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Abstract: We establish some asymptotic results for the statistic T(F,) and the
corresponding jackknife estimators, where F, is the empirical distribution and T is
a second-order differentiable functional in some sense. In particular, second-order
asymptotic representations of T(F,) and the jackknife estimator are obtained and
the jackknife variance and bias estimators are shown to be consistent.
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1. Introduction

Let X3,...,X, be independent and identically distributed (i.i.d.) random
samples from an unknown population distribution F and let F,, be the corre-
sponding empirical distribution, i.e., Fa(z) = n~1 ¥, Ix,(z), where I,(z) = 1 if
y £ z and = 0 otherwise. In many situations the parameter of interest is T(F),
where T is a functional defined on a set N (to be specified in Section 2). A
nonparametric estimator of T'(F) is T(F,). Under weak conditions,

n'/2[T(F,) — T(F)] - N(0,0%) in distribution,

where o is usually unknown and ¢?/n is called the asymptotic variance of T(F},).

Let By denote the bias or the asymptotic bias of T(F}) as an estimator of T'(F)
(see Section 3). To assess the performance of T(F,) or make other statistical
inferences, we need estimators of 0?/n and B,. An essential requirement of
variance and bias estimators is their weak consistency. That is, if v, and b, are
estimators of 0%/n and B,,, respectively, then we require

nvy —0? -,0 and n(b, — B,) —, 0,

where —,, denotes convergence in probability.
The jackknife, originally introduced by Quenouille (1956) for bias reduction,
is a convenient nonparametric method for variance and bias estimation and for
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improving the estimator T(F,) in some situations. For each i, let F{" be the
empirical distribution corresponding to the samples X;,... , X;_;, Xit1yeer 3y Xn.
The jackknife estimators of 0?/n and B, are respectively

n—1g N 1w ;
va=— Y [T(F")-TP, T= ;ZIT(F,‘,’),
i=1 =

and
b = (n = DT - T(F.)].

The jackknife estimator of T(F), designed to reduce the bias in estimating T'(F),
is

T(F,) = T(F,) - b.

The asymptotic validity of the jackknife (e.g., the weak consistency of v and
b} and performance of 7”7 (Fn)) was established in some special situations. Beran
(1984) and Parr (1985) used a differentiable functional approach to establish a
general result. However, the differentiability assumption on T they assumed is
too strong and does not hold for some commonly used statistics. The main
purpose of this note is to establish properties of the jackknife estimators under
a weak differentiability assumption on 7. After introducing several versions of
(second-order) differentiability of 7" in Section 2, we study asymptotic properties
of T(Fy,) in Section 3 and prove the weak consistency of the jackknife estimators
v and b] in Sections 4 and 5. In Section 6, asymptotic properties of the jackknife
estimator T7(F,) are established, which show that T (Fy) reduces the bias in
some sense. The last section contains some examples.

2. Second-Order Differentiability

Let F = {all distributions on the real line R} and | - || be a norm defined
on the space F4 = {¢(G - K):c € R, G,K € F,||G - K|| < o0}. Some useful
norms are the sup-norm ||G — K|l = sup, |G(z) — K(z)| and the Ly-norm
(P2 1) IG - K|z, = [[|G(z) — K(=)|Pda]'/?. Let N = {G € F : |G - K|
< oo for any K € F}. Suppose that V is a normed vector space generated by
|1l and N C V. We assume F € N and the functional T is defined on N.

Definition 2.1. A functional f defined on N is second-order Fréchet differen-
tiable at H € N with respect to (w.r.t.) a norm || - || if there is a real-valued func-
tion ¢4(z,y, H) on R? such that és(z,y,H) = ¢4(y,z, H), [f ¢s(z,y, H)dH(z)
dH(y) = 0 and

fim  J(G)= S(H) = J] ¢4(=,y, H)dG(2)dG(y) _
lG~H||—0,GeN G - H||?

