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CROSS-VALIDATORY CHOICE OF WEIGHTS
FOR COMBINING INTRABLOCK
AND INTERBLOCK ESTIMATES
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Abstract: A cross-validatory choice of weights for combining intrablock and in-
terblock estimates of treatments in a Balanced Incomplete Block (B.I.B.) design
only was proposed by Jensen and Stone. In this paper, this method is extended to
any incomplete block design. The weights for a B.I.B. design are expressed in terms
of the sums of squares in the analysis of variance of the B.I.B. design. This has
enabled us to compare this method to other methods in the literature and establish
properties such as unbiasedness and uniform betterness of the combined estimates.
The weights for a regular Group Divisible design are also provided.
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1. Introduction

Ifin an incomplete block design, the block effects are assumed to be random,
the Best Linear Unbiased Estimate (BLUE) of an estimate treatment contrast is
expressible as a weighted sum of two independent estimates (independent under
the random block effects model), one based on Adjusted Treatment totals (called
the intra-block estimate) and the other based on Block totals only (called the
inter-block estimate). The weights are, of course, proportional to the reciprocals
of the variances of these estimates; however, these true weights are unknown.
There is a considerable literature on estimation and choice of these weights (see,
e.g., Yates (1940), Graybill and Deal (1959), Seshadri (1963), Shah (1964), Stein
(1966), Brown and Cohen (1974), C. R. Rao (1947), Khatri and Shah (1974)).
Jensen and Stone (1976) have suggested a different approach based on cross-
validation for this purpgse. Stone’s (1974) cross-validation method, as applied
to this problem, consists in pretending every observation to be missing turn by
turn, estimating it from both the intrablock and interblock models, and finding
out weights to combine these estimates in such a way that the combined estimate
is “close” to the true value. These weights are then used to combine intrablock
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and interblock estimates of any treatment contrast. The reasoning behind this
choice is that, if the weights are good enough for predicting an observation,
they should be good enough for estimating treatment contrasts. Jensen and
Stone (1976) described and illustrated this method only for Balanced Incomplete
Block (B.I.B.) designs. They have not expressed these weights in the customary
fashion, explicitly in terms of the sums of squares of the Analysis of Variance
(ANOVA) table of a B.L.B. design. They have observed some inequality relations
when compared with other choices of weights, but only for very few particular
designs. They have also not established properties such as uniform betterness or
unbiasedness (see Khatri and Shah (1974)). All these shortcomings have been
rectified in this paper and further the method is extended to other incomplete
block designs. The particulars for another special case, a Group Divisible design,
are also given. Our method enables us to prove that the weights are positive and
also to compare them with the weights proposed by others in the literature.

2. Notation

Consider a general binary, proper, equireplicate, connected incomplete block
design with b blocks of k plots each and v treatments each replicated r times.
Let the ith treatment (i = 1,2,... ,¥) occur n;; times (where n;; is only 1 or
0) in the jth block (j = 1,2,...,b). The v X b matrix N of the elements n;; is
the “incidence matrix” of the design. When n;; = 1, y;; will denote the yield
of the ith treatment in the jth block. B; denotes the total of the k yields in
the jth block and 7; denotes the total of the r yields of the ith treatment. The
intrablock model is

¥i; = B + 7i + €5, (2.1)

for all ¢, j with n;; = 1. f; is the effect of the jth block, 7; is the effect of the
ith treatment and ¢;;'s are assumed to be independent normal variables with
zero means and variance o2 (denoted by NI(0,0?)). The B;, 7, o2 are all fixed
unknown parameters. When interblock information is to be recovered, we further

assume the §;'s to be NI(0,0?), independent of the ¢;;'s. The interblock model
leads to

v
E(BJ) = Znuj'ru, .7 = 1a27--- ,b; (22)
u=1
Var(B) = k(o? + ko)1, (2.3)

where E is the expectation operator, Var stands for the variance-covariance ma-
trix of the vector in the parenthesis following it, I,, is the identity matrix of
order m, and B is the column vector of the Bj' 5.




