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ASYMPTOTICALLY EFFICIENT ADAPTIVE
L-ESTIMATORS IN LINEAR MODELS
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Australian National University

Abstract: An asymptotically efficient adaptive L-estimator of the slope in a linear
model is proposed and investigated. The estimator is a one-step L-estimator of the
type discussed by Welsh (1987a,b) with an estimate of the optimal “score” function.
The optimal “score” function is related to the integral of (and hence should be easier
to estimate than) the usual optimal L-estimator weight function. In constructing
the estimator, the data is convolved with a vanishingly small Cauchy contaminant
and then the conditional expectation given the data is taken. The “score” function
can be treated as constant with respect to the conditional expectation. This means
that the conditional expectation can be evaluated explicitly so that calculation of
the estimator does not involve the numerical evaluation of an integral. A particular
kernel based estimator of the optimal “score” function is examined.

Key words and phrases: Adaptive estimation, asymptotic efficiency, kernel estima-
tors, L-estimator, linear model.

1. Introduction

The problem of constructing asymptotically efficient estimators of a finite
dimensional Euclidian parameter 6 in a semi-parametric model with an infinite
dimensional nuisance shape parameter F' has attracted considerable recent at-
tention. Stein (1956) investigated the possibility of constructing estimators of 8
(called adaptive estimators) which are asymptotically efficient in the sense that
asymptotically they perform as well when F is unknown as when F is known.
He showed that adaption is possible when F is a symmetric distribution and 6
is the center of symmetry. This problem was treated in increasing generality by
a number of authors; results for adaptive location R-, M- and L-estimators are
contained in articles by Beran (1974), Stone (1975) and Sacks (1975) respectively.
Bickel (1982) extended the work of Stein (1956) and showed in particular that
adaption is possible when 8 is the slope of a linear model with an intercept even
if the underlying distribution F' is asymmetric. Dionne (1981) (R-estimators),
Bickel (1982) (M-estimators), Koul and Susarla (1983) (M-estimators), Newey
(1988) (method of moment type estimators) and Portnoy and Koenker (1989)
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(L-estimators based on regression quantiles) have recently proposed adaptive es-
timators for this problem. See also the general approaches of Begun et al. (1983)
and Schick (1987). The results of extensive simulations are reported in Hsieh and
Manski (1987); the simulation results in Portnoy and Koenker (1989) indicate
that in finite samples, their adaptive estimator has good small sample properties.

In this paper, we propose and investigate a simple, fully adaptive, one-step
L-estimator of the slope parameter in a linear model. The way in which the
“score” function enters the estimator means that, in contrast to the estimators of
Dionne (1981) and Bickel (1982), the estimator does not require sample splitting
and is simple to compute. In particular, in contrast to the estimator of Koul and
Susarla (1983), computation of the estimator does not require the evaluation of
an integral. Both these properties are important in applications. The estimator
is derived in the same way as the L-estimators of Welsh (1987a,b), using ideas
from Sacks (1975), Stone (1975) and Portnoy and Koenker (1989). In contrast to
the estimator of Portnoy and Koenker (1989), however, the present estimator is
non-randomised and depends on the “score” function rather than its derivative.
A simple easy-to-use kernel based method for estimating the “score” function
is proposed. Finally, we show that the estimator is adaptive for any F under
simple, general conditions on the design.

Suppose that we observe Y;j,...,Y, satisfying

Y; =142/ + ¢, 1<j<mn,

where {z;} is a sequence of known p-vectors (p > 1), 7 € R is an unknown inter-
cept, 6p € R? is the unknown slope parameter of interest and {e;} is a sequence
of independent and identically distributed random variables with a common dis-
tribution function F. We will assume that the error distribution has a density
function f with respect to Lebesgue measure. Since the components of z1,... ,z,
can be centered, we assume without loss of generality that 2;-‘:1 z; = 0. The
consequent dependence of {z;} on n is suppressed for notational simplicity.

The proposed estimator and a statement of the main result will now be
presented. Thereafter, the derivation of the estimator and a sketch of the main
steps in the proof of its asymtotic efficiency will be presented.

1.1. The estimator

Let 6, be an initial estimator of the slope 6 and construct the (uncentered)
residuals r; = Y; — z/0,,1 < j < n. Let

G(z) = %arctan(z) + %, —00 < z < 00,
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denote the standard Cauchy distribution function. Then with

Y = Y = (logn) ™'/,

define the kernel distribution function estimator

Gaw) = =Y Gly-r)/1)  —w<y<oo,

j=1
and set
@ = @n = Gu(~(logn)/*) + n~/4 and B =B, = Gn((logn)'/*) — n~1/4,

Then the adaptive one-step L-estimator A, of 8y is

[nB] n
A= 00 = IXX)Y Y 8uG/m) Y25 {G{(@nlifm) ~ ) /)
i=[na]+1 j=1

- G{@n(G - D/m) = )/1}}, (L)

where X'X = 3%, z;z], I, = n! 251:[1&]“ n(i/n)?, Qn(u) = G71(u) and
Nn(u) is an estimator of the “score” function n(u) = f'(F~1(u))/f(F~(u)),
0<u<l

There is inevitable arbitrariness in the choice of the estimator 7,. We will
consider explicitly a simple kernel-based estimator of 7. Let ki(z) and k(z)
be kernel functions with support on [—1,1] which have bounded derivatives on
[-1,1] and which satisfy

1t 0 £<i,
- ki(z)dz = . 1.2
z!/_l“ (z)de {(-1)' t=i, o<t<i i=12 &%

For example, two simple polynomial kernels which satisfy these conditions are

ki(z) = —gml(kcl <1) and ky(z) = (_"2—5_§z+i‘§zz+z3)1(|x1 <1). (1.3)

(Note that k, is the derivative of the Epanechnikov (1969) density kernel.) For
6; | 0 sufficiently small, let

Q¥ (u) = 671 /0 Qn(w)k; {67 (u — w)} dw ~ 6 / 1 Qn(u — 8;2)ki(z)dz,
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0<u<1,i¢=1,2. Now construct the estimator

n(w) = ~0Pw/ {00 W), 0<u<i. (1.4)

The results of Section 3 indicate that we should choose §; ~ n=% for 0 < ¢; <
(4 +2i)71, 4 =1,2. Since 7 is a nuisance parameter rather than a parameter of
interest, classical theory provides little guidance in the precise choice of §; and
62 and further research on this problem is required.