0.
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The differentiability of f according to Definition 2.1 is called second-order
since ¢(G) = [[ ¢4(z,y, H)dG(z)dG(y) is a quadratic functional. f is second-
order differentiable at H simply means that f(G) — f(H) can be approximated
by a quadratic functional for G near H (w.r.t. the topology generated by || ||)
and that the rate of the approximation is o(||G — H||?). If f(G) — f(H) can be
approximated by a linear functional {(G) for G near H, i.e.,

f(G) - f(H) - UG) _

= 0,
IG-H||—0,GEN G - H||

then f is first-order Fréchet differentiable at H, which is a well understood con-
cept in the literature. See Serfling (1980) for a detailed discussion of the first-
order differentiability of a functional. For the study of the jackknife bias esti-
mator b, however, assuming the first-order differentiability of T is not enough,
since the bias of T(F,) is directly related to the second-order differential of T
(see Theorems 3.1 and 3.2). Also, the first-order (Fréchet or compact) differen-
tiability of T does not ensure the consistency of the jackknife variance estimator
vy . Parr (1985) proved the consistency of v;] under a first-order strong Fréchet
differentiability assumption on 7', which is much stronger than the first-order
Fréchet differentiability (in the ordinary sense) and is not comparable with the
second-order Fréchet differentiability in Definition 2.1.

Beran (1984) proved the weak consistency of v;] under the conditions that
T is second-order Fréchet differentiable at F w.r.t. the sup-norm || - || with
or(z,y, F) satisfying

// i (z,v, F)dF(z)dF(y) < oo and /|¢T(z,z,F)|dF(:c) <oo (2.1)
and that

sup
GeN

T(G) - T(F) - ff ¢T(z’ y,F)dG(Z)dG(y)’ < 00. (22)
IG - FII%

Condition (2.2), however, is unnecessarily restrictive. Under the assumption
that T is second-order Fréchet differentiable at F w.r.t. || - || With ¢y (z,y, F)
satisfying (2.1), the weak consistency of v was proved in Shao and Wu (1989).
In Section 4, we will prove the weak consistency of v when T is differentiable
in a different and/or weaker sense.

Definition 2.2. Let S be a class of subsets of V. A functional f defined on N is
second-order S-differentiable at H € N w.r.t. ||-|| if there is a real-valued function
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¢f(z7va) such that ¢f(z’y’H) = ¢f(yazaH)7 ff ¢f(zvyv H)dH(z)dH(y) =0
and for any A € S, ‘ .

i LU+ tK) = £(H) = QUK) _
t—0 2

uniformly for all K € A and H + tK € N, where Q(tK) = [[ ¢s(z,y,H)
d[H + tK)(z)d[H + tK](y).

0 (2.3)

If S is chosen to be B={bounded subsets of V}, Proposition 2.1 shows that
B-differentiability (Definition 2.2) is equivalent to Fréchet differentiability (Def-
inition 2.1). If S is chosen to be C={compact subsets of V}, C-differentiability
is referred to as compact differentiability. Therefore, compact differentiability is
weaker than Fréchet differentiability.

Proposition 2.1. A functional f on N is second-order B-differentiable at H
w.r.t. ||| if and only if f is second-order Fréchet differentiable at H w.r.t. ||-]|.

Proof. (i) B-differentiability implies Fréchet differentiability. Suppose that
Ge€Nand |G- H| - 0. Let A = {K/||K|| : K € V}. Then A € B and
(G - H)/||G — H|| € A. The result follows by replacing ¢t and K in (2.3) by
|G — H|| and (G — H)/||G — H||, respectively.