WEIGHTS FOR INTER- AND INTRABLOCK ESTIMATES 235

From standard results in experimental designs, it is well known that the
least squares solutions 7;, 8; corresponding to the intrablock model (2.1) are

F=C-Q, (2.4)

Bi = %(Bj - Zv:nijﬁ), (2.5)
i=1

where

T = the column vector of the 7;’s,

g C=rl, - %NN', (2.6)
C~ = any generalized inverse of C, (2.7

Q=T- %NB, (2.8)

T = vector of the treatment totals 7. (2.9)

Similarly, the least squares solutions 7* corresponding to the interblock model
(2.2) are given by

= (NN')"NB, (2.10)

where (N N')~ is any generalized inverse of NN'. If a treatment contrast I’ 7 is
estimable for both the models, its intrablock and interblock estimates will be I’
and I' 7* respectively and we shall write the combined estimate as

(1-a)l'7+al' . (2.11)
This paper is concerned with the cross-validatory choice for the weight a. The
method consists in pretending y;; to be missing for every ¢ and j, turn by turn,
and predicting it from the models (2.1) and (2.2). If these predicted values are

denoted by w;; (for (2.1)) and w}; (for (2.2)), we determine a such that y;; is
close to the weighted combination

(1 - a)w,-j + aw,?'j, (2.12)
for all 7, 7 and for this we minimize

Z Zni:’(%‘j = (1 - a)w;; — aw};)?, (2.13)
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as suggested by Jensen and Stone (1976). This yields

Y nii(yis — wi) (Wl — wij
o= > ZJ i (¥ij :J)( J _ 'J). (2.14)
i Ej "ij(wij — wij)
To obtain w;; and wj;, we first apply the cross-validatory method to a general
linear model and use those results on (2.1) and (2.2). This is done in the next
section.

3. Cross-Validatory Method for a General Linear Model

Consider the general linear model
y=X0+e, (3.1)

where yis nx 1, X is n X p of rank r, 6 is the p X 1 vector of unknown parameters
and € is the vector of random normal independent errors. The least squares
solution when all the n observations y; in y are available is

0=(X'X)"X'y, (3:2)

where (X'X)~ is any generalized inverse of X’X. Let ! be the ith row of X,
so that

n
X'X =) =z (3.3)
i=1

Let us now pretend that y; is missing and find the predictor of y; from the remain-
ing observations. We can apply the missing plot technique proposed by Yates
originally and later developed by various others (see for example Chakrabarti
(1962) or McKee (1980)). This consists in substituting an algebraic quantity f;
in place of y; and determining it in such a way that the error sum of squares
(s.s.) for (3.1) is minimum. This turns out to be the same as equating f; to the
expected value of y;, namely )0, after replacing 0 by its least squares solution,
when the observation vector is not y but y with y; changed to f;. That is, f; is
a solution of

fi= (X' X)X [y1,. -, ¥ic1y fisWinr,- -+ Un) (3.4)
This yields, after some algebra,

“’2& -z X'X) 2y

fi= 1-2i(X'X) =

i=1,2,...,n. (3.5)
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Actually, this formula can be derived without going through all this algebra by
using the method of Ker-Chau Li (1987). Since y; is not actually missing but
only held back, we have used (3.5) which uses y;, but different forms of f; not
using y; are also available in the missing plot situation. Also, the denominator is
non-zero, in general, and vanishes only when n = p and in that case there is no
unique solution for f; and any value serves the purpose. We shall assume that
n > p. From the literature on missing plot technique, it is known that this f; is
the BLUE of E(y;) and hence is the best predictor of y; in a certain sense. The
least squares solution é(_,-) when y; is deleted is the usual least squares solution
when y; is replaced by f;, given above, in y. This then gives (using (3.2))

9(_,-) =b+(f,' —y,-)(X’X)'z,-, 1=1,2,...,n. (3.6)
We shall now use these results to derive w;; and wj;.
4. Intrablock and Interblock Predictors of Yields

Using (3.5) for the intrablock model (2.1), the intrablock predictor of y;;
(when n;; = 1) comes out to be

wij = (7 + B — pijui) /(1 — pis), (4.1)

where 7;, §; are defined by (2.4), (2.5) and pij is nothing but z{(X'X)~z; of
(3.5) which reduces to

1 1 _ 2 _
pij = 7+ 7 (N'CTN)j5 — £(CTN)ij + (C7)ise (4.2)

Here (C™)i; denotes the (¢,7)th element of C~ and similarly for other matrices.
Using (2.5), (4.1) further simplifies as

k#; — Ni;j7+ Bj — kpijyij
k(1 - pi;) ’

wi; = (43)
where N(;y is the jth column of N.