The following result will be proved in Sections 2-4.

Theorem. Suppose that {z;} satisfies

i)  lim — _;_ zjz; =T, T non-singular,
n-—oon
j=1
and

ii) max |z;| < nY/4C  for some C < .
1<;5<

Then if n'/%(9, — o) is bounded in probability as n — oo, it follows that
al/2(A, — 65) = N(0,I7'TY),

where A\, 13 defined by (1.1), 7] is defined by (1.4) with k; and k, satisfying (1.2)
and I = f n(u)?du. Moreover

L(7) 'n(X'X)™! & 17111,

Note that there are no conditions on F; the Fisher Information I can be
finite or infinite. The conditions on {z;} are nearly minimal; in the second
condition, we could replace n!/4 by n¥, 0 < v < 1 /2, but the resulting increase
in generality is unimportant. Nonetheless, these conditions are slightly weaker
than those of Portnoy and Koenker (1989). If the density f is continuous and
positive at F~1(1/2) then the least absolute deviations estimator can be used
as the initial estimator #, (see Bassett and Koenker (1978)). Finally, it is clear
from the arguments in Section 4 that the Theorem will hold for any estimator
of n which satisfies the conclusions of Lemmas 3.5 and 3.6 and not just for the
kernel estimator (1.4).

1.2. The derivation of the estimator
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To motivate the construction of A, suppose first that both 5 and F are
known. Then the efficient [-estimator has weight function —7' (w) f(F~(u)).
Following Welsh (1987a,b), we seek an estimator A, satisfying

An = Go+I7H(X'X)™ sz/w{l(ej <y) - F(y)}0' (F(9))f(y)dy + op(n~Y?)
=1 J-eo

n 1
= 00+I'1(X'X)"1Z :cj/ {I{e; < F7'(u)}—u}n (u)du + op(n~Y?). (1.5)
j=1 70
If the integral is approximated by a sum, (1.5) becomes

Ap & oo+1-1(X'X)-li zjn-li:{l{e,- < F7(i/n)}—i/n}7 (i/n)+0,(n~Y?)
ji=1 i=1

n n
=60+ I (X'X) 0t 3 n/(i/n) 3 ws1{e; < F-1(i/n)} + op(n™V?)

t=1 i=1
as E;ﬂ z; = 0. We could proceed to base the estimator on this expression but,
for adaption, 7' would have to be estimated as in Portnoy and Koenker (1989).
However, we can avoid having to estimate ' by proceeding as in Sacks (1975):
replace 7'(i/n) by the normalised difference n{n((i + 1)/n) — n(i/n)}, sum by
parts and ignore the end terms to obtain

A 2 00 +I7H (X' XYY " n(ifn) Y 2 I{F (i - 1)/n) < e < F~'(i/n)}
i=1

+ 0p(n~Y?), o (1.6)

Now to construct an estimator of 6y satisfying (1.6), proceed as in Welsh
(1987a,b) to modify the right hand side of (1.6) by replacing 6y by 6,, e; by
rj, 1 < j < n, F by the empirical distribution function of the residuals and N
by an appropriate estimator. To control the extreme residuals, we then trim a
decreasingly small portion of the residuals. The analysis of the resulting esti-
mator would require f to be bounded, to have three bounded derivatives and
to vanish only at too. Following Stone (1975), Koul and Susarla (1983) and
Portnoy and Koenker (1989), these smoothness assumptions are avoided by first
convolving the residuals with a vanishingly small smooth contaminant. Let {Z i}
be a sequence of independent and identically distributed standard Cauchy ran-
dom variables such that {Z;} is independent of {e;}. With v defined as above,
let r} = r;+7Z;, 1< j < n, denote the contaminated residuals and then define

1~ .
Gn(y) = — Y I(r} <y), —c0<y< oo,
i=1




208 A. H. WELSH

to be the empirical distribution function of the contaminated residuals. Let
a* = o, = Gp(—(logn)'/*) + n~1/4 and g* = g5 = Ga((logn)'/*) — n~1/4,

Then, the randomised estimator is

[nB"] n
Xy = bu= N XIX) Y mai/m) 3w, {GFH(G - 1)/m) < 7} < G (i/m)}
i=[na*]+1 j=1

On defining the ranks {D(7)} of the contaminated residuals by
T;j=r5(j)7 15.7_(.7",

where 7, <17y < --- < 7}, we can rewrite the randomised adaptive one-step
L-estimator A} of 5 in the computationally convenient form

[nB7]
X=0 - LTNX'X)T Y apemi(i/n). (1.7)

i=[na*]+1

It is fairly straightforward to modify the arguments of Sections 2-4 to show that
the conclusion of the Theorem also applies to the randomised estimator A, so
that it is also an adaptive estimator of fy. To obtain a nonrandomised estimator
An, Teplace G, in A% by @n, its conditional expectation given r,...,r,, and
then take the conditional expectation of A% given r,,...,r,. This results in the
estimator (1.1).

The contaminating distribution should be chosen to have a bounded density
with three bounded derivatives. The thickness of the tails of this distribution
will affect the rate at which the contaminant vanishes and the choice of the
trimming parameters. We have chosen the Cauchy distribution for definiteness
and simplicity but other distributions such as those used in Portnoy and Koenker
(1989) could equally be used. After specifying a contaminating distribution, there
is still some flexibility in the choice of @, E and 7. Other possible choices of these
sequences are described in Section 2.

