SECOND-ORDER DIFFERENTIABILITY AND JACKKNIFE

Jun Shao

University of Ottawa

Abstract: We establish some asymptotic results for the statistic $T(F_n)$ and the corresponding jackknife estimators, where F_n is the empirical distribution and T is a second-order differentiable functional in some sense. In particular, second-order asymptotic representations of $T(F_n)$ and the jackknife estimator are obtained and the jackknife variance and bias estimators are shown to be consistent.

Key words and phrases: Asymptotic representation, bias, consistency, statistical functional, variance.

1. Introduction

Let X_1, \ldots, X_n be independent and identically distributed (i.i.d.) random samples from an unknown population distribution F and let F_n be the corresponding empirical distribution, i.e., $F_n(x) = n^{-1} \sum_i I_{X_i}(x)$, where $I_y(x) = 1$ if $y \le x$ and x = 0 otherwise. In many situations the parameter of interest is x = T(F), where x = T(F) is a functional defined on a set x = T(F) (to be specified in Section 2). A nonparametric estimator of x = T(F) is x = T(F). Under weak conditions,

$$n^{1/2}[T(F_n) - T(F)] \to N(0, \sigma^2)$$
 in distribution,

where σ^2 is usually unknown and σ^2/n is called the asymptotic variance of $T(F_n)$. Let B_n denote the bias or the asymptotic bias of $T(F_n)$ as an estimator of T(F) (see Section 3). To assess the performance of $T(F_n)$ or make other statistical inferences, we need estimators of σ^2/n and B_n . An essential requirement of variance and bias estimators is their weak consistency. That is, if ν_n and b_n are estimators of σ^2/n and B_n , respectively, then we require

$$n\nu_n - \sigma^2 \rightarrow_p 0$$
 and $n(b_n - B_n) \rightarrow_p 0$,

where \rightarrow_p denotes convergence in probability.

The jackknife, originally introduced by Quenouille (1956) for bias reduction, is a convenient nonparametric method for variance and bias estimation and for

improving the estimator $T(F_n)$ in some situations. For each i, let $F_n^{(i)}$ be the empirical distribution corresponding to the samples $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n$. The jackknife estimators of σ^2/n and B_n are respectively

$$\nu_n^J = \frac{n-1}{n} \sum_{i=1}^n [T(F_n^{(i)}) - \overline{T}]^2, \quad \overline{T} = \frac{1}{n} \sum_{i=1}^n T(F_n^{(i)}),$$

and

$$b_n^J = (n-1)[\overline{T} - T(F_n)].$$

The jackknife estimator of T(F), designed to reduce the bias in estimating T(F), is

$$T^J(F_n) = T(F_n) - b_n^J.$$

The asymptotic validity of the jackknife (e.g., the weak consistency of ν_n^J and b_n^J and performance of $T^J(F_n)$) was established in some special situations. Beran (1984) and Parr (1985) used a differentiable functional approach to establish a general result. However, the differentiability assumption on T they assumed is too strong and does not hold for some commonly used statistics. The main purpose of this note is to establish properties of the jackknife estimators under a weak differentiability assumption on T. After introducing several versions of (second-order) differentiability of T in Section 2, we study asymptotic properties of $T(F_n)$ in Section 3 and prove the weak consistency of the jackknife estimators ν_n^J and b_n^J in Sections 4 and 5. In Section 6, asymptotic properties of the jackknife estimator $T^J(F_n)$ are established, which show that $T^J(F_n)$ reduces the bias in some sense. The last section contains some examples.

2. Second-Order Differentiability

Let $\mathbf{F} = \{\text{all distributions on the real line } \mathbf{R} \}$ and $\|\cdot\|$ be a norm defined on the space $\mathbf{F}^{\Delta} = \{c(G-K): c \in \mathbf{R}, G, K \in \mathbf{F}, \|G-K\| < \infty \}$. Some useful norms are the sup-norm $\|G-K\|_{\infty} = \sup_x |G(x)-K(x)|$ and the L_p -norm $(p \geq 1) \|G-K\|_{L_p} = [\int |G(x)-K(x)|^p dx]^{1/p}$. Let $\mathbf{N} = \{G \in \mathbf{F}: \|G-K\| < \infty \}$ for any $K \in \mathbf{F}$. Suppose that \mathbf{V} is a normed vector space generated by $\|\cdot\|$ and $\mathbf{N} \subset \mathbf{V}$. We assume $F \in \mathbf{N}$ and the functional T is defined on \mathbf{N} .

Definition 2.1. A functional f defined on N is second-order Fréchet differentiable at $H \in N$ with respect to (w.r.t.) a norm $\|\cdot\|$ if there is a real-valued function $\phi_f(x,y,H)$ on \mathbb{R}^2 such that $\phi_f(x,y,H) = \phi_f(y,x,H)$, $\iint \phi_f(x,y,H) dH(x) dH(y) = 0$ and

$$\lim_{\|G-H\|\to 0, G\in \mathbf{N}} \frac{f(G)-f(H)-\iint \phi_f(x,y,H)dG(x)dG(y)}{\|G-H\|^2} = 0.$$

The differentiability of f according to Definition 2.1 is called second-order since $q(G) = \iint \phi_f(x, y, H) dG(x) dG(y)$ is a quadratic functional. f is second-order differentiable at H simply means that f(G) - f(H) can be approximated by a quadratic functional for G near H (w.r.t. the topology generated by $\| \ \|$) and that the rate of the approximation is $o(\|G - H\|^2)$. If f(G) - f(H) can be approximated by a linear functional l(G) for G near H, i.e.,

$$\lim_{\|G-H\|\to 0, G\in \mathbb{N}} \frac{f(G)-f(H)-l(G)}{\|G-H\|}=0,$$

then f is first-order Fréchet differentiable at H, which is a well understood concept in the literature. See Serfling (1980) for a detailed discussion of the first-order differentiability of a functional. For the study of the jackknife bias estimator b_n^J , however, assuming the first-order differentiability of T is not enough, since the bias of $T(F_n)$ is directly related to the second-order differential of T (see Theorems 3.1 and 3.2). Also, the first-order (Fréchet or compact) differentiability of T does not ensure the consistency of the jackknife variance estimator ν_n^J . Parr (1985) proved the consistency of ν_n^J under a first-order strong Fréchet differentiability assumption on T, which is much stronger than the first-order Fréchet differentiability (in the ordinary sense) and is not comparable with the second-order Fréchet differentiability in Definition 2.1.