To find w}; from the interblock model (2.2), we find that the total of the
Jjth block, with the yield y;; assumed to be missing and an algebraic quantity
fij substituted for it, is B3 + fij, where B = Bj — y;; is the total yield of all
the plots in the jth block, excluding y;;. Minimizing the inter-block error sum
of squares with respect to f;;, for the model (2.2), or from (3.5), we find that

N(;j™ — Bj + (1 — m;)y;;

l—mj

fii = , (4.4)
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where m; is given by
mj = sz)(NN')_N(j) (4.5)

and 7* is given by (2.10). From (3.6), the least squares solution for 7 in the
interblock model, when y;; is pretended to be missing, is

T(‘—ij) =7+ (B; + fij - Bj)(NN,)_N(j)' (4.6)

To find the inter-block predictor wj; of y;;, from these results, we observe that,
when n;; = 1,

Yij = Ti + Bj + € (4.7
and Y Y
Bi=(k-1)8i+ > numut Y e (4.8)
u=1,u#t u=1,u#i
Therefore,
1 0 - 1 .
Yi; = Ti + k-1 B7 - Z NujTu | + €ij — k-1 Z €yj
u=1,u#i u=1,u#i (49)
1 v
= ic—_—l{(Bj - ¥i;)+ ki — Znu_,-ru} + error terms. (4.10)
u=1

Hence, if kr; — ber is estimable in the model (2.2) when y;; is deleted, the
interblock predictor of w;; of yij, as used by Jensen and Stone, from all the
observations excluding y;;, is

x 1 . - .
Wi = k-1 {(‘BJ - y‘]) + kTi(—j) - E :nujTu(_j)}- (411)
u=1

On using (4.4), (4.6) and the notation

B} =) nuimiiy (4.12)
u=1
we find, after some algebra, that
(k= Dwj; = krf + (1 — m;)™" (B} — Ni;ym*) [1 — k(NN')"N)i;] = i;. (4.13)

Jensen and Stone did not explicitly state the estimability condition about
kti—3v_; NujTu (Where n;; = 1), when they used this method for some symmet-
ric Balanced Incomplete Designs. (See the correspondence by Kshirsagar (1980)
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and Jensen and Stone (1980) in this connection.) To satisfy the estimability
condition, the vector ‘

h=N;—k0---010---0] (4.14)

(where 1 is in the ith position) must be linearly dependent on all the column
vectors of N, excluding N;). Note that h is orthogonal to Ny, as n;; = 1, and

h'N(;y = Ni; Ny — k
u
= Znuj -k
u

=k—-k
= 0.

When b = v and the rank of N is b, it is obvious that k will be a linear combi-
nation of all the columns of N, excluding N(;). In other cases, it may not be so
and an interblock predictor may not exist. In that case, we include only those
contrasts that are estimable in the interblock model.

For a general design, if we now substitute the values wi; and w]; given
by (4.3) and (4.13), in (2.14), we shall get the value of the weight a. It is a
complicated expression and it is worthwhile doing so only for particular designs

where NN’ and (NN')~ or C~ are known. Such particular cases are considered
in the next sections.

5. B.I.B. Designs

For a B.L.B. design with parameters b,k, v,r, ),
NN'=(r - M1, + AE,,, (5.1)

where E,, is a p X ¢ matrix of unit elements. For this design it is well known

(see for example John (1971)) that the intrablock and interblock least squares
solutions are

.k :
fi= Qi i=12...,9, (52)

and

b b
T‘-‘:r_l-}\ (Zn,’ij—Asz/T), i=1,2,...,’0. (53)
i=1 i=1
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After considerable algebra, it can be shown that for B.I.B. designs, the Jensen
and Stone weight a obtained in the last section can be expressed as