In constructing an estimator of 7, we can regard either ¥(y) = n(F(y)),
—00 < y < 00, or, as is more natural for L-estimation, n(u), 0 < u < 1, as the
basic nuisance parameter. If ¥ is regarded as the basic nuisance parameter, we
can construct an estimator of ¥(y) and evaluate it at y = Q,(u) to obtain the
randomised slope estimator

(6"
A =00~ L7HX'X)TD Y apyVi(rh), 6>0, (1.8)
i=[na*]+1
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or the nonrandomised slope estimator

€

(n 7]
Mn=0, - IX'X)T Y U@ (z/n))Zz,{G{Q,. (i/n) = r3)/7}
i=[nal+1 J=1

~G{(@n((i - 1)/n = rj)/7}} . (1.9)

This approach to estimating the optimal weight function is essentially the ap-
proach adopted by Portnoy and Koenker (1989), except that they estimate ¥'(y)
= 1'(F(y))f(y) rather than ¥. Note that in (1.8) and (1.9) the trimming depends
on the ordering of the contaminated residuals rather than on their magnitude,
so that (1.8) and (1.9) are not adaptive M-estimators. To convert (1.8) into an
adaptive M-estimator, we would need to center the residuals {r;}, to introduce
a scale estimator & and to arrange to trim (r},z;) when |77] is large relative to
7,1< j < n. To obtain a nonrandomised adaptive M-estimator, then take the
conditional expectation given ry,... ,r,. The resulting estimators are similar to
the estimators in Koul and Susarla (1983). The distinction between adaptive L-
and M-estimators is quite subtle, particularly since integrating (1.5) by parts
as opposed to summing by parts leads naturally to the construction of adaptive
M-estimators.

An attractive advantage of the L-estimation approach over the M-estimation
approach is that the score function can be treated as constant with respect to
the conditional expectation. This means that the conditional expectation can
be evaluated explicitly so that the non-randomised estimator does not involve
an integral. The approa.ch followed here is to regard 7 as the basic nuisance
parameter. Since Qn(u) G;'(u) is an estimator of Q(u) = F~}(u),0< u < 1,
we can use differences (as in Sacks (1975) or Welsh (1987b)) or kernels (as in
Welsh (1987c)) to estimate the derivatives of Q. As QM (u) = 1/f(Q(u)) and

QD (u) = —f'(Q(w))/ f(Q(u))?, write
n(uw) = -QD(u)/{QM(w)}?, 0<u<l.

Following Welsh (1987c), construct kernel estimators of Q(!) and Q(?) which are
then combined to obtain (1.4).

Provided the initial estimator 6, is regression and scale equivariant and
transformation invariant, so is the adaptive estimator (1.1).

1.3. The main steps in the proof of the Theorem

The proof of the Theorem is rather long and technical but the main steps
are easily described. In nearly all the lemmas we prove, we obtain bounds which
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involve the product of stochastic terms, which are essentially differences between
estimators and estimands, and ‘a function of non-stochastic terms like F,, Q,
and 7, etc. We ensure that these bounds tend to zero by establishing that
the stochastic terms decrease at an algebraic rate and ensuring that the non-
stochastic terms increase at most at a logarithmic rate. Indeed, a,3 and v are
chosen to ensure that this requirement is satisfied. That the appropriate non-
stochastic terms increase at most at logarithmic rates is established in Section
2. That the stochastic terms decrease at algebraic rates is established in Section
3. In particular, the rate of decrease to zero of Qn(u) — Qn(u) is established in
Lemma 3.2, using a modulus of continuity result (Lemma 3.1) which is proved
using Bernstein’s inequality. Lemma 3.2 is then used to obtain the rate of de-
crease to zero of 7),(u) — 7,(u) in Lemmas 3.5 and 3.6. (Lemmas 3.3 and 3.4
establish intermediate steps in the argument by treating the first two derivatives
of Qn(u) Qn(u).)

The core of the proof is given in Section 4. From (1.2), on a set whose
probability can be made arbitrarily close to one, we have the decomposition

n 12X X (A, — o)

= n_l'/zX'X(Gn ~6y) — n_l/2f,:1 ‘iﬁ:] ﬁn(z/n)
i=[na]+1
x 32 {G{(@n(i/m) = 1)/} = G{@n((i = D/n) = 1)/}
j=1
=TT + Ry + Ry + R3 + R4, (1.10)
where
=Bl i\ i i—
e S0l 5 )
=5t 320 Benfol02) ) ) -o{o:5 <) )
i=[ng]+ -
[na)] n _
TS () Yool (@) o)l <))
()

Ra=—n 0 Y ((E)-m(2))

i=[n2]+l
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< Yoo (@(5) - )/} - @) o)/t
Rs = n-1/2f:z,-{z;(on — Go)-T1 [iﬁ:] ?,,,(%){Fn(@n(%) +2)6n — 60))

=1 i=[na)+1

() e )}

and
=T 8 () 0{00) - o) 1))

— Fa(@u(2) + 2400 — 00)) + Fu(@a(=2) + 21060, - )

~6{(@u(z) ~ )/} + &{(@u(7) - e3) /}}
The Theorem follows from Slutsky’s Theorem if we prove a sequence of lemmas
which show that with I,, = f[["pl/ " nn(u)?du,

naj/n
L=1I,+ op(1) and I, = I + 0,(1),

Rn, 2 0,m=1,2,3,4,
and

T 2 N(0,I-'T1).

The estimated Fisher information T,, appears in all of R;—R4 and T so we
treat it first. The required result is Lemma 4.1 which is obtained by straightfor-
ward approximation arguments and the application of a result of Stone (1975).

