3.3), it is seen that a vector ARMA(r, s) model with detailed row structure

of the coefficient matrices is specified for the transformed process y, = Tz;. More
specifically, we have

th + ZG[Zt_l = Tat + Z Hgat..[ (3.4)
=1 =1
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such that
1. the ith row of G is zero if p; < £ < r,
2. the ith row of H, is zero if ¢; < £ < s, and
3. some further reduction in parameterization is possible under certain circum-
stances.
The last result is due to certain redundant parameters between AR and MA
components in (3.4), which we shall discuss in the next subsection. From (3.4),
a vector ARMA(r, s) model for z; is obtained.
Notice that by inserting T~ 17T in the front of z;_,’s and a;_;’s in (3.4), one
obtains a vector ARMA(r, s) model for the transformed process y,

I-AB—----—A,B")yy,=(I-A;B—-.--—-A,B%)b,, 3.5
t

where b; = Ta; and the coefficient matrices A; and A; have the same row-
structure as those of G; and Hj, respectively, fori =1,...,rand j = 1,...,s.
From this model, it is clear that the order (p;, ;) of an SCM signifies that one
needs p; + ¢; unknown rows to describe the structure of y;; in the vector ARMA
model (3.5) of y,. Here by an “unknown” row we mean that its parameters
require estimation. This terminology is used in contrast with the other rows
that are known to be zero. The requirement that the order (p;,q;) be minimal
in Definition 3 becomes evident.

Next, to achieve the greatest reduction in parameterization (i.e., to have
as small as possible unknown parameters), the requirement of each SCM being
of minimal order is still insufficient. One also needs the condition that the &
linearly independent SCM’s used jointly have the lowest possible orders among
all plausible sets of k linearly independent SCM’s of the system. To describe
this, let 0; = p; + ¢; be the number of unknown rows corresponding to the SCM
¥it and define

k k
NR(y,) = Zoi = Z(P.’ + ¢) (3.6)

i=1

as the total number of unknown rows in the ARMA model (3.5).

Definition 4. For the vector linear process z; of (1.1), suppose that {y;;}*_, and
{y%}E_, are two sets of k linearly independent SCM’s of orders {(piyq:)}r, and
{(p}, i)}y, respectively. Let y, = (yat,- .. ,uke) and 9y} = (y5, .- ,yL;)'s and
define the total numbers of unknown rows in ARMA representations of NR(y;)
and NR(y;) by (3.6). Then, we say that (a) y, is at least as parsimonious in row
as y; if NR(y,) < NR(y;), and (b) y, is more parsimonious in row than y if
NR(y,) < NR(y7). Further, y, is referred to as a parsimonious set of SCM’s if no
other set of k linearly independent SCM’s is more parsimonious in row than y,.
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Notice that the term ‘parsimony’ is associated with the number of unknown
rows. This, of course, is different from parsimony in parameterization, even
though the two concepts are highly related. Obviously, only parsimonious sets
of SCM’s are of main interest in practical model building.

3.3 Redundant parameters

In this subsection, we consider the possible redundant parameters in the vec-
tor ARMA representation of (3.5) and discuss a method that can easily identify
such parameters when they exist. It is worth mentioning that redundant param-
eters can occur even without overspecifying the overall order (r,s) of (3.5).

Suppose that the orders (p;,¢:) of the first two SCM’s y;: and yo; satisfy
P2 > p1 and g2 > q;. In this case, we can write the model structure for y;; and
Y2t as

Yit — {ASI)B+ e ASp-')Bp.'}yt = by — {ASI)B 4ot qu‘)Bq‘}bt, (3.7

where ¢ = 1,2 and A!” and A{") are the ith rows of the matrices A, and A.,
respectively. Now for i = 2 we see from (3.7) that yy, is related to ¥ ¢-1,... ,
Y1,t—p2 and bl,t—l, L) 7b1,t-q2 via