MSE

= 4
* = L,MSE + ;AB + BIE’ (5.4)
where MSE is the error mean square (intrablock) based on
f=bk-b-v+1 (5.5)

degrees of freedom (d.f.), AB stands for the Blocks (adjusted for treatments)
S.S., and IE is the interblock error S.S. given by

v 2
IE = Unadjusted Block S.S. — k (ZQ?,. - g—) , (5.6)
i=1

r—A v

where g = the grand total of all the yields, and

b
1
Qu =+ Zniij»

Jj=1
The constants Iy, I3, I3 are as follows:
==l o Jk (5.7)

b(k— 1)’ T bk-1)(v—-k)

The advantage of the form (5.4) is that one need not calculate the bk intrablock
and bk interblock predictors of the y;;'s for getting a. Also, all the known weights
in the literature are exactly of the same form as (5.4). For a ready comparison of
this Jensen and Stone weight a with others, the values of l1, 13 and I3 are given in
Table 1 for them. (5.4) shows that the weight a is always positive, a fact Jensen
and Stone did not establish.

Since % + kol > o?, it is recommended in the literature that if the estimate
of 0? is found to be negative, it should be truncated at zero. This amounts to
using

. T—A
ar = Mm{a, —;k—} (5.8)
Shah (1971) has shown that this truncation reduces the variance of the

combined estimate for the weights proposed by Graybill and Deal, Seshadri,
Shah and Stein. Applying this truncation condition, we find that ar = a, if

kf ~
MSE < R TR 1)](AB IE). (5.9)
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Table 1. Values of I, I3, I3 for interblock weights for a B.I.B. design
11 12 13
r—k k(k — 1)
Yat
ates or Rao ) R 0
. v(k—1)
Graybill and D 1 —_
raybill and Deal 0 (W= k)b —0)
Seshadri 0 (v— Dk —(v— Dk
(v—-k)(v-3) (v—k}v-3)
Shah 0 k —k
v-—k v—k
Stein 0 k(v—1)(f +2) {—k(v—1)(f+2)
(v—k)v—3)f [ (v—Fk)(v—-3)f
. k(v —1)(f +2) —(f+2)
Khatri and Shah 1
(v=Fk)(b-3)f (b-3)f
(F+2)0+1) | kv —1)(f +2) —(f+2)
Brown and Cohen
fo=3) |j(v—-k)(b-3)f (b-3)f
v—1 kf —kf
d St
Jensen and Stene | L |bE= Do =R | HE=Dw =5
When this condition holds, it can be verified by direct substitution that
Jensen-Stone’s a > Shah’s a > Seshadri’s a > Stein’s a (5.10)
for all B.I.B. designs. If a B.I.B. design is symmetric,
Jensen-Stone’s a > Yates’-Rao’s a = Shah’s a > Seshadri’s a
> Stein’s @ > Khatri-Shah’s a > Brown-Cohen’s a (5.11)

(Graybill-Deal’s a is not defined in this case). Thus the cross-validatory choice
assigns a larger weight to the interblock estimate. Jensen and Stone have ob-
served this for the four particular designs they considered but did not prove this

in general.
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Roy and Shah (1962) have shown that, if (1—a)/a has a particular form, the
combined estimate is unbiased in the random block effects model. The Jensen
and Stone’s a satisfies this requirement.

6. Uniformly Better Estimates
We now prove the following theorem.

Theorem. For a Balanced Incomplete Block Design with parameters (b,v,7,k, X),
the combined intra- and interblock estimates of treatment contrasts, using the
Jensen and Stone weights have a uniformly smaller variance (when blocks are
random) than that of the intrablock estimate alone, if and only if

bk=1) _  2/%v-3)
v=1 = (F+2) (o 1P’ (6.1)

where f = bk — b — v + 1, the degrees of freedom of the intrablock error sum of
squares.