Beran (1984) proved the weak consistency of ν_n^J under the conditions that T is second-order Fréchet differentiable at F w.r.t. the sup-norm $\|\cdot\|_{\infty}$ with $\phi_T(x,y,F)$ satisfying

$$\iint \phi_T^2(x,y,F) dF(x) dF(y) < \infty \quad \text{and} \quad \int |\phi_T(x,x,F)| dF(x) < \infty \qquad (2.1)$$

and that

$$\sup_{G \in \mathbb{N}} \left| \frac{T(G) - T(F) - \iint \phi_T(x, y, F) dG(x) dG(y)}{\|G - F\|_{\infty}^2} \right| < \infty. \tag{2.2}$$

Condition (2.2), however, is unnecessarily restrictive. Under the assumption that T is second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_{\infty}$ with $\phi_T(x,y,F)$ satisfying (2.1), the weak consistency of ν_n^J was proved in Shao and Wu (1989). In Section 4, we will prove the weak consistency of ν_n^J when T is differentiable in a different and/or weaker sense.

Definition 2.2. Let S be a class of subsets of V. A functional f defined on N is second-order S-differentiable at $H \in \mathbb{N}$ w.r.t. $\|\cdot\|$ if there is a real-valued function

 $\phi_f(x,y,H)$ such that $\phi_f(x,y,H) = \phi_f(y,x,H), \iint \phi_f(x,y,H) dH(x) dH(y) = 0$ and for any $\Lambda \in S$,

$$\lim_{t \to 0} \frac{f(H + tK) - f(H) - Q(tK)}{t^2} = 0 \tag{2.3}$$

uniformly for all $K \in \Lambda$ and $H + tK \in \mathbb{N}$, where $Q(tK) = \iint \phi_f(x, y, H) d[H + tK](x)d[H + tK](y)$.

If S is chosen to be B={bounded subsets of V}, Proposition 2.1 shows that B-differentiability (Definition 2.2) is equivalent to Fréchet differentiability (Definition 2.1). If S is chosen to be C={compact subsets of V}, C-differentiability is referred to as compact differentiability. Therefore, compact differentiability is weaker than Fréchet differentiability.

Proposition 2.1. A functional f on N is second-order B-differentiable at H w.r.t. $\|\cdot\|$ if and only if f is second-order Fréchet differentiable at H w.r.t. $\|\cdot\|$.

Proof. (i) **B**-differentiability implies Fréchet differentiability. Suppose that $G \in \mathbb{N}$ and $\|G - H\| \to 0$. Let $\Lambda = \{K/\|K\| : K \in \mathbb{V}\}$. Then $\Lambda \in \mathbb{B}$ and $(G - H)/\|G - H\| \in \Lambda$. The result follows by replacing t and K in (2.3) by $\|G - H\|$ and $(G - H)/\|G - H\|$, respectively.

(ii) Fréchet differentiability implies **B**-differentiability. For any $\Lambda \in \mathbf{B}$, there is a constant c such that $||K|| \le c$ for $K \in \Lambda$. For all $K \in \Lambda$ with $G = H + tK \in \mathbf{N}$, as $t \to 0$,

$$\frac{f(H+tK)-f(H)-Q(tK)}{t^2} \le c^2 \frac{f(G)-f(H)-Q(G-H)}{\|G-H\|^2} \to 0.$$

When $\|\cdot\|$ is the sup-norm and F is continuous, it is convenient to consider the functional

$$\tau(G) = T(G \circ F), \quad G \in \mathbf{N}_{\tau}, \tag{2.4}$$

where $N_{\tau}=\{$ all distributions on [0,1] $\}$. Note that N=F and $K \circ F \in N$ if $K \in N_{\tau}$. Hence $T(K \circ F)$ is well defined. Let D be the space of right continuous real-valued functions on [0,1] which have left hand limits. Definitions 2.1 and 2.2 are applicable to τ with N and V replaced by N_{τ} and D (equipped with $\|\cdot\|_{\infty}$), respectively. Let U be the uniform distribution function on [0,1]. Then $\tau(U)=T(F)$. The result in Proposition 2.2 indicates a relation between the differentiability of T at F and the differentiability of τ at U.

Proposition 2.2. If T is second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_{\infty}$ and F is continuous, then τ is second-order Fréchet and compactly differentiable at U (uniform distribution on [0,1]) w.r.t. $\|\cdot\|_{\infty}$.

Proof. From Definition 2.1, there is a function $\phi_T(x,y,F)$ such that for $G \in \mathbb{N}$,

$$R_T(G, F) / ||G - F||_{\infty}^2 \to 0$$
 (2.5)

as $||G - F||_{\infty} \to 0$, where $R_T(G, F) = T(G) - T(F) - \iint \phi_T(x, y, F) dG(x) dG(y)$. Define $\phi_{\tau}(s, t, U) = \phi_T(F^{-1}(s), F^{-1}(t), F)$, where $F^{-1}(t) = \inf\{x : F(x) \ge t\}$, and

$$R_{\tau}(K,U) = \tau(K) - \tau(U) - \iint \phi_{\tau}(s,t,U)dK(s)dK(t), \quad K \in \mathbb{N}_{\tau}. \tag{2.6}$$

If $K \in \mathbb{N}_{\tau}$, then $K \circ F \in \mathbb{N}$ and $R_{\tau}(K, U) = R_{T}(K \circ F, F)$. Then the result follows from (2.5) and $||K \circ F - F||_{\infty} = ||K \circ F - U \circ F||_{\infty} \le ||K - U||_{\infty}$.

3. A Second-Order Representation for $T(F_n)$

In this section we establish a second-order representation (3.3)-(3.4) for $T(F_n)$.

Theorem 3.1. Let τ be defined in (2.4). Suppose that F is continuous and that τ is second-order compactly differentiable at U (uniform distribution on [0,1]) w.r.t. $\|\cdot\|_{\infty}$ with $\phi_{\tau}(s,t,U)$ satisfying

$$\iint \phi_{\tau}^{2}(s,t,U)dsdt < \infty \quad and \quad \int |\phi_{\tau}(t,t,U)|dt < \infty. \tag{3.1}$$

(i) Let $\sigma^2 = 4 \iint [\int \phi_{\tau}(s,t,U)dt]^2 ds$. Then

$$n^{1/2}[T(F_n) - T(F)] \rightarrow N(0, \sigma^2)$$
 in distribution. (3.2)

(ii) There are i.i.d. random variables ξ_i satisfying $E_F \xi_i = 0$ and $E_F \xi_i^2 = \sigma^2$ such that

$$T(F_n) = T(F) + \frac{1}{n} \sum_{i=1}^{n} \xi_i + \Gamma_n$$
 (3.3)

with

$$n\Gamma_n \to \sum_{k=1}^{\infty} \lambda_k Y_k$$
 in distribution, (3.4)

where λ_k are real numbers and Y_k are independent χ_1^2 random variables.