Now consider the remainder terms R;—R4. The first remainder term is
treated by showing that its variance tends to zero (Lemma 4.2). The remain-
ing terms R3;—R4 are first summed by parts. The resulting terms in R; are
straightforward to control once it can be shown that a particular weighted kernel
distribution function estimator is bounded in probability. This is shown by a
weak convergence argument (Lemma 4.3). The behaviour of R3 depends on the
behaviour of @n(u) — @Qn(u) (given by Lemma 3.2) which we isolate by use of
Taylor series expansions (Lemma 4.4). The treatment of R4 avoids making an ex-
pansion by applying the modulus of continuity result (Lemma 3.1) in conjunction
with Lemma 3.2 (Lemma 4.5).

Finally, the leading term T involves a sum over the whole sample and a
trimmed sum. In the proof of Lemma 4.6, the trimmed sum is first approximated
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by an integral so that T' can be written as the row sum of a triangular array of
rowwise independent random variables. This sum is then shown to converge as
required by Lyapounov’s Central Limit Theorem and an argument of Koul and
Susarla (1983).

2. Properties of the Smoothed Error Distribution

In order to avoid having to place strong conditions on the underlying er-
ror distribution F, the error distribution is convolved with a vanishingly small
Cauchy contaminant. In this section, we derive some useful properties of the
smoothed error distribution. The results and proofs are similar to those given
by Stone (1975) and Portnoy and Koenker (1989). Throughout this section and
in the sequel, K with or without subscripts denotes a generic positive constant
which is not necessarily the same at each appearance.

For fixed 0 < ¢ < 1let ¥ = v, = (logn)~°. We specified the value ¢ = 1/4
in the previous section for definiteness but the Theorem will be proved for the
more general formulation. The convoluted errors {e; + 7Z;} are independent
and identically distributed with common distribution function

B = [ G- 2)iFe), —w<y <,

1
where G(y) = ;},—arctan(y) + 30~ <y < oo Note that Fj,(y) is absolutely
continuous and has density

o0

faly) = 77 / o((y - 2)/7)dF(z), —o0 <y < o0,

where g(y) = G'(y) = [7(1 + ¥?)]71, —00 < y < 00. Moreover, f,(y) is three
times differentiable and, because the derivatives of g are uniformly bounded,

sup  |f{(y)] < Koy~ HY = Ky(logn)+Y | v =0,1,2,3.  (2.1)

—oo<Ly<Loo

Also note that if |z,| — oo,

@)l < K {516 (2 29)] + F(=lzal/2) + 1~ F(lzal/2))
—0, v=0,1. (2.2)

We shall also need a lower bound for the smoothed density. Choose K1, K,
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> 0 so that F(K;) — F(~Ky) > 0. Then

K>

faly) 2771 / 9((y — z)/7)dF(z)

K> 1
> dF z 9 K = K ,I{ ,
B [—Kl yr (14 2(y? + K3)/+?) (2) 3 = max{K,, K}
> yKI(lyl < 1)+ vy 2yKI(ly| >1), K >0,

so that for any a > 0 and M < oo

inf > ~(2ate) X
l<amL e fn(y) 2 K(logn) (2.3)

(In the sequel, we will require a + ¢ < 1.) It is convenient to express (2.3) in a
slightly different form. For any p | 0 such that 0 < p < K(logn)~(*+) put

Un(p) =
{u: Fo(—(logn)* — K~ 'p(logn)***°) < u < Fu((logn)® + K~ p(logn)?2+¢)}
and note that with p < p, by (2.3)
Fy((logn)® + K ' p(logn)***°)

= Fo((logn)*) + K" p(logn)***+° f,((log n)* + K ' p(log n)***°)
> Fr((logn)®) +p

and, similarly,
Fa(~(logn)* — K~ p(logn)?*+¢) < Fy(—(log n)®) — p
so that for any p | 0 such that 0 < p < K(logn)~(a+),

Un(p) = {u: Fo(—(logn)®) — p < u < Fu((logn)*) + p} C UL (p).  (24)
With
a = ap, = Fp(—(logn)*) and g = B, = F,((logn)?),
we can write
Un(p) = [ = p, B + p].

Throughout this section, suppose that p | 0 such that 0 < p < K(logn)~(a+¢),
We can then write (2.3) as

W22 Fn(@u(w) 2 K (logm)=(++9, (2.5)
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where Qn(u) = F;1(u),0<u< 1.

Bounds will now be obtained for the derivatives of the quantile function
Qn(u) = F7(u), 0 < u <1, and for the “score” function

(1) = fO(Qn(w)/ fa(Q@n(nw)), 0<u<l.

It follows immediately from (2.1) that

sup ——— < K(logn)° 2.6
oguz1 QW (u) ~ (log ) (26)
and it follows from (2.1) and (2.5) that
sup |QW)(u)| < Ky(logn)Peteti(v-hletd 21,234 (2.7)
UEU-.(P)
By (2.1) and (2.5)
sup |nn(u)| < K(logn)?at3c (2.8)
u€U,(p
and
sup 78 (u)] < Ky(logn)?etdett™leta) -y =12, (2.9)

MGU-.(P)

Also, since g —n~! < n~l[ng] < gforany 0 < ¢ < 1,

[nB] . .
1y _ (2 (1) 6at7e
o (5) =Dl gm0 < KtogmyTe a0

by (2.9).
3. Properties of 7,

In this section, we investigate the properties of 7, defined in (1.4). The main
results depend on two preliminary results which will also be used in Section 4.

Lemma 3.1. Let {c; = cjn} be any sequence of constants such that lim,_,
n~1 3% 1 €2 < oo. Then if {z;} satisfies (i) and (ii) of the Theorem, for any
a>0,a+c<1,d>0,

sup sup sup
ly|<D(log n)® |¢|<n—1/2B; |r|<n—1/2(logn)¢B;

- Fa(y+ 2jt+7) = G{(y - &)/1} + Fal)} | = Op(n~/4(logm)*+4+17),

LY ei{Glly—e; +aft+7)/7)
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for any D, By and B; < oo.