(ii) Fréchet differentiability implies B-differentiability. For any A € B, there is a
constant ¢ such that ||K|| < ¢ for K € A. For all K € A with G = H +tK € N,
ast — 0,

J(H + 1K) - () = QUE) _ ,f(Q) = fI)-QG-H) |

t? IG - H|?
When || - || is the sup-norm and F is continuous, it is convenient to consider
the functional
1(G)=T(GoF), Ge€N,, (2.4)

where N,={ all distributions on [0,1] }. Note that N=F and Ko F € N if
K € N,. Hence T(K o F) is well defined. Let D be the space of right continuous
real-valued functions on [0,1] which have left hand limits. Definitions 2.1 and
2.2 are applicable to 7 with N and V replaced by N, and D (equipped with
| - lloo) Tespectively. Let U be the uniform distribution function on [0,1]. Then
7(U) = T(F). The result in Proposition 2.2 indicates a relation between the
differentiability of T at F' and the differentiability of 7 at U.

Proposition 2.2. If T is second-order Fréchet differentiable at F w.r.t. || - ||oo
and F i3 continuous, then 7 is second-order Fréchet and compactly differentiable
at U (uniform distribution on [0,1] ) w.r.t. || - ||co-
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Proof. From Definition 2.1,‘ there is a function ¢(z,y, F) such that for G € N,
R1(G,F)/||G - Fllg&o - 0 (2.5)

as |G — Fl||oc — 0, where R7(G, F) = T(G)-T(F)— [[ ¢4(z,y, F)dG(z)dG(y).

Define ¢.(s,t,U) = ¢p(F~1(s), F~1(t), F), where F~1(t) = inf{z : F(z) > t},
and

R.(K,U) = 7(K) = 7(U) — / 6o(s,t,U)dK(s)dK(t), K €N,. (2.6)

If K€ N,,then Ko F € N and R,(K,U) = Rr(K o F,F). Then the result
follows from (2.5) and [|[K o F — Flleoc = ||K 0 F — U 0 Flloo £ ||K — Ul|co-

3. A Second-Order Representation for T(F},)

In this section we establish a second-order representation (3.3)-(3.4) for
T(F,).

Theorem 3.1. Let 7 be defined in (2.4). Suppose that F is continuous and that

T is second-order compactly differentiable at U (uniform distribution on [0,1})
w.rt. || - |leo with ¢(s,t,U) satisfying

/ / #(s,t,U)dsdt < o0 and / l6+(2,8, U)|dt < oo (3.1)
(i) Let 0% = 4 [[[ ¢+(s,t,U)dt]*ds. Then
n/2[T(F,) — T(F)] - N(0,0%) in distribution. (3.2)

(ii) There arei.i.d. random variables §; satisfying Er€; = 0 and Ept? = o® such
that

1 n
n)=T(F)+ — i+ T, .
T(F,) = T( )+n§£+ (3.3)
with -
nln = Y MYi in distribution, (3.4)
k=1

where A\ are real numbers and Yy, are independent x? random variables.
(iii) Let vy = [ ¢-(t,t,U)dt. Then

o0 (o}

y=3 = E(Y M0). (3.5)

k=1 k=1
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If, in addition, (2.2) holds with T and F replaced by T and U, respectively, then

nEp[T(F,) — T(F)] — 7. (3.6)

Proof. Let Z; = F(X;), i = 1,...,n, and U, be the empirical distribution
corresponding to Z;,... ,Z,. Since F is continuous, Z; arei.i.d. from the uniform
distribution U, F, = U,oF and T(F,,)—T(F) = 7(U,)—~7(U). From the second-
order compact differentiability of r,

T(F,) - T(F) = / / (3,1, U)dU(8)dUn(t) + Ry (Un, U)

1 n
= F E Zd’T(Zﬁ, ZJ, U) + RT(U,", U)
=1 j

=1

and therefore,

T(F,) - T(F) = %2& + nl_z KZ( WZ:,Z;,U) + Ro(Un,U),  (3.7)
i= <i,j<n

where

£=2 / 6e(Zi,t, UVdt, h(s,8,U) = bs(s,t,U) — / [6+(5,5,U) + s (u, 1, U)]du

and R, is given in (2.6). As a direct consequence of result (4.4) in Section 4,
R,(Uyn,U) = 0p(n71). (3.8)

Note that Exf; = 0 and Epf? = o?. Then (3.3)-(3.4) follows by applying
Theorem 6.4.1B in Serfling (1980) to h(s,t,U), and (3.2) follows from (3.3)-(3.4)
and the central limit theorem. From the remark on p.227 of Serfling (1980), (3.5)
holds. Taking expectation on both sides of (3.7), we obtain that

Ep|[T(F,) — T(F)] = n~y + Ep[R,(Un,U)].
Hence (3.6) follows from
Ep[R,(Un,U)] = o(n71).