(iii) Let $\gamma = \int \phi_{\tau}(t, t, U) dt$. Then

$$\gamma = \sum_{k=1}^{\infty} \lambda_k = E\left(\sum_{k=1}^{\infty} \lambda_k Y_k\right). \tag{3.5}$$

190 JUN SHAO

If, in addition, (2.2) holds with T and F replaced by τ and U, respectively, then

$$nE_F[T(F_n) - T(F)] \to \gamma. \tag{3.6}$$

Proof. Let $Z_i = F(X_i)$, i = 1, ..., n, and U_n be the empirical distribution corresponding to $Z_1, ..., Z_n$. Since F is continuous, Z_i are i.i.d. from the uniform distribution $U, F_n = U_n \circ F$ and $T(F_n) - T(F) = \tau(U_n) - \tau(U)$. From the second-order compact differentiability of τ ,

$$T(F_n) - T(F) = \iint \phi_{\tau}(s, t, U) dU_n(s) dU_n(t) + R_{\tau}(U_n, U)$$
$$= \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \phi_{\tau}(Z_i, Z_j, U) + R_{\tau}(U_n, U)$$

and therefore,

$$T(F_n) - T(F) = \frac{1}{n} \sum_{i=1}^n \xi_i + \frac{1}{n^2} \sum_{1 \le i, j \le n} h(Z_i, Z_j, U) + R_\tau(U_n, U), \tag{3.7}$$

where

$$\xi_i = 2\int \phi_{ au}(Z_i,t,U)dt, \quad h(s,t,U) = \phi_{ au}(s,t,U) - \int [\phi_{ au}(s,u,U) + \phi_{ au}(u,t,U)]du$$

and R_{τ} is given in (2.6). As a direct consequence of result (4.4) in Section 4,

$$R_{\tau}(U_n, U) = o_p(n^{-1}).$$
 (3.8)

Note that $E_F\xi_i=0$ and $E_F\xi_i^2=\sigma^2$. Then (3.3)-(3.4) follows by applying Theorem 6.4.1B in Serfling (1980) to h(s,t,U), and (3.2) follows from (3.3)-(3.4) and the central limit theorem. From the remark on p.227 of Serfling (1980), (3.5) holds. Taking expectation on both sides of (3.7), we obtain that

$$E_F[T(F_n) - T(F)] = n^{-1}\gamma + E_F[R_\tau(U_n, U)].$$

Hence (3.6) follows from

$$E_F[R_\tau(U_n,U)] = o(n^{-1}).$$

From (2.2), $n|R_{\tau}(U_n, U)| \leq n||U_n - U||_{\infty}^2$ for all n. From Dvoretzky, Kiefer and Wolfowitz's inequality $P_F\{n^{1/2}||U_n - U||_{\infty} \geq t\} \leq c_1e^{-t^2}$, we have

$$E[nR_{\tau}(U_n, U)]^2 \leq E_F[n^2 ||U_n - U||_{\infty}^4] = \int_0^{\infty} P_F\{n^2 ||U_n - U||_{\infty}^4 \geq t\} dt \leq c_2,$$

where c_1 and c_2 are positive constants. This shows that $\{nR_{\tau}(U_n, U) : i = 1, 2, ...\}$ is uniformly integrable (Serfling (1980), p.13). Hence $E_F[R_{\tau}(U_n, U)] = o(n^{-1})$ by (3.8).

The next theorem proves a similar result for second-order Fréchet differentiable T w.r.t. $\|\cdot\|_{\infty}$ or the r-norm defined by

$$\|\cdot\|_r = \|\cdot\|_{\infty} + \|\cdot\|_{L_r}, \quad r = 1, 2.$$
 (3.9)

The advantage of using the r-norm is that more functionals are differentiable w.r.t. r-norm (see Example 7.2), since from $\|\cdot\|_r \ge \max\{\|\cdot\|_{L_r}, \|\cdot\|_{\infty}\}$, it is apparent that differentiability of T w.r.t. $\|\cdot\|_{L_r}$ or $\|\cdot\|_{\infty}$ implies differentiability of T w.r.t. $\|\cdot\|_r$.

Theorem 3.2. (i) Suppose that T is second-order Fréchet differentiable at F w.r.t. the sup-norm $\|\cdot\|_{\infty}$ with $\phi_T(x,y,F)$ satisfying (2.1). Then (3.2)-(3.5) hold with $\xi_i = 2 \int \phi_T(X_i,y,F) dF(y)$, $\sigma^2 = E_F \xi_i^2$ and $\gamma = \int \phi_T(x,x,F) dF(x)$.

- (ii) Results (3.2)-(3.5) also hold if $\|\cdot\|_{\infty}$ in (i) is replaced by the r-norm $\|\cdot\|_r$ defined in (3.9) and $\int \{F(x)[1-F(x)]\}^{r/2}dx < \infty (r=1 \text{ or } 2)$.
- (iii) Assume the conditions in either (i) or (ii). Then (3.6) holds under condition (2.2) or condition (2.2) with $\|\cdot\|_{\infty}$ replaced by $\|\cdot\|_{r}$.

Remark. For r=1, $\int \{F(x)[1-F(x)]\}^{r/2}dx < \infty$ is almost the same as $E_FX_1^2 < \infty$ (see Serfling (1980), p.276) and is implied by $E_F|X_1|^{2+t} < \infty$ with t>0. For r=2, $\int F(x)[1-F(x)]dx < \infty$ is equivalent to $E_F|X_1| < \infty$.

Proof. (i) Note that if F is continuous, then the results follow directly from Proposition 2.2 and Theorem 3.1. For general F, let

$$R_T(F_n, F) = T(F_n) - T(F) - \frac{1}{n^2} \sum_{1 \le i \le j \le n} \phi_T(X_i, X_j, F).$$

Following the proof of Theorem 3.1, we obtain the result if we can show

$$R_T(F_n, F) = o_p(n^{-1}).$$
 (3.10)

From the second-order Fréchet differentiability of T, for any $\epsilon > 0$, there is a $\delta_{\epsilon} > 0$ such that

$$P_F\{n|R_T(F_n,F)| \ge \epsilon_0\} \le P_F\{n||F_n - F||_{\infty}^2 \ge \epsilon_0/\epsilon\} + P_F\{||F_n - F||_{\infty} \ge \delta_\epsilon\},$$

where ϵ_0 is arbitrary. Then (3.10) follows from $||F_n - F||_{\infty} = O_p(n^{-1/2})$.