(A B+ + AZI By — (A B+ + AP By, (3.8)

where AS;-') denotes the (¢,7)th element of the matrix A,. Since, by (3.7) with
i=1,

Bl(ylt ~b1t) = {Agl)B + -4 A(lpl)Bpl}yt_[
—{APB+- + A B, (3.9)

it is clear that if all the y’s and the b’s on the right hand side of (3.9) are in the
component model for y¢, then either the coefficient of y;,;_, or that of by ¢ is
redundant given that the other is in the model. Therefore, if p, > p; and ¢; > qi,
then for each pair of parameters (Ag‘l), Ag‘l)) in (3.7),£=1,... ,min{p; — p1,q2 —
¢1}, only one of them is needed.

The preceding method of spotting redundant parameters in a vector ARMA
model of (3.5) is referred to as the rule of elimination in Tiao and Tsay (1989). In
general, by considering an ARMA model constructed from SCM’s and applying
the rule of elimination in a pairwise fashion, all redundant AR or MA parameters
can be eliminated. For instance, let 7; be the number of redundant parameters
of the model structure for y;; in (3.5). By applying the rule of elimination to
each pair of SCM’s, we obtain
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k ©
ni =Y max[0,min{p; - py, ¢ — g}]. (3.10)

v=1

Consequently, the total number of unknown parameters in the coefficient matrices

of (3.5) is
k k
PokxYmita) -3 n (3.11)
i=1 i=1
which can be much smaller than k2(r + s).

3.4. A canonical form for ARMA representation

The results of the preceding subsections outline the SCM approach to spec-
ifying a vector ARMA model. However, the condition that the k linearly in-
dependent SCM(p;, ¢;) ¥it are jointly the most parsimonious ones in number of
unknown rows does not necessarily imply a unique ARMA representation for
z;. For instance, there is the possibility of fixing the redundant parameters in
various ways. Thus, to select a “canonical” ARMA representation for z; via the
SCM approach, some further considerations are needed.

Since the transformation matrix T between z; and y, is non-singular, Rank
(H3) = Rank(H), where H} is the corresponding Hankel matrix of the
process y;. Thus, the transformed process y, has the same McMillan degree as
the observed process z;. With this in mind, it seems appropriate to select an
ARMA model for y, that directly reflects this McMillan degree. From the ith
row of (3.5) and taking conditional expectation with respect to P;_; of (2.6),we
have

3
yi,t-{-llt—l - E Agu)yt-}l—u]t—l =0 if¢ Z Si, (312)
v=1

where s; = max{p;,¢;}. This shows that, to compute the forecasts Yit4)t-1
for all £, one needs y; sjt_1,--- »¥Yit4s—1jt—1- In view of this, it is reasonable to
require that s; to be as small as possible. For the k linearly independent SCM’s
Yit, let

k
s(y) = > max{p,q} with  y,= (..., 0k).  (3.13)
i=1

Then, define a canonical SCM representation for z; of (1.1) as follows:

Definition 5. Suppose that z, is a linear, time-invariant process of (1.1) with
W(B) rational. The ARMA(r,s) model (3.5) for y, is called a canonical SCM
representation for z; if (a) y, is a parsimonious set of SCM’s according to the
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Definition 4, (b) the quantity s(y,) of (3.13) is not greater than that of any other
set of k linearly independent SCM’s of z;, and (c) all the redundant parameters in
the moving average matrix polynomial A(B) of (3.5), as discussed in Subsection
3.3, have been set to zero.

The first condition of the above definition ensures that the first term on
the right hand side of (3.11) is as small as possible whereas the last condition
eliminates any redundancy in parameterization, i.e. maximizing the second term
in the right hand side of (3.11). The second condition is imposed so that s(y,)
of (3.13) is as small as possible. From the previous discussion, the minimum of
3(y;), as a function of all possible y,, is the McMillan degree of z;. The third
condition is feasible because the SCM approach provides a simple way to identify
redundant parameters (see Subsection 3.3). However, this condition appears to
be rather arbitrary; one can require instead that all the redundant parameters in
the AR polynomials be zero. From the definition, a canonical SCM representation
requires that (a) the number of unknown rows be minimum and (b) the orders
max{p;,q;} of SCM’s used be as small as possible.