Proof. Put v; = (1,2})’ € RP*! and let

Hn(y,t)= % ic‘j {G(glf—v’,—t) —Fa(y+ v}t)-G(y — ej) +Fn(y)} ,  (3.1)

i=1 7

y € R, t € RP*1, Then the result will follow if it can be shown that

Vo= sup sup |Ha(y,t)] = Op(n=3/%(log n)=+4+V/2),
ly|I<D(log n)* |t|<n—1/2(log n)¢B

for any B < oo.
Put

€t = & = —D(logn)® + 2D(log n)*£/[n'/?], £=0,1,...,[n?,
so [§| < C(logn)® and €141 — & = 2D(logn)?/[n!/?], 0 < £ < [n1/2]. Then
arguing as in the proof of Lemma 2.1 of Welsh (1987c),

Vn <2 max sup IH'n(Ebt)I'
1<4<[7112] [t|<n=1/2(log n)4 B
Next cover the ball {|t| < n~1/2(logn)?B} with cubes {b(tx)} about {t; = txn}
with sides of length n~%/4(logn)?B. Note that N = (n3/42B)P*! such cubes
are required and that if ¢ € b(tx), then |v/(t — t;)] < 7; where 7; = 7, =
n=%/4(log n)%(p + 1)1/2 B|v;|. Now,

Va<2 Ho(kot Ho(€e,t) — Ha(€eth)]}. (32
<2 max max {|H.(¢ I+ s [Ha(Et) = Hallo )} (32)

Now g is bounded so

n
sup |Hn(€2,t) — Hu(€e, 1)l < 07 ) lej|vjln=*/4(log )=+

teb(tx) j=1

< n~%/4(logn)*t*K,
by the conditions on {¢;} and {z;}. Similarly,

n

> SE{G{(6— e + zjte)[1} — Fulbe + zjtx) — G{(€2 — €)/7} + Fu(€2)}’

i=1.

<

M-

SE{G{(&e - e + 2jtx)[7} - G{(&e - /1))’

.,
1]
=

< c§|x;tk|2(log n)*°K,

3

1]
e

2
< n1/2 (log n)2(c+d) K,
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so that by Bernstein’s Inequality, for any M < oo,

P H, t > n—3/4 1 c+d+1/2M
{ | max, max [Ho(Ee,to)] 2 n~/4(logn) }
< 2n'2N exp{—M?logn/(K + n~*b(log n)1/2_°“d2M)}

p 5 M?

< 2p+2Bp+1 exp{ Z + Z — -‘-1—1-(— log n} for n la,rge

— 0 for M > /(p+5)K,

and the result obtains.

Note that when d = 0, the rate of convergence is n=3/4(logn)°t¥? rather
than n~1(logn)°t2 as one might expect. We get the slower rate because, under
the conditions of the Lemma, n~' -7, 2, |z;|> = O(nY?). K we make the
stronger assumption that n~! Y i—165al251* = O(1), the above argument yields
the faster rate.

We are now able to establish the second preliminary result.

Lemma 3.2. Suppose that {z;} satisfies (i) and (ii) of the Theorem and that
n'/2(8,, — 8y) is bounded in probability. Foranya>0,a+c<1,and0<p<
K(logn)=(2+9) | define U,(p) by (2.4). Then

S“P( )Ién(u) - Qn(u)| = Op(n’l/z(log n)?e+e).
n(p

u€U,

Proof. It follows from Lemma 3.1 with 7 = 0, d = 0 and cin=11<37<n,
that

~ 1 <&
sup IGn(y)—‘ Fn(y)l = sup I_ZFn(y+z;(0n _00))—Fn(y)|
lv|< D(log n)° lyI< D(log n)* ™ ;=7
+ Op(n—3/4(log n)c+1/2 + n—1/2)
= Op("—ln)

using a two-term Taylor series expansion. Hence, uniformly in u € U,h(p), on
a set whose probability can be made arbitrarily close to one uniformly in n by
taking K, sufficiently large,

Gr{Qn(u)+n"*(logn)?** K1} > Fu{Qu(u)+n~Y2(log n)?**+<K; }—n V2K,
>u+n"Y2KK —n"V2K,
>u for KK; > K,
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by (2.5), so uniformly in u € Uy,(p), on a set whose probability can be made
arbitrarily close to one uniformly in n,

Qn(u) — Qn(u) < n~/?(logn)?**eK;.

Similarly, uniformly in v € U,(p), on a set whose probability can be made
arbitrarily close to one uniformly in n,

@n{Qn(u)-{-n"V?(log n)?*t°K,}<F, {Qn(u)+n_1/2 (log n)2“+°'K1}+n"1/2K2
<u-n"12(log n)2‘“+°)K1K2 +n 2K,
<u

by (2.1) and the result obtains.
Now consider the kernel estimators used in the estimator (1.4).

Lemma 3.3. Suppose that ki and ky are kernel functions which satisfy (1.2),
that {z;} satisfies conditions (i) and (ii) of the Theorem, and n'/%(8, — 6y)
is bounded in probability. Then for anya > 0, a4+ ¢ < 1, and & ~ n~*%,
0 < g <1/(24),

e QD) - QP(w)] = Opln™" (logn)™* 4 + n™1/2+ 4 logn)?), i =1,2,

where Un(-) is defined by (2.4).

Proof. Note that by a Taylor expansion,

sup
ueUn(2/n)

57 [ Quu - 6ki(a)ds ~ Q0w

§: . L
3 (i+1) t+lk_ d
- su W (u T {(z)|dz
~ (i+ 1) uGU..(G.'I:-Z/n)lQ ( )I/—ll @l

< 6,(10g n)2a+c+4i(a+c)K

by (2.7) as §; + 2/n < K(logn)~%~¢. Also

1
—-1-4 A _ . '—1 _
e (677 [ Quw) - Quw)} (57 (u — w)
= sup 6;-4' /1 {@n(u—6,-:1:)—Q,,(u—6,-z)}k,-(z)dz|
HGU-U/'") -1

. ~ 1
<ot sup  [Qn(w) - Qu(w)] [ Iki@)lds

u€UL(6:4+2/n)
= Op(n—1/2+ic.- (log n)2a+C)
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by Lemma 3.2. The Lemma obtains.
We shall also require the following result.