(ii) From the proof of (i), results (3.2)-(3.5) follow from (3.10), which is implied by

$$||F_n - F||_r = O_p(n^{-1/2}), \quad r = 1, 2.$$
 (3.11)

Note that $||F_n - F||_{\infty} = O_p(n^{-1/2})$,

$$E_F \|F_n - F\|_{L_1} \le \int \{E_F [F_n(x) - F(x)]^2\}^{1/2} dx \le n^{-1/2} \int \{F(x)[1 - F(x)]\}^{1/2} dx$$

and

$$E_F ||F_n - F||_{L_2}^2 = n^{-1} \int F(x)[1 - F(x)] dx.$$

Hence (3.11) holds under the given conditions.

(iii) If (2.2) holds with a norm $\|\cdot\|$, then (3.6) follows from (3.10) and the uniform integrability of $\{n\|F_n - F\|^2\}$. Using Dvoretzky, Kiefer and Wolfowitz's inequality, $E_F[n^2\|F_n - F\|_{\infty}^4]$ is bounded. Hence the results follow from the uniform integrability of $\{n\|F_n - F\|_{L_r}^2\}$, r = 1, 2. Let $\eta_i(x) = I_{X_i}(x) - F(x)$. Then

$$n\|F_{n} - F\|_{L_{1}}^{2} = n \left[\int \left| \frac{1}{n} \sum_{i=1}^{n} \eta_{i}(x) | dx \right|^{2} = \frac{1}{n} \iint \left| \sum_{1 \leq i, j \leq n} \eta_{i}(x) \eta_{j}(y) | dx dy \right| \right]$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \left[\int |\eta_{i}(x)| dx \right]^{2} + \frac{1}{n} \iint \left| 2 \sum_{1 \leq i < j \leq n} \eta_{i}(x) \eta_{j}(y) | dx dy. \right]$$
(3.12)

From $E_F [\int |\eta_1(x)| dx]^2 \le \{\int \{E_F [\eta_i^2(x)]\}^{1/2} dx\}^2 = \{\int \{F(x)[1-F(x)]\}^{1/2} dx\}^2 < \infty$, the first term in (3.12) is uniformly integrable. From

$$\begin{split} E_{F} & \left\{ \frac{1}{n} \iint \left| 2 \sum_{1 \leq i < j \leq n} \eta_{i}(x) \eta_{j}(y) | dx dy \right\}^{2} \\ & \leq \left\{ \frac{1}{n} \iint \left[E_{F} \left| 2 \sum_{1 \leq i < j \leq n} \eta_{i}(x) \eta_{j}(y) \right|^{2} \right]^{1/2} dx dy \right\}^{2} \\ & \leq \left\{ \iint \left[E_{F} \eta_{1}^{2}(x) E_{F} \eta_{2}^{2}(y) \right]^{1/2} dx dy \right\}^{2} \\ & = \left\{ \int \left\{ F(x) [1 - F(x)] \right\}^{1/2} dx \right\}^{4}, \end{split}$$

the second term in (3.12) is also uniformly integrable. Hence $\{n||F_n - F||_{L_1}^2\}$ is uniformly integrable. Similarly,

$$n\|F_n - F\|_{L_2}^2 = \frac{1}{n} \sum_{i=1}^n \int \eta_i^2(x) dx + \frac{2}{n} \int \sum_{1 \le i \le n} \eta_i(x) \eta_j(x) dx.$$

Then $\{n\|F_n - F\|_{L_2}^2\}$ is uniformly integrable since $E_F \int \eta_1^2(x) dx = \int F(x)[1 - F(x)] dx$ and

$$E_F\left[\frac{2}{n}\int \sum_{1\leq i< j\leq n} \eta_i(x)\eta_j(x)dx\right]^2 = \frac{n-1}{n}\iint E_F[\eta_1(x)\eta_2(y)]^2 dxdy$$

$$\leq \left\{\int F(x)[1-F(x)]dx\right\}^2.$$

In view of (3.3)-(3.5), $B_n = \gamma/n$ can be considered as the asymptotic bias of $T(F_n)$. Result (3.6) may hold under weaker conditions than those in Theorems 3.1 and 3.2.

4. Consistency of ν_n^J

Let ν_n^J be the jackknife variance estimator defined in Section 1.

Theorem 4.1. Suppose that F is continuous and τ in (2.4) is second-order compactly differentiable at U w.r.t. $\|\cdot\|_{\infty}$ with $\phi_{\tau}(s,t,U)$ satisfying (3.1). Let σ^2 be given in (3.2). Then

$$n\nu_n^J \to_p \sigma^2$$
. (4.1)

Proof. We use the same notation as in the proof of Theorem 3.1. For each i, let $U_n^{(i)}$ be the empirical distribution corresponding to $Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n$. Then

$$T(F_n^{(i)}) - T(F) = \tau(U_n^{(i)}) - \tau(U) = w_{n,i} + r_{n,i},$$

where $w_{n,i} = n^{-2} \sum_{1 \leq k,j \leq n, k,j \neq i} \phi_{\tau}(Z_k,Z_j,U)$ and $r_{n,i} = R_{\tau}(U_n^{(i)},U)$ (R_{τ} is given in (2.6)). Let \bar{w} and \bar{r} be the averages of $w_{n,i}$ and $r_{n,i}$, respectively. Then

$$n\nu_n^J = (n-1)\sum_{i=1}^n (w_{n,i} - \bar{w})^2 + (n-1)\sum_{i=1}^n (r_{n,i} - \bar{r})^2 + 2(n-1)\sum_{i=1}^n (w_{n,i} - \bar{w})r_{n,i}.$$
(4.2)