To prove this theorem, consider any v — 1 treatment contrasts £,7 (s =
1,2,...,v— 1) with

£€,=1, £&6=0(s#1), &Ea=0. (6.2)
Further, let
W, = (£,7-€,7)°, (6.3)
where 7, 7* are given by (5.2) and (5.3). Then
W, s=1,2,...,0—1, (6.4)

(ko?[Av) + k(02 + ko2)/(r — A)’

are independent x? variables with 1 d.f. each. Also, the quantity AB—IE occur-
ring in a of (5.4) is

v—1
AB-IE = (rk*)}(r = Mo ) _W,. (6.5)
s=1
The combined estimator of ¢, is
i= (1= Q)7+ afr. (6.6)
Bhattacharya (1980) has shown that j is uniformly better, if and only if
bk —1) . E(y)
e Sy Tl .
o 1 _.211'11}(]3(72) , (6.7)
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where

r—2A o?

‘ 2 2
T N (" +’°"b), (6.8)

(14 T)a*(v—-1)
- b(k-1) ’

(6.9)

and a” is the same as a except that the W, in a is replaced by another W having
the same distribution as W, of (6.4) but with d.f. 3 and not 1. (See also Khatri
and Shah (1974) for this.) Then

1+71)Z,
= 1
1= At mAI+T) (6.10)
where
Z, = (Error $.8.)/a?, (6.11)
v—1
_ . ko?  k(o? + ko?)

e o) (55280 m
m= f2/(v—1)>. (6.13)

Differentiating E(y)/E(?) with respect to T, we get

9 (E()\ _ E(1?) - 2E(r*)E(7)

— = .14
o7 (5) = e TG (619

where it is assumed that the expected values on the right side of (6.14) all
exist and hence the interchange of expectation and derivation is justified.
By Liapounoff’s inequality, therefore, the derivative (6.14) is negative and so
E(7)/E(7?) decreases as T increases. Therefore

E(v) _ ;. E(y) _ E(imy)
By T A% E(yY) - E(im)
_ E(Zy/mZy)  m(v-3)
T E(Zy/mZ)r T f+2

(6.15)

Substituting this in (6.7), the theorem follows. We examined this condition for
all the B.L.B. designs listed by Cochran and Cox (1957), Fisher and Yates (1963),
and Raghavarao (1971) and found out that this condition never holds if v < 5
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Table 2. Designs satisfying (6.15) with 6 < v <9

v b T k A
6 15 4 10 6
7 7 6 6 5
8 14 4 7 3
8 8 7 7 6
9 36 2 8 1
9 18 4 8 3
9 12 6 8 5
9 9 8 8 7
9 18 5 10 5

and always holds if v > 10. For 6 < v < 9, it is satisfied for the above designs
only.

The exact variance of a class of estimates of the form (5.4) has been studied
by Khatri and Shah (1974). Jensen and Stone’s estimate belongs to this class,
but their formula is too complicated for any direct comparison of these variances
analytically.

7. A Regular Group Divisible Design

We now derive the Jensen and Stone weight for a regular Group Divisible
(G.D.) design with m groups of n treatments each. If the v treatments are written
in the order of groups so that the first n treatments belong to the first group, the

next n belong to the second group and so on, it is well known (see for example
John (1971)) that

NN'= (T - AI)Im ® In + (Al - ’\2)Im ® Enn + A2-Emm ® En'm

where @ denotes Kronecker Product. From this and from the intrablock and
interblock least squares solutions # and 7* as given by John (1971), it can be
shown after considerable algebra that, when A; = 0,

ue MSE 1)
MsE 4 T Zu(k = )€ — €7) = (v = )MSE}’ ‘

ro(k - 1)(v-1)

where ¢, (s = 1,2,...,v — 1) are the nonzero eigenvalues of NN’ and &, are
the corresponding unit mutually orthogonal eigenvectors. When )\, # 0, the
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expressions are complicated and are not reproduced here but the interested reader
is referred to Stehouwer (1984). It should be noted that the Jensen and Stone
method gives only one weight for every eigenvector contrast ¢, 7, while Rao’s
or Khatri and Shah’s estimators use different a's for different contrasts. Thus,
Khatri and Shah’s a, in this case is

MSE (7.2)
1 f+2 1 Lo gt '
MSE + E(rk - ¢a)m{IE % Z:‘ﬁs(fs"" T )2}
and Rao’s a, is
MSE (7.3)

kAB — (v — k)MSE "~
v(r—1)

MSE + - (rk — )
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