From (2.2), n|R,(Un,U)| < n||U, — U||%, for all n. From Dvoretzky, Kiefer and
Wolfowitz’s inequality Pp{n'/?||U, — Ulle >t} < cle"n, we have

Eln(Un, V)P < Eln?lUn = Ul] = [ Pe{n?lUs - Ul 2 it < o,
0
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where ¢, and c; are positive constants. This shows that {nR,(U,,U) : i =
1,2,...} is uniformly integrable (Serfling (1980), p.13). Hence Er[R,(U,,U)] =
o(n71) by (3.8).

The next theorem proves a similar result for second-order Fréchet differen-
tiable T w.r.t. || - ||co or the r-norm defined by

Hlle =1 lloo + 1l llz.s 7= 1,2. (3.9)

The advantage of using the r-norm is that more functionals are differentiable
w.r.t. r-norm (see Example 7.2), since from || - ||, > max{|| - ||z,,]| - [0}, it is
apparent that differentiability of T w.r.t. ||-||z, or ||-||co implies differentiability
of T wrt. |||

Theorem 3.2. (i) Suppose that T is second-order Fréchet differentiable at F
w.r.t. the sup-norm || - |l with ¢p(z,y,F) satisfying (2.1). Then (3.2)-(3.5)
hold with & = 2 [ ¢ (Xi,y, F)dF(y), 0* = Ep€? and vy = [ ¢y(z,2, F)dF(z).
(ii) Results (3.2)-(3.5) also hold if || - || in (i) is replaced by the r-norm || - ||,
defined in (3.9) and [{F(z)[1 — F(2)]}"/?dz < oo(r = 1 or 2).

(iii) Assume the conditions in either (i) or (ii). Then (3.6) holds under condition
(2.2) or condition (2.2) with || - ||eo replaced by || - |-

Remark. For r = 1, [{F(z)[1 — F(z)]}"/?dz < oo is almost the same as
EpX? < oo (see Serfling (1980), p.276) and is implied by Ep|X;]**t < 0o with
t> 0. For r = 2, [ F(z)[1 - F(z)]dz < oo is equivalent to Er|X;| < oo.

Proof. (i) Note that if F is continuous, then the results follow directly from
Proposition 2.2 and Theorem 3.1. For general F, let

1
Ry(Fy, F) = T(F,) - T(F) - Y ér(XiX;, F).
1<i<j<n

Following the proof of Theorem 3.1, we obtain the result if we can show
Ry(Fyn, F) = 0,(n71). (3.10)

From the second-order Fréchet differentiability of T, for any € > 0, there is a
é¢ > 0 such that

Pp{n|Rz(Fa, F)| 2 €0} < Pp{n||Fy — F|[%, > eo/€} + Pr{||Fx — Fllo > 6.},

where ¢ is arbitrary. Then (3.10) follows from ||F,, — Flleo = Op(n~1/2).
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(ii) From the proof of (i), results (3.2)-(3.5) follow from (3.10), which is implied
by ‘
|Fn = Fllr = Op(n~1?), r=1,2. (3.11)

Note that ||F, — Fl|eo = Op(n~1/?),

BellFa=Flli, < [{Er{Fa(a) - F@PY /e < 07 [{FG)l1 - F@))/2ds

and
Ep|[Fa - F|, = n~! / F(z)[1 - F(=)]ds.

Hence (3.11) holds under the given conditions.