Lemma 3.4. Suppose that ki and k, are kernel functions which satisfy (1.2),
that {z;} satisfies conditions (i) and (i) of the Theorem, and nl/%(6, — 6;)
is bounded in probability. Then for anya > 0, a + ¢ < 1, and é; ~ n~%
0<e; <1/(4+4 29),

)

n sup |QO(u+n7) - QP(w) - QD (u+n) + QP(u)
u€UL(1/n)
= 0, (v~ (log )" 4 n1/2+C 5 (log ),
1= 1,2, where Uy(-) is defined by (2.4).
Proof. Note that by (2.7)

sup
u€Un(1/n)

1
5 / {Q,,(u+n~1—6.-z)~Q,,(u—6,-z)}k,-(z)dx-Q5;>(u+n-1)+Q£:)(u)I
-1
< sup
u€Un(1/n)
+ n—2 {6‘_1(10g n)6a+5c + (log n)2a+c+4(i+l)(a+c)}K

. 1 . ~ .
sup . b , / Qi+ (u - 5:'1‘)’0:'(1‘)‘13?' +n7 i (logn)Satic g
weUn(1/n)l (F+ 1) J_4

< n_lai(logn)2a+c+4(i+1)(a+C)K, 0< E‘ < é;.

1
57 / QY (u - 8iz)ki(e)de - 7 QY (u)|
-1

<n7!

Also,
- 1 -~
sup 6;1_‘/ Qn(w){k.-{ﬁi"l(u + a7t —w)} - ki{6:7 (u - w)}}dw
u€U(1/n) 0
-6 /1 {Qn(u +nt - 0iz) — Qn(u - 6;1)}ki(z)dzl
-1
1 ~
= sup |67 {Qn(w)-Qn(w)} {k;{&fl(u+n"1—w)}—k;{&i_l(u—w)}}dw|
u€UL(1/n) 0
futos
< s 677 Ga ()= QuHBL @t n ) k{57 - w) o
ueU,(1/n) u—8;+n-1
i u—6;4+n-1 - 1
oo (67 [T {@uw) - Quw) k(s - w)au]
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. 'u.+6.-+‘n'1 ~
+ sup (677 [T {Q0(0) - Qa(w)} kil (w17 - w)au
u€Ua(1/n) u+$;

< sup |@n(U) — Qn(u)l{n‘1+(z+‘)“ K+ 2n“1+(1+‘)“K}
u€U,(8i+2n"1)

< n—3/2+(2+£)e; (log n)2a+cK
by Lemma 3.2. The lemma obtains.

For future reference, note that the conditions of Lemma 3.4 imply those of
Lemma 3.3.

We now apply Lemmas 3.3 and 3.4 to obtain the following results for 7,,.

Lemma 3.5. Suppose that the conditions of Lemma 3.3 hold. Then

sup  [7n(u) — n(u)| = Op(n™7),
wEU(1/n)

where 0 < o < min{ey, § — €1,62,3 — 262} and Un(-) is defined by (2.4).
Proof. Write

sup {7 (u) — nn(u)|
w€UL(1/n)

< suwp QD () - QP (w)/QY (u)?
)

u€U,(1/n

+ sup QW (w)-QP () 1@ (W) 1QP (w)+QP (w)| /@D (w)* QP (u)?

u€U,(1/n)
= 0p(n~2(logn)'? 4 n~Y/2+2e2(log n)* + n=*1 (log n)'® 4+ n~1/2*41 (log n)'?)
by Lemma. 3.3, (2.6) and (2.7).

Lemma 3.6. Suppose that the conditions of Lemma 3.4 hold. Then with o =
Fo(—(logn)?), B = Fn((logn)?) fora>0,a+c< 1,

(6} . _ . '
O () () () ()| = 0

where 0 < k < min{ey, § — 3e1,¢€2,3 — 462}
Proof. Let

AQY(u) = QP (u+ ") - QY ()
and

AQD(u)= QW (u+n) - QW(w), 0<u<l, i=1,2.
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Then
[nA] . . ) .
/141 (1 1+ 1 2
. E nn( n )_ﬂn(;)_nn( ™ )+ﬂn(;)l
i=[raj+1
<n sup  |Ba(u+n7) = Fa(u) — na(u+ n7Y) + o (u))]
u€U(1/n)
<n sup |AQP(u)- AQP (uw)|/QY (u)?
u€UL(1/n)
. ~ QW (u) + Q) (u)|
+n sup |AQP(w)| sup |QP(u) - QW (u) | -
ueU,.(l/ﬂ)l |u6Uu(2/n)| | {Qstl)(")Qg)(“)}z
+ sup QP (u) — QP ()| [Dn(u)| n |AQW (u)|
u€UL(1/n)
+ sup  |QP(u)| |Da(u) - Da(u)| n |AQW ()]
u€UR(1/n)
+ sup  |QP(w)| |Dn(u)] n |AQP (u) — AQP (w)],
u€Un(1/n)

where D(u) = {Q%)(w) + Q0 (u+ n 1)} /{Q ()@ (u 4 n1))? and Do(u) =
QW) + @V (u + A HI{QPW)QP (v + n71)}?, 0 < w < 1. The result
obtains from Lemmas 3.3 and 3.4 and the bounds (2.6) and (2.7).

4. Properties of ),

Throughout this section, we assume that {z;} satisfies (i) and (ii) of the
Theorem, n'/2(8,, — 6;) is bounded in probability and 7 satisfies the conclusion
of Lemmas 3.5 and 3.6. For a,c > 0,a+¢<1,and 0 < b < 1/2, let

&= Go(~(logn)®) + 1™ a = Fa(~(logn)®)
B = Gu((logn)®) ~n~ B = Fu((logn)®)
v = (logn)~°.