By (3.5) and the results concerning redundant parameters, the total number
of unknown parameters of a canonical SCM representation of z; is given by (3.11).
This parameter enumeration does not consider those in the transformation matrix
T of (3.4). For a k-dimensional process, T may contain as many as k(k — 1)
parameters upon normalization. In some cases, T' can be reduced to an upper
triangular matrix without changing the row-structure of the specified ARMA
model. For instance, suppose that k = 2, (p1,q1) = (1,0) and (p2,¢2) = (1,1).
Then, the model specified by SCM approach for the original process z; is

X X 0 0
th - [X X] th—l = Tat - [X X] Tat_l, (314)
where T ' = [v((,l),vgz)]. By rearranging the order of the components of z; if

necessary, we may assume that the first element of v(()l) is nonzero. Let G be a
lower triangular 2 X 2 matrix with unity on the diagonal and its (2,1)th element
the negative of the first element of vg") divided by that of vgl). Pre-multiplying
(3.14) by G and inserting G™'G in the front of Tz;—; and Ta;_y, we have

X X
X X

0 0

Tlt—[ X X

T*Zt_l = T"at - [ ] T'a,_l, (315)
where T'* = GT'is an upper triangular matrix. Thus, in this particular instance,
one can make the transformation matrix upper triangular without changing the
row-structure of the ARMA model of the transformed process. Furthermore,

from (3.15), the orders of two SCM’s are not altered. In general, whenever the
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orders of any two SCM’s are nested, namely p; < p; and ¢; < g;, one can sim-
plify the transformation matrix T, by eliminating a non-zero parameter, without
altering the row-structure of SCM specification. More specifically, suppose that
the orders of SCM’s y, of z; are (p;,¢;) for i = 1,... ,k. Then, to obtain fur-
ther simplification in the transformation matrix T, one can simply examine the
(:) pairs of SCM’s. For any nested pair, by using the technique illustrated in
(3.14)-(3.15), one can identify a zero parameter of T. Mathematically, the total
number of zero parameters identified by such a procedure is

k-1 &

=YY Ind(min{p; - pi,g; — &} 2 0),
=1 j=i4l

where Ind(-) is an indicator operator which assumes the value 1 if its argument

is true and the value 0, otherwise.

3.5. An illustration

Suppose that the observed process z; follows a 4-dimensional ARMA(2,1)
model that contains 4 SCM’s of orders (0,0), (0,1), (1,0) and (2,1), and these
orders are the most parsimonious ones. Then, the above results show that the
transformed process y, = Tz; follows an ARMA(2,1) model with coefficient
matrices A;,A; and A; given by

"0 0 0 0 0 0 0 0
o 0 o0 o 0 0 0 0
Ar=|xy x x x|° ®=|o 0 0 of"
X X X X. X X X X
00 0 01
X X X X
A= |E XXX (3.16)
0 X 0 XJ

where 0 denotes a zero parameter and X denotes an unknown parameter. In
(3.16) the (4,1) and the (4,3) elements of A; are set to zero, because by applying
the rule of elimination they are redundant once the (4,1) and the (4,3) elements
of A; are in the model. Consequently, in this particular instance modeling the
transformed series y, would involve 18 parameters in the coefficient matrices
instead of 48, a saving of some 30 parameters in estimation. The reduction could
be even more substantial when the dimension k is relatively large. In view of the
possibility of high correlations among the unconstrained 48 parameter estimates,
the reduction could drastically simplify the complexity in estimation.