The first term on the right side of $(4.2) \rightarrow_p \sigma^2$, since it is the jackknife variance estimator of a V-statistic (see Sen (1977)). By Cauchy-Schwarz inequality, (4.1) follows from

$$(n-1)\sum_{i=1}^{n} r_{n,i}^{2} \to_{p} 0, \tag{4.3}$$

which is implied by

$$n^2 \max_{i \le n} [R_{\tau}(U_n^{(i)}, U)]^2 \to_p 0. \tag{4.4}$$

Let U_n^* be the continuous version of U_n , i.e., U_n^* is the distribution function corresponding to a uniform distribution of mass $(n+1)^{-1}$ in each of the n+1 intervals $[Z_{(i-1)}, Z_{(i)}]$, where $Z_{(i)}$ are ordered Z_i 's, $Z_{(0)} = 0$ and $Z_{(n+1)} = 1$. From Donsker's theorem and Prohorov's theorem, for any $\epsilon > 0$, there exists a compact $\Lambda \subset \mathbf{D}$ such that for n > 1,

$$P\{n^{1/2}(U_n^*-U)\in\Lambda\}>1-\epsilon.$$

Note that $||U_n^* - U_n||_{\infty} \le n^{-1}$ and for each i, $||U_n^{(i)} - U_n||_{\infty} \le n^{-1}$. Then $||U_n^{(i)} - U_n^*||_{\infty} \le 2n^{-1}$ for all $i \le n$ and for n > 1,

$$P\{\rho[n^{1/2}(U_n^{(i)}-U),\Lambda]\leq 2n^{-1/2},\ i=1,\ldots,n\}>1-\epsilon,$$

where $\rho[G,\Lambda]=\inf\{\|K-G\|_{\infty}:K\in\Lambda\}$. We now show that for sufficiently large $n,\,\rho[n^{1/2}(U_n^{(i)}-U),\Lambda]\leq 2n^{-1/2},\,i=1,\ldots,n,$ implies $n|R_{\tau}(U_n^{(i)},U)|<\epsilon,$ $i=1,\ldots,n.$ Suppose not. Then there is a sequence $\{n_m\}$ such that

$$n_m|R_{\tau}(U_{n_m}^{(i_m)}, U)| \ge \epsilon \tag{4.5}$$

and $\rho[G_m,\Lambda] \leq 2n_m^{-1/2}$ for all m, where $G_m = n_m^{1/2}(U_{n_m}^{(i_m)} - U)$. For each m, there is a $K_m \in \Lambda$ such that $\|G_m - K_m\|_{\infty} \leq 2n_m^{-1/2}$. Since Λ is compact, there is a $K \in \Lambda$ and a subsequence $\{m_j\}$ such that $\|K_{m_j} - K\|_{\infty} \to 0$ as $j \to \infty$. Then $\|G_{m_j} - K\|_{\infty} \to 0$ and the set $\Lambda_1 = \{K, G_{m_j}, j = 1, 2, \ldots\}$ is compact. Since τ is second-order compactly differentiable at $U, \lim_{j \to \infty} n_{m_j} |R_{\tau}(U + n_{m_j}^{-1/2} G_{m_j}, U)| = 0$. This contradicts (4.5). Therefore

$$P\{n|R_{\tau}(U_n^{(i)},U)|<\epsilon,i=1,\ldots,n\}>1-\epsilon$$

for sufficiently large n. This completes the proof since ϵ is arbitrary.

It was shown in Shao and Wu (1989, Theorem 5) that (4.1) holds if T is second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_{\infty}$. Compared with the result there, our Theorem 4.1 requires less condition on T (see Proposition 2.2) but assumes the continuity of F. The following result shows the consistency of ν_n^J when T is second-order Fréchet differentiable at F w.r.t. the r-norm.

Theorem 4.2. Suppose that T is second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_r$ defined in (3.9) (r=1 or 2) with $\phi_T(x,y,F)$ satisfying (2.1) and that $\int \{F(x)[1-F(x)]\}^{r/2} < \infty$. Then (4.1) holds with σ^2 given in Theorem 3.2.

Proof. Let $w_{n,i} = n^{-2} \sum_{1 \leq k, j \leq n, k, j \neq i} \phi_T(X_k, X_j, F)$ and $r_{n,i} = T(F_n^{(i)}) - T(F) - w_{n,i}$. Then (4.2) holds and it remains to show (4.3). Let $\epsilon_0 > 0$ be given and

$$\zeta_n = (n-1)\sum_{i=1}^n \|F_n^{(i)} - F\|_{\infty}^4 \quad \text{and} \quad t_n(r) = (n-1)\sum_{i=1}^n \|F_n^{(i)} - F\|_{L_r}^4, r = 1, 2.$$

From the second-order Fréchet differentiability of T, for any $\epsilon > 0$, there is a $\delta_{\epsilon} > 0$ such that

$$P_F\Big\{(n-1)\sum_{i=1}^n r_{n,i}^2 > \epsilon_0\Big\} \le P_F\{\zeta_n + t_n(r) > \epsilon_0/8\epsilon\} + P_F\Big\{\max_{i \le n} \|F_n^{(i)} - F\|_r > \delta_\epsilon\Big\}.$$

Since $(\max_{i\leq n} \|F_n^{(i)} - F\|_r)^4 \leq \sum_{i=1}^n \|F_n^{(i)} - F\|_r^4$, (4.3) follows from $\zeta_n + t_n(r) = O_p(1)$. From $\zeta_n \leq 8 + 8n^2 \|F_n - F\|_{\infty}^4 = O_p(1)$, it remains to show that $t_n(r) = O_p(1)$, r = 1, 2. Note that

$$t_n(1) \le 8(n-1) \sum_{i=1}^n \left[\int |F_n^{(i)}(x) - F_n(x)| dx \right]^4 + 8n^2 \left[\int |F_n(x) - F(x)| dx \right]^4$$

$$\leq \frac{64}{(n-1)^3} \sum_{i=1}^n \left[\int |I_{X_i}(x) - F(x)| dx \right]^4 + \left[\frac{64n}{(n-1)^3} + 8n^2 \right] \left[\int |F_n(x) - F(x)| dx \right]^4.$$

From the proof of Theorem 3.2(ii), $\left[\int |F_n(x) - F(x)| dx\right]^4 = O_p(n^{-2})$. Since

$$E_F\left[\int |I_{X_1}(x)-F(x)|dx\right]^2 \leq \left\{\int \{F(x)[1-F(x)]\}^{1/2}dx\right\}^2 < \infty,$$

 $n^{-3}\sum_{i=1}^n \left[\int |I_{X_i}(x)-F(x)|dx\right]^4 \to_p 0$ by Marcinkiewicz law of large numbers. Hence $t_n(1)=O_p(1)$. A similar argument shows that

$$t_n(2) \leq \frac{64}{(n-1)^3} \sum_{i=1}^n \left\{ \int [I_{X_i}(x) - F(x)]^2 dx \right\}^2 + O_p(1).$$

Since $E_F \int [I_{X_1}(x) - F(x)]^2 dx = \int F(x)[1 - F(x)] dx < \infty$, $t_n(2) = O_p(1)$ follows from Marcinkiewicz law of large numbers.

5. Consistency of b_n^J

Let b_n^J be the jackknife bias estimator defined in Section 1. To show the consistency of b_n^J , we need a differentiability assumption which is stronger than that in Definition 2.1.