Note that by Lemma 3.1, G,(+(logn)®) — F,(£(logn)®) = O,(n~1/2); see the
proof of Lemma 3.2. It follows then that for n large enough, on a set whose
probability can be made arbitrarily close to one,

a<a<a+n?t and ,B—n"bSESﬂ. (4.1)

It will be establishgd that the Theorem holds under these conditions and for
these choices of @, 8 and 7.
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We prove the theorem by proving a sequence of lemmas which establish the
behaviour of the terms in the decomposition (1.10) as described in Section 1.3.

Lemma 4.1. I, =1, + op(1) and I, = I + 0p(1).

Proof. Let I =n"! EE’_‘__‘;L aj+1 Mt/ n)?. Then by (4.1), with probability which
can be made arbitrarily close to one,

(nA) [na] . (ng]

~ g | ~[1\2 1\2 1 A | 1\2
L-nlsy 3 ;) -m(z) [+7 Xom(z) +7 X m(z)
i=[na]+1 i=[naj+1 i=[nf+1
< sup |7a(u) ~ Wn(u)l{lﬁn(")l + |"7n('”')|} +2n7° sup "711('“)2
u€U,(1/n) u€U,(1/n)
2,0

by Lemma 3.5, (2.8) and (4.1). Also, by (2.7) and (2.8),

[nB] i/n N2
Hn - I7] < | Z {/ Mn(u)?du — n‘lnn(-) }| < Kn~(logn)8+10¢,
i=[na]+1 (i-1)/n n

The result then obtains from Theorem 4.1 of Stone (1975).
Lemma 4.2. R; 2.
Proof. Note that

[‘"-ﬂ] . n

var[1 3 () Sado{(0n(5) -4/} -{@a() <))

i=[nf+1 =1

=07 3 22E [ I([nfB] < i < [nB])0a(i/n){G{(Qn(i/n) - €)/7}
i=1

j=1

- G{(@n(( - /m) - Y]]
o . o{(@ui/n) ~ /1) 1
< KE[Y_ 1Bl < < twbmnti/m) L =gy |+ s,
< K(log n)8a+10cn—1([n’3] _ [nﬂ — nl-—b])

-0,

as n — oo by (2.6) and (2.8), so the first term in R; converges in probability to
zero.
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The remaining term in R1 may be treated via a similar argument and the
Lemma obtains.

Lemma 4.3. R, £50.

Proof. Let v € R? be any fixed vector and let ¢; = max{v'z;,0} and d; =
cj — v'zj so that v'z; = ¢; — dj, 1 < j < n. Then write

Po(u)=n" 2 o'z {G{(F7'(w) —¢j)/1} —u}, 0<u<l

Jj=1

= n/%5(n2) ! Y e;{ GU(F (w) - e5)/7} - u}

=1

— n VD) S d{GH(F () = e5)/7) - u)

i=1

= nl/% /_ Z G{(F;'(u) - y)/v}d{Ps(v) - F(y)}
_ n1/7g / " G{(FT () - )/ MP) - F@)), (4.2)

where PS(y) = (n2)™ £7_, ¢;l(e; < y) and PX(y) = (nd)™ 0, d;1(e; < ).

Now by a straightforward application of Theorem 15.6 of Billingsley (1968), it

follows that en'/2{Pg(-) — F(-)} and dn'/2{P3(-) — F(-)} converge weakly in
D[—o00,00] to mean zero Gaussian processes and hence that

sup  en'/?|Pi(y) - F(y)l = Op(1) and
—oo<y<oo

sup  dn'/?|Pi(y) - F(y)| = 0,(1).

—ooSy<oo

Then, integrating by parts,

sup |12 [ G{(FT () - 9)/1)elBiw) - FW)|

0<u<1

= sup |t [ " (PS(y) - F@)G{(F ™ (w) - v)/7)]

0<u<1

<_sw [ (P - P sup | [ a6 ) - i)

—o0o<Ly<oo

= 0,(1).
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A similar result holds for the second term in (4.2) so that
sup |Pa(u)] = 0p(1). (43)
0<u<l1

Now, summing by parts, it follows that with probability which can be made
arbitrarily close to one

| Rz|
=B i i i+l i ;
1 (e RICRICIIME s (RO RPYA)

+ {in(((nBl+1)/m) = 1a((nB]+1)/m)}n? 3 2,G{(Qu([nB)/m) — €5)/7}]
i=1

+ {81+ 1)/m) = (@14 1)/m)}i7 2 3 2,G{(Qn([n8)/m) - e5)/7)]
i=1

() () () ()] e

(8]

_1/ziij(y - ej) l

[na]+1 ly|<M(log n)* Y
;23:‘3:/@‘“>*"’<">'|"“”g}w{ (@) -c) {022 -e) )
20

by (4.1), (4.3) and Lemmas 3.5 and 3.6.

Lemma 4.4. R3 250.
Proof. Without loss of generality let 8 = 0. Then summing by parts,

R Yt s G R LICYE RS

—[na +1

-~

Ttafoum(T2) @12 ) 4 Tt (1D £, ()
Sl P @i (P o, (22D
TS e P @) g ) g0 (10 g, (D))

=1
= Ra1 + R3; + Ras,




224 A. H. WELSH

say. Now, for 1 < j < n and [ra] < i < [nf],

R@(2)+0) = 2 s 02) -0 D)D) 1) s

where

. 1 -1 12 -1 4 2
a2 L) < 0p(D{n Va5 + 0= (logn)* } log nY?,

by Lemma 3.2, (2.1) and the assumption that |6,| = O,(n~'/?). Hence, using
the fact that 3°7_, z; =0,

IRsal = I |02 3" 218 (n(([n8] + 1)/n) = 1a(([n8] + 1)/n)}
ij=1

X Sa(@n([n8)/m) + 5n7V2 3251 (1nd) ) ([n] + 1))
j=1

< 0,(1){n"?(logn) + n~Y4(log n)® + n~Y%(log n)®}

L0

by (4.1), (2.1), Lemma 3.5, (2.8), (2.4) and conditions (i) and (ii). Similarly,
R33 -2 0 and it remains to show that R3; —- 0.