3.6. Some properties of SCM model representation
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We briefly mention in this subsection some properties of a canonical SCM
representation. ‘

Theorem 3. For a k-dimensional linear, time-invariant process z; of (1.1),
suppose that {yi:} is a parsimonious set of k linearly independent SCM ’s of order
(iyqi). Then the autoregressive and the moving average matriz polynomials,
A(B) and A(B), of (35) are left coprime. Furthermore, deg[|A(B)|] < Efﬂ P
and deg[|A(B)|] < 3°., ¢:-

Theorem 4. Suppose that z; is a linear, time-invariant process of (1.1) with
¥(B) rational. Then (i) there ezists a canonical SCM representation for z;; (ii)
any two canonical SCM representations of z; are related by a unimodular matriz.

A proof of Theorem 3 is given in the Appendix. Part (i) of Theorem 4
follows directly the modeling procedure of Tiao and Tsay (1989) with (i) a minor
modification in the searching path to ensure that the requirement max{p;,q;}
be minimal is satisfied, and (ii) the sample autocovariances be replaced by the
theoretical autocovariances of the process 2;. Part (ii) of Theorem 4 follows from
Theorem 2.2.1 of Hannan and Deistler (1988) and Theorem 3 above.

Some remarks are in order. First, the transformation matrix T discussed so
far is based on the theoretical autocovariance matrices of z;. In practice, sample
autocovariances are used, and hence T may be data-dependent. Second, since
autocovariances of z; are determined by the W(B) matrix polynomial of (1.1),
any transfer function satisfying [®(B)]"1©(B) = ¥(B) would give rise to the
same canonical SCM representation.

4. Some Relationships

Based on the results of Kronecker indices and orders of SCM, we now discuss
some relationships between them. Again, let K = {d;|j = 1,...,k} be the set
of Kronecker indices of z;, and y;; be an SCM(p;,q;) of z; such that {y;|i =
1,...,k} jointly give rise to a canonical SCM representation for z;.

By (2.11), each Kronecker index d; introduces an SCM for z;, and the v
vector of which is the u((,j) defined in (2.9). Furthermore, this SCM has an
order (p},q;) such that p; < d; and gj < d;. However, since d; is the smallest
nonnegative integer for (2.11) to hold, it follows that we have either p; =dj or
q; = dj, or both. In other words, at least one of the AR or MA order of the SCM
introduced by the Kronecker index d; is equal to d;. Thus, max{p},q}'} = d;.
Consequently, corresponding to the Kronecker indices K = {d;}, there exists a
set of k linearly independent SCM(p},q}) such that K = {max[p},¢;]}. Since

2;.—_1 d; = Z.’;:l max{p},q;} = m, the McMillan degree of 2, it is seen that for
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a given linear time-invariant process z:, one can find at least a set of k linearly
independent SCM’s that achieves the minimum of the quantity s(y,) defined in
(3.13).

On the other hand, consider the SCM(p;,q;) yit of z;. Define s; =
max{p;,¢;}. By (3.12), one needs the s; quantities y; st—1,- .. , ¥i t4s5-1]t-1 1O
compute all the forecasts y; ;4¢t—1 for any £. Thus, for model (3.5), the total
number of quantities needed in order to compute all of the elements of Fyi_y is
s = Efﬂ 8;. Since y, and z; have the same McMillan degree, we have m < s
for y,. However, since y, is canonical, m = s; otherwise, the second condition of
Definition 5 is violated.

Next, we briefly explain that the two sets K = {d;} and § = {s;} are
equivalent. Without loss of generality, assume that the k¥ SCM’s have been
rearranged so that s; < 83 < --+ < 8. In other words, rearrange the SCM’s
according to increasing order of s; = max{p;,¢;}. Denote the associated vectors
of yit’s by 'v?) for £ = 0,...,pi; ¢ = 1,...,k. By Definition 2 and Equation
(3.1), we have