Definition 5.1. A functional f on N is uniformly second-order Fréchet differentiable at $H \in N$ w.r.t. $\|\cdot\|$ if there is a real-valued function $\phi_f(x, y, K)$ defined on $\mathbb{R}^2 \times \{K \in \mathbb{N} : \|K - H\| < \delta\}$ for a fixed $\delta > 0$ such that $\phi_f(x, y, K) = \phi_f(y, x, K)$, $\iint \phi_f(x, y, K) dK(x) dK(y) = 0$ and

$$\lim_{\|G-H\|+\|K-H\|\to 0,\,G,K\in \mathbb{N}}\frac{f(G)-f(K)-\iint \phi_f(x,y,K)dG(x)dG(y)}{\|G-K\|^2}=0.$$

It can be seen from Example 7.1 that this uniform second-order Fréchet differentiability is much weaker than the strong second-order Fréchet differentiability defined in Parr (1985).

Lemma 5.1. Let g(x,K) be a real-valued function defined on $\mathbb{R} \times \{K \in \mathbb{N} : ||K - F|| < \delta\}$ for a fixed $\delta > 0$, where the norm $||\cdot||$ satisfies $||F_n - F|| \to_p 0$. Suppose that $E_F|g(X_1,F)| < \infty$ and for any c > 0, $\sup_{|x| \le c} |g(x,F_n) - g(x,F)| \to_p 0$. Suppose also that there is a function $h(x) \ge 0$ such that $E_F h(X_1) < \infty$ and $\lim_{n \to \infty} P_F\{|g(x,F_n)| \le h(x), x \in \mathbb{R}\} = 1$. Then

$$\zeta_n = \int |g(x,F_n) - g(x,F)| dF_n(x) \rightarrow_p 0.$$

Proof. Let $S_n = \{||F_n - F|| < \delta \text{ and } |g(x, F_n)| \le h(x) \text{ for all } x\}$ and S_n^c be its complement. Let $\epsilon > 0$ be given. Then there is a c > 0 such that

$$a = \int_{|x|>c} [h(x) + |g(x,F)|] dF(x) < \epsilon/3.$$

Let $a_n = \int_{|x|>c} [h(x) + |g(x,F)|] dF_n(x)$ and $b_n = \sup_{|x|\leq c} |g(x,F_n) - g(x,F)|$. Then

$$P_F\{\zeta_n \ge \epsilon\} \le P_F\{a_n \ge \epsilon/2\} + P_F\{b_n \ge \epsilon/2\} + P_F(S_n^c).$$

Under the given conditions, $P_F(S_n^c) \to 0$, $b_n \to_p 0$ and $a_n \to_p a$. Hence $P_F\{\zeta_n \ge \epsilon\} \to 0$.

Theorem 5.1. (i) Suppose that T is uniformly second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_{\infty}$ with $\phi_T(x, y, K)$ satisfying (2.1) and $\phi_T(x, x, K)$ satisfying the conditions in Lemma 5.1. Let γ be given in Theorem 3.2. Then

$$nb_n^J \to_p \gamma. \tag{5.1}$$

(ii) Result (5.1) also holds if $\|\cdot\|_{\infty}$ in (i) is replaced by $\|\cdot\|_r$ and $E_F|X_1|^{2/r} < \infty$ (r=1 or 2).

(iii) Assume the conditions in either (i) or (ii). If $\phi_T(x, x, K)$ is defined on $\mathbb{R} \times \mathbb{N}$ and satisfies

$$\Phi_n = \frac{1}{n} \sum_{i=1}^n \phi_T(X_i, X_i, F_n) \text{ is uniformly integrable}$$
 (5.2)

(which is implied by $\sup_n E_F |\Phi_n|^t < \infty$ for t > 1) and T satisfies

$$\sup_{G,H\in\mathbb{N}}\left|\frac{T(G)-T(H)-\iint\phi_T(x,y,H)dG(x)dG(y)}{\|G-H\|^2}\right|<\infty, \tag{5.3}$$

where $\|\cdot\|$ is either $\|\cdot\|_{\infty}$ or $\|\cdot\|_{r}$, then

$$nE_F b_n^J \to \gamma.$$
 (5.4)

Proof. (i) From the uniform second-order Fréchet differentiability of T at F, for any $0 < \epsilon < \epsilon_0$, there is a $\delta_{\epsilon} > 0$ such that

$$P_{F}\{|s_{n}| > \epsilon_{0}\} \leq P_{F}\{n\sum_{i=1}^{n} \|F_{n}^{(i)} - F_{n}\|_{\infty}^{2} \geq \epsilon_{0}/\epsilon\} + P_{F}\{\max_{0 \leq i \leq n} \|F_{n}^{(i)} - F\|_{\infty} > \delta_{\epsilon}\},$$

$$(5.5)$$

where $F_n^{(0)} = F_n$ and

$$s_n = (n-1)\sum_{i=1}^n \left[T(F_n^{(i)}) - T(F_n) - \iint \phi_T(x, y, F_n) dF_n^{(i)}(x) dF_n^{(i)}(y) \right]. \quad (5.6)$$

Since $||F_n^{(i)} - F_n||_{\infty} \le n^{-1}$, $s_n \to_p 0$. A straightforward calculation shows that

$$\frac{n-1}{n} \sum_{i=1}^{n} \left[\frac{1}{(n-1)^2} \sum_{1 \le k, j \le n, k, j \ne i} \phi_T(X_k, X_j, F_n) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \phi_T(X_i, X_i, F_n) + \frac{2(n-2)}{n(n-1)} \sum_{1 \le i < j \le n} \phi_T(X_i, X_j, F_n).$$

Since $\sum_{1 \le i,j \le n} \phi_T(X_i,X_j,F_n) = n^2 \iint \phi_T(x,y,F_n) dF_n(x) dF_n(y) = 0$, we have

$$nb_n^J = \frac{1}{n-1} \sum_{i=1}^n \phi_T(X_i, X_i, F_n) + o_p(1). \tag{5.7}$$

Hence (5.1) holds since by the law of large numbers and Lemma 5.1 with $g(x, K) = \phi_T(x, x, K)$,

$$\frac{1}{n}\sum_{i=1}^{n}\phi_{T}(X_{i},X_{i},F_{n})\rightarrow_{p}\gamma. \tag{5.8}$$

(ii) Let s_n be given in (5.6). By the second-order differentiability of T, (5.5) holds with $\|\cdot\|_{\infty}$ replaced by $\|\cdot\|_{r}$. From the proof of (i), (5.1) holds if

$$(n-1)\sum_{i=1}^{n}||F_n^{(i)} - F_n||_{L_r}^2 = O_p(1), \quad r = 1, 2.$$
 (5.9)

From $F_n^{(i)} - F_n = (n-1)^{-1}(I_{X_i} - F_n)$, the left side of (5.9) is equal to

$$\frac{1}{n}\sum_{i=1}^{n}\|I_{X_i}-F_n\|_{L_r}^2\leq \frac{4}{n-1}\sum_{i=1}^{n}\|I_{X_i}-F\|_{L_r}^2,\quad r=1,2.$$

From the inequality

$$\int |I_y(x) - F(x)| dx \le |y| + E_F|X_1|, \tag{5.10}$$

 $E_F||I_{X_1} - F||_{L_1}^2 \le E_F[|X_1| + E_F|X_1|]^2$. Also, $E_F||I_{X_1} - F||_{L_2}^2 = \int F(x)[1 - F(x)]dx \le E_F|X_1|$. Hence (5.9) holds under the given conditions.