By the expansion (4.4) and the fact that 237“:1 z; = 0, with probability
which can be made arbitrarily close to one

| Ra1]
T P D S S S N i
e (Y () o)

—1“;1nn(([nﬁl+1)/n)fn(czn([n§1/n))+f;‘nn(([na]+1)/n)fn(czn([nal/n))]

n (n6) , A :
e e 3 (Y Ca())a(d)
j=1 i=[‘na]+1

[na) : (] ;
<o, Y n,,(%)2+o,,(1)n-11;1 3 m(i)2
i=[na]+1 i=[nf]+1
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» (z : l) ﬁn( i ) nn(z + 1) +77n( i )I
(nB) . . ‘ 7 .
02| 32 () w(D)u(@)ed 5wl

i=[na)+1 i=[na)+1
— 7a(([nB] + 1)/2) fa(Qn([nB]/1)) + 1a(([n&] + 1)/1) fa(Qn([na) /n))|
[n ) : .
+0p(1){n "M (logn)? + n V2(logn)f } 1t 3~ |7 :; 1) - ﬁn(%)l
i=[ra]+1

52 ) Sl ro Lo

t—[na +1 t—[na +1

by Lemmas 4.1 and 4.2, (4.1), (2.8), Lemma 3.6 and (2.9). The result follows on
expanding f,(Qn((¢ —1)/n)) to two terms and then applying (2.8) and (2.9).

(6]
+ 0,(1)(log )’ I

<0,

Lemma 4.5. R4 -2 0.

Proof. Without loss of generality, let 8o = 0. Let v € R? be any fixed vector
and let

n

Hoi(ryt) = 0712 " o'z {G{(Qn(i/n) — e; + zit + 7)/7}

— Fu(Qn(i/n) + zjt + 7) — G{(Qn(i/n) — €;)/7}}.

Then, summing by parts, it follows that with probability which can be made
arbitrarily close to one

[nB]

- {6 +1)/n) = Ga(i/n) } Hai{ @n(i/n) — Qu(i/n),0,)
i=[na+1

+ I 8n(([n8) + 1)/n)H, 1,2y {@n([n8]/n) — Qn([nE]/n), 6.}
- L' 5a((nB) + 1)/m)H 5 {Q@n([7B)/n) = Qn([nB]/n), 8}

oy A i ~ i i
<t S )0 lianl P 0)-0(5) )
+ 0p(1)(logn)*|H,, |, {Qn([n8] /) — Qu([nB)/n), 6.}
+ 05(1)(logn)*|H,, |5 . {@n([nB]/n) — Qu([nB]/n), 6.}

|Rs| =

max
[ra]<i<[nf)
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by (4.1), Lemma 3.5 and (2.8). Now

|Hai{Qn(i/n) — Qu(i/n),02}] = Op(n~>/*(log n)*)

[na]<s<[ Bl

by Lemmas 3.2 and 3.1 so the result follows from Lemma 3.6 and (2.11).
Lemma 4.6. T — N(0,I-1T-1).

Proof. Let v € RP be any fixed vector and write

=Ty Son(Deleod)-e)A-o{leE) )

i=[na]+1
n (6] . \
= T 112N i r=14.0~1 iln 9{(Q@n(i/n) — €;)/7}
= ;gl b i=[nza:]+1nn(/ ) 7f2(@n(i/n)) * o)

using the fact that g and ¢’ are bounded and applying (2.1), (2.5) and (4.4).
Then, note that

n [nB]/n
ey R OCE CRORTEY
.1:1 na|/n
[nB] .
- o/ H(@n(i/n) — €3)/7)
L eI @y )
n ['n.ﬁ]
N I DS / 1 (0)dG{(@n(u) - 5)/7}
i=1 i=[na]+1 (-
1. 1:7.91(@Qn(i/n) — €;)/7}
B by w7 e
n~1/2 T lz:n"1  su (1) (y w(Qn(u
< ,-5::' I z;| uEU(P/ {In) (w) /7 fn(Qn(w))]

+ [1a(w) /7 fa(@n(w))*] + |mn(w) FEP(Qn(w))/1£n(Qn(w))*1}

250

by (2.2), (2.5), (2.8), (2.9) and condition (i) of the Theorem, so that using
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zn 1 v'I‘“xj =0,

j= €

n
T= f;ln_lﬂ Ev'r_lzj /

J=1 no

(nal/

" 1 (W)dG{(@n(x) - £3)/7} + 0(1)

n
= (L7 L) 02 Y o' T 2 (Aj — EAnj) + 0,(1)
Jj=1
= (f;‘lIn)T* + 0p(1),
say, where Ap; = f[[':‘f]]//: P(u)dG{(Qn(u) — €;)/7}, 1 £ 7 < n,n > 1, and
T* = I;7'n" Y2 32 v'T7'z;(Anj — EAgj). Clearly, T* has mean zero, and
variance

Var(T*) = I;2n71 Y (oI 'z {EA2, — (EAm)?)

i=1

<Pt (oTta)’EAL,

Jj=1
n [nB)/n
<I7%p7! E (VT 1z;)? / Nn(u)?du
j—l na|/n

— I,:ln'l Z: (vlr—lzj)Z

=1

so that
limsup Var T* < I }'T~ 1y

by Theorem 4.1 of Stone (1975). Thus, if I = o0, T* - 0 and the result
obtains. Finally, if I < 0o, a straightforward computation using condition (ii) of
the Theorem and the bound (2.8) shows that E|T*|> — 0 so the result follows
from Lyapounov’s Central Limit Theorem and the argument at the end of the
proof of Theorem 2.1 of Koul and Susarla (1983).
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