3 ' Y 3 1Y
'vf,') z + E 'vg') 2y = vf,’) a; + E hg’) a;i_g, (4.1)
£=1 =1

where vgi) =0if £ > p; and h([i) = 0if £ > ¢i. Consider ¢ = 1 and denote

by 71 the index of the last non-zero element of 17((,1). Then, by comparing (4.1)
for i = 1 with (2.13), (4.1) implies that the j;th Kronecker index of z; satisfies
d;, < s1. Suppose that dj < s;. Then, by the result stated in the second
paragraph of this subsection, there exists an SCM with order (p},>4j,) such that
dj, = max{p} ,q},}. Denote by ug the vector associated with this SCM. If g
is linearly independent of 'vf,j ) for j > 1, then by replacing vf,l) with ug, we
obtain a new set of k linearly independent SCM’s, say y;, such that s(y}) =
d;, + 2;;2 8; < m, which is impossible as m is the McMillan degree of z;. If ug
is linearly dependent of vf,j ) for j > 1, then by replacing one of the 'o((,j )s with
J > 1 by up, we again obtain a set of k linearly independent SCM’s, say 2}, such
that s(z}) < m, resulting in yet another contradiction. Consequently, d;, = s;.

Consider next (4.1) with ¢ = 2. Since s; < s3, we may replace zj, ; in vf,z)'zt
by (4.1) with i = 1 and obtain the following equation:

382 32
wy) z: + ngz) Zi_g = wgz) a;: + Zgﬁ” aiq, (4.2)
£=1 =1

where wgz) # 0 but its j;th element is zero. The result of wy) is possible,
because the £k SCM’s are linearly independent. Denote by j; the index of the
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last non-zero element of w(z) Again, compared with (2.11), (4.2) implies that
the j,th Kronecker index of z; satisfies dj, < s3. If dj, < 32, then there exists an
SCM of order (p},,q;,) with d;, = max{p},,q},}. Denote by u (2) the vector that
produces this new SCM. From the result stated in the second paragraph of this
subsection, the j;th element of u(() ) is unity. Also, since j; # ji, it follows that

( ) is linearly independent of v( ) Now, if u( ) | )

for j > 2, then the k vectors vg ),'u.f) ), and 17(’ )’s for J > 2 give rise to a set of

k linearly independent SCM’s, say y}, such that s(y;) < m, a contradiction. If
( ) is linearly dependent of 'v(’ »s with J > 2, then one can use uf) )
of one of vg’ )5 with J > 2 and obtains a set of k linearly independent SCM’s, say
¢, such that s(z;) < m, which again results in a contradiction. Thus, d;, = s,.
By repeating the same exercise, we obtain that, for each 8i, there exists a
Kronecker index dj; of z; such that dj;; = s;. Since the vectors vf,') ’s are linearly
independent, the set {j;|i = 1,...,k} is the same as {i]i = 1,...,k}. Conse-
quently, we have K = {d;} = {d;,} where d;, = s; if the SCM’s y;; corresponds
to a canonical SCM representation for z;. This establishes a relationship between
Kronecker indices and the orders of SCM’s in a canonical SCM representation:

is linearly independent of v;

in the place

Theorem 5. Suppose that z, is a linear, time-invariant process of (1.1) with

Kronecker indices K = {d;} such that m = Z =1 d; < oo. Suppose also that
= (Y1t,--- »Ykt)', where y;; is an SCM(p;, ¢;), corresponds to a canonical SCM

representatzon of z;. Then, the set K is equivalent to the set {max[p;,¢;]} and ,

hence, m = E,_.l max{p;, ¢}

5. Discussions

In this section, we point out some differences between the Kronecker index
and the scalar-component model (SCM) approaches to specifying the ARMA
structure of a linear, time-invariant process z;. First of all, the Kronecker index
approach specifies an Echelon form directly for z;. On the other hand, the SCM
approach identifies an ARMA model for a transformed process y,. Of course,
an ARMA(p, ¢) model for 2; can be obtained from that for y, by a simple linear
transformation, but the resulting model for z; may not be in a simple form.
Also, there are situations in which one may prefer to have a direct model for z;.
One can argue, however, that the transformed process y, could be substantively
meaningful in some cases. Thus, the choice between modelling z; or y, appears
to be problem-dependent.