(iii) By conditions (5.2) and (5.8), $E_F\left[\frac{1}{n}\sum_{i=1}^n\phi_T(X_i,X_i,F_n)\right]\to\gamma$. Hence (5.4) holds if $E_Fs_n\to 0$, which follows from the uniform integrability of $\{s_n\}$. If (5.3) holds with $\|\cdot\|_{\infty}$, then (5.4) holds since $|s_n| \leq (n-1)\sum_{i=1}^n \|F_n^{(i)} - F_n\|_{\infty}^2 \leq 1$. Suppose that (5.3) holds with $\|\cdot\|_r$. Then

$$|s_n| \le 2 + 2(n-1) \sum_{i=1}^n ||F_n^{(i)} - F_n||_{L_r}^2 \le 2 + \frac{8}{n-1} \sum_{i=1}^n ||I_{X_i} - F||_{L_r}^2.$$

Note that $||I_{X_i} - F||_{L_r}^2$ are i.i.d. random variables with

$$|E_F||I_{X_1} - F||_{L_r}^2 = E_F \left[\int |I_{X_1}(x) - F(x)|^r dx \right]^{2/r} \le E_F (|X_1| + E_F |X_1|)^{2/r}$$

(by inequality (5.10)). Hence if $E_F|X_1|^{2/r} < \infty$, $\{(n-1)^{-1} \sum_{i=1}^n ||I_{X_i} - F||_{L_r}^2\}$ is uniformly integrable, which implies the uniform integrability of $\{s_n\}$. This completes the proof.

6. Asymptotic Properties of $T^{J}(F_{n})$

The jackknife estimator $T^J(F_n) = T(F_n) - b_n^J$ is designed to remove the leading term γ/n (see Theorems 3.1 and 3.2) in the bias of $T(F_n)$. The following result rigorously justifies this "bias reduction" property of the jackknife method.

Theorem 6.1. (i) Suppose that T is uniformly second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_{\infty}$ with $\phi_T(x,y,K)$ satisfying (2.1) and $\phi_T(x,x,K)$ satisfying the conditions in Lemma 5.1. Let $\xi_i, \sigma^2, \lambda_k$ and Y_k be the same as in Theorem 3.2. Then

$$n^{1/2}[T^J(F_n) - T(F)] \to N(0, \sigma^2)$$
 in distribution, (6.1)

and

$$T^{J}(F_{n}) = T(F) + \frac{1}{n} \sum_{i=1}^{n} \xi_{i} + \Gamma_{n}^{J}$$
(6.2)

with

$$n\Gamma_n^J \to \sum_{k=1}^{\infty} \lambda_k (Y_k - 1)$$
 in distribution. (6.3)

- (ii) Results (6.1)-(6.3) hold if $\|\cdot\|_{\infty}$ in (i) is replaced by $\|\cdot\|_r$ and $E_F|X_1|^{2/r} < \infty$ (r = 1 or 2).
- (iii) Assume the conditions in either (i) or (ii) hold. If (3.6), (5.2) and (5.3) hold (with $\|\cdot\| = \text{either } \|\cdot\|_{\infty}$ or $\|\cdot\|_r$), then

$$nE_F[T^J(F_n) - T(F)] \to 0. \tag{6.4}$$

Proof. Let $h(x, y, F) = \phi_T(x, y, F) - \int [\phi_T(x, u, F) + \phi_T(u, y, F)] du$. From (3.10), (5.6)-(5.8),

$$T^{J}(F_{n}) = T(F) + \frac{1}{n} \sum_{i=1}^{n} \xi_{i} + \frac{2}{n(n-1)} \sum_{1 \leq i \leq j \leq n} h(X_{i}, X_{j}, F) + o_{p}(n^{-1}).$$

Hence results (6.1)-(6.3) follows from Theorem 5.5.2 in Serfling (1980) under the given conditions. Result (6.4) follows from (3.6) and (5.4) under the given conditions.

From (3.1) and (6.1), the jackknife estimator $T^J(F_n)$ has the same first order asymptotic distribution as $T(\dot{F}_n)$. The second-order asymptotic representations of $T(F_n)$ and $T^J(F_n)$, however, are different: Γ_n^J in (6.3) converges in distribution to a random variable with mean zero whereas Γ_n in (3.3) converges in distribution to a random variable with mean γ (which is not necessarily zero). Hence the jackknife estimator $T^J(F_n)$ is less biased. Formal results such as (6.4) may be established under weaker conditions than those in Theorem 6.1(iii). Note that both $T(F_n)$ and $T^J(F_n)$ have the same asymptotic variance (= σ^2/n if $\sigma^2 > 0$ and = $\sum_k \lambda_k^2/n^2$ if $\sigma^2 = 0$). Hence the jackknife estimator $T^J(F_n)$ improves $T(F_n)$ in the sense that it reduces the bias but does not increase the asymptotic variance.

7. Examples

Example 7.1. Functions of mean. Suppose that **F** consists of all the distributions with finite mean and $T(G) = g(\mu_G)$, where $\mu_G = \int x dG(x)$ and g is a real-valued function which is second-order differentiable in a neighborhood of μ_F . Let

 $\phi_T(x,y,K) = g'(\mu_K)[(x+y)/2 - \mu_K] + g''(\mu_K)[xy - \mu_K(x+y) + \mu_K^2]/2.$ (7.1)

Let \overline{X} be the average of X_i . Then $\phi_T(x,x,F_n)=g'(\overline{X})(x-\overline{X})+g''(\overline{X})(x-\overline{X})^2/2$. If $E_FX_1^2<\infty$ and g'' is continuous at μ_F , it can be easily shown that (2.1) holds and $\phi(x,x,F_n)$ satisfies the conditions in Lemma 5.1. If there is a constant c>0 such that $|g''(x)|\leq c$, then

$$\left|\frac{1}{n}\sum_{i=1}^{n}\phi_{T}(X_{i},X_{i},F_{n})\right| = \frac{1}{2n}|g''(\bar{X})|\sum_{i=1}^{n}(X_{i}-\bar{X})^{2} \le \frac{c}{2n}\sum_{i=1}^{n}X_{i}^{2}$$

and (5.2) holds since $\{\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\}$ is uniformly integrable under $E_{F}X_{1}^{2}<\infty$. The following result shows that T is uniformly second-order Fréchet differentiable at F w.r.t. the L_{1} -norm. Note that T is not necessarily strongly Fréchet differentiable at F (Definition 2 in Parr (1985)).