In terms of parameterization, Equations (2.15) and (3.11) give respectively
the numbers of unknown parameters in an Echelon form for 2z; and in a canonical
SCM representation for 2z, i.e., a vector ARMA model for y,. Two extreme cases
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may occur. The first extreme case is ¢; = 0 or p; = 0 for all ¥ SCM’s. In this
case, (3.11) reduces to P = ks which is smaller than the result of (2.15). The
second extreme case is p; = ¢; = d for all K SCM’s. Here (3.11) becomes P = 2ks
which is exactly the same as N of (2.15). Of course, in the later case, there is no
need to do the transformation in the SCM approach, because the transformation
fails to produce any simplification in parameterization.

Another point that is worth mentioning is that the SCM approach requires
specification of 2k integer-valued parameters, namely p; and ¢;, whereas the
Kronecker index approach only needs k integer-valued parameters. In this regard,
one may treat the SCM approach as a refinement over the Kronecker indices so
that the AR and the MA orders of each scalar component can be separated.
This refinement can sometimes produce further simplification in the number of
real-valued parameters in the matrix polynomials.

Appendix: A Proof of Theorem 3
Proof. Write the vector ARMA model of y, by
A(B)y, = A(B)b:. (A1)

If A(B) and A(B) are not left coprime, then there exists a matrix polynomial
L(B) such that (a) deg[det L(B)] > 0 and (b) A(B) = L(B)A*(B) and A(B) =
L(B)A*(B). Since deg[det L(B)] > 0, by the Smith Form, we can write

L(B) = U(B)S(B)V(B), (A.2)
where U(B) and V[B) are unimodular matrix polynomials and
Z(B) = Diag{a1(B),... ,ax(B)}

such that a;(B) divides a;41(B) for i = 1,... ,k — 1. Obviously, deg[a,(B)] > 0
for some £; otherwise, deg[det L(B)] = 0, a contradiction.
Now from (A.1) and (A.2) and by cancelling U(B), we have

E(B)VIB)A™(B)y, = E(B)V(B)A™(B)b:. (A-3)

Let (pf,q;7) be the maximum orders of the AR and MA polynomials in the
ith row of (A.3). Then, Equation (A.3) says that there exists an alternative
ARMA representation for the linear system y, (or equivalently z;), and this
representation consists of k linearly independent SCM’s of orders (p}, ¢}). From
the cancellation of U(B), we have Y5, (p? + ¢f) < 35, (pi + ¢:)- On the other
hand, by the condition of the theorem, Efﬂ(p,- +¢) < Ele(p;" +¢q}). Thus the
ARMA representations (A.3) and (A.1) have the same number of nonzero rows.
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Next, write M(B) = V(B)A*(B) and N(B) = VB)A*(B) and let A;;(B)
be the (¢, 5)th element of the matrix polynomial A(B). From (A.3), since Z(B)
is diagonal, we have

Pi = deglai(B)] + max{deg[M;;(B)]}, (A4)
¢; = deglai(B)] + max{deg[N;;(B)]}- (A.5)

However, from (A.3), we also have
M(B)y, = N(B)b,. (A-6)

This model says that we can find a set of k linearly independent SCM’s of orders
(7, 8i) where r; = max;{deg[M;;(B)]} and s; = max;{deg[N;;(B)]}. From (A.4)
and (A.5), we have

ri+8; <p; +¢q foralli.

Furthermore, for any ¢ with dega,(B)] > 0, we have r, + s; < p; + ¢;. Since
there exists at least one such £, we have

k k k
Drits)< D (0r+a}) =D (v +a),
=1 =1 =1

implying that the set of newly found SCM’s is more parsimonious in row than
{vit}. This contradicts the condition of the theorem. Finally, the results con-
cerning degrees of the determinantal polynomials are easy to obtain, and the
proof is complete.
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