Proposition 7.1. If g''(t) is defined on $[\mu_F - a, \mu_F + a]$, a > 0, and is continuous at μ_F , then T is uniformly second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_{L_1}$ with $\phi_T(x, y, K)$ given in (7.1). If, in addition, g'' is defined on R and is bounded, then (5.3) holds with $\|\cdot\|_{L_1}$.

Proof. For $G, K \in \mathbb{N}$ with $||G - K||_{L_1} < a$, we have $|\mu_G - \mu_K| \le ||G - K||_{L_1} < a$ and

$$T(G) - T(K) = g'(\mu_K)(\mu_G - \mu_K) + 2^{-1}g''(\zeta_{G,K})(\mu_G - \mu_K)^2,$$

where $\zeta_{G,K}$ is on the line segment between μ_G and μ_K . Since $\iint xydG(x)dG(y) = \mu_G^2$,

$$|R_T(G,K)| = \left| T(G) - T(K) - \iint \phi_T(x,y,K) dG(x) dG(y) \right|$$

$$= 2^{-1} |g''(\zeta_{G,K}) - g''(\mu_K)| (\mu_G - \mu_K)^2 \le 2^{-1} |g''(\zeta_{G,K}) - g''(\mu_K)| \|G - K\|_{L_1}^2.$$

Hence the first assertion follows from the continuity of g'' at μ_F and (5.3) follows from the boundedness of g''.

Example 7.2. L-statistics. Let J(t) be a real-valued differentiable function on [0,1] and $T(G) = \int xJ[G(x)]dG(x)$. $T(F_n)$ is called an L-statistic (see Serfling (1980), Chapter 8). Define $a(x,K) = \int [K(u) - I_x(u)]J[K(u)]du$, $b(x,y,K) = -\int [K(u) - I_x(u)][K(u) - I_y(u)]J'[K(u)]du$ and

$$\phi_T(x, y, K) = [a(x, K) + a(y, K) + b(x, y, K)]. \tag{7.2}$$

If $E_F X_1^2 < \infty$, it can be shown that (2.1), (5.2) and the conditions in Lemma 5.1 hold (with $h(x) = |x| + E_F |X_1| + 1$). The following result shows the differentiability of T. Note that T may not be second-order differentiable w.r.t. $\|\cdot\|_{\infty}$ unless J is trimmed (see Proposition 7.2(ii)).

Proposition 7.2. (i) If J' is continuous on [0, 1], then (5.3) holds with $\|\cdot\|_2$ and T is uniformly second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_2$ with $\phi_T(x, y, K)$ given in (7.2).

(ii) Suppose that J(t)=0 for $t\in[0,\alpha)\cup(\beta,1]$, $0<\alpha<\beta<1$, and that J' is continuous on $[\alpha,\beta]$. Then T is uniformly second-order Fréchet differentiable at F w.r.t. $\|\cdot\|_{\infty}$ with $\phi_T(x,y,K)$ given in (7.2). Furthermore, for each $K\in\mathbb{N}$, there is a constant c_K such that $|\phi_T(x,y,K)|\leq c_K$.

Proof. (i) Let $R_T(G, K) = T(G) - T(K) - \iint \phi_T(x, y, K) dG(x) dG(y)$. From Serfling (1980) (p.289),

$$R_T(G,K) = \int W[G(x),K(x)][G(x)-K(x)]^2 dx,$$

where $W(s,t) = \left[\int_t^s J(u)du - J(t)(s-t) - 2^{-1}J'(t)(s-t)^2\right]/(s-t)^2$ if $s \neq t$ and W(s,t) = 0 if s = t. From the continuity of J', $\sup_x |W[G(x),K(x)]| \leq ||J'||_{\infty} < \infty$ and $\sup_x |W[G(x),K(x)]| \to 0$ as $||G-K||_{\infty} \to 0$. Hence the results in (i) hold.

(ii) Let c and d be two real numbers such that $F(c) > \beta$ and $F(d) < \alpha$, and $\delta = \min\{\alpha - F(d), F(c) - \beta\}$. Note that if both G(x) and K(x) are in $[0, \alpha) \cup (\beta, 1]$,

then W[G(x), K(x)] = 0. Suppose that G and K satisfy $||G - F||_{\infty} < \delta$ and $||K - F||_{\infty} < \delta$. Then if $x \le d$, both G(x) and $K(x) \le \alpha$ and if $x \ge d$, both G(x) and $K(x) \ge \beta$. Hence

$$|R_T(G,K)| = \Big| \int_d^c W[G(x),K(x)][G(x)-K(x)]^2 dx \Big|$$

 $\leq ||G-K||_{\infty}^2 \int_d^c |W[G(x),K(x)]| dx.$

Then the first assertion follows from $\int_d^c |W[G(x),K(x)]| dx \to 0$ as $||G-K||_{\infty} \to 0$. Similarly, for each K, there are constants c(K) and d(K) such that

$$a(x,K) = \int_{d(K)}^{c(K)} [K(u) - I_x(u)] J[K(u)] du$$

and

$$b(x,y,K) = -\int_{d(K)}^{c(K)} [K(u) - I_x(u)][K(u) - I_y(u)]J'[K(u)]du.$$

Thus the second assertion holds since J and J' are bounded.

References

Beran, R. (1984). Jackknife approximations to bootstrap estimates. Ann. Statist. 12, 101-118.
Parr, W. C. (1985). Jackknifing differentiable statistical functionals. J. Roy. Statist. Soc. Ser. B 47, 56-66.

Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43, 353-360.

Sen, P. K. (1977). Some invariance principles relating to jackknifing and their role in sequential analysis. Ann. Statist. 5, 316-329.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley, New York.

Shao, J. and Wu, C. F. J. (1989). A general theory for jackknife variance estimation. *Ann. Statist.* 17, 1176-1197.

Department of Mathematics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.

(Received April 1989; accepted June 1990)