(iii) If (2.2) holds with a norm || - ||, then (3.6) follows from (3.10) and the
uniform integrability of {n||F, — F||?}. Using Dvoretzky, Kiefer and Wolfowitz’s
inequality, Ep[n®||F, — F||%] is bounded. Hence the results follow from the
uniform integrability of {n||F,, — F||7 }, r = 1,2. Let n;(z) = Ix,(z) — F(z).
Then

lfs = FIE, = o[ [12 Y n@lae] =2 [[1 3 ntamwlasay
i=1

1<i,j<n
< ;I;Z:; [ / |,,,.(z)|dzr + % / / |219§sn n;(z)m-(y)ldﬂg-_ 12)

From Er[ [ Im(2)ldz)’ < { [{Er[7(2)]}/dz}" = { [{F(=)1- F(2)]}"/?dz}’

< 00, the first term in (3.12) is uniformly integrable. From

St

1<i<j<n

s{%// [Erl2 3

1<i<j<n

< { / / [Epn (2)Ernd(y)] "’dzdy}2
={ [t - pemy e

the second term in (3.12) is also uniformly integrable. Hence {n|F, — Fl| }is
uniformly integrable. Similarly,

WP -Fi, = Y [ri@da+ 2 [ 5 n@me.
i=1

1<i<j<n

2
m(z)m(y)wzdy}

n.-(:c)m'(y)lz] 1/zdap:dy}z
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Then {n||F, — F||},} is uniformly integrable since Er [ 7i(z)dz = [ F(z)[1 -
F(z)]dz and

Er [% / ) 'l-'(ﬂﬂ)m(ﬂv)dﬂﬂ]2 -r-d / Ep[m(z)m(y)] dedy

oy n
1<i<j<n

< { / Fz)[1 - F(:c)]dz}z.

In view of (3.3)-(3.5), By, = ¥/n can be considered as the asymptotic bias of
T(Fy). Result (3.6) may hold under weaker conditions than those in Theorems
3.1 and 3.2.

4. Consistency of v
Let vy be the jackknife variance estimator defined in Section 1.

Theorem 4.1. Suppose that F is continuous and T in (2.4) is second-order
compactly differentiable at U w.r.t. || - |0 with ¢,(8,t,U) satisfying (3.1). Let
o? be given in (3.2). Then

wl -, . (4.1)

Proof. We use the same notation as in the proof of Theorem 3.1. For each ¢, let
U,(.'.) be the empirical distribution corresponding to Z1,...,Z;_1,Zi41,... ,Zn.
Then

T(F)) - T(F) = 7(UD) = 7(U) = wn i + Tnjis

where wni = 27 30y 4 i ki r(Zk, Z5,U) and 1y = R,(UY,U) (R, is
given in (2.6)). Let @ and 7 be the averages of w, ; and 7, i, respectively. Then

= (1= 1) Y (Wni = B + (n=1) Y (g = +2(n = 1) Y (Wns = D)7

=1 i=1 i=1
(4.2)
The first term on the right side of (4.2) —, o2, since it is the jackknife variance
estimator of a V-statistic (see Sen (1977)). By Cauchy-Schwarz inequality, (4.1)

follows from .

(R-1)) rhi—»0, (43)

i=1
which is implied by '
n? m<ax[Rr(U£", U)]2 —5 0. (44)
i<n
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Let U, be the continuous version of U, i.e., Uy is the distribution function
corresponding to a uniform distribution of mass (n+ 1) in each of the n + 1
intervals [Z(;_y), Z(;)], where Z;, are ordered Z;’s, Zy = 0 and Z(,4,) = 1.
From Donsker’s theorem and Prohorov’s theorem, for any € > 0, there exists a
compact A C D such that forn > 1,

P{(n*(Uz-U)eA}>1-c

Note that [|Ux — Un|lee < 7~ and for each i, ||US) - Unllo < n~t. Then
o8P - UZlloo <2n71 for all i < n and for n > 1,

P{p[n?(UY —U),A)< 20712 i=1,... yn}>1—g¢

where p[G,A] = inf{||K — G|l : K € A}. We now show that for sufficiently
large n, p[n!2(U) - U),A] < 2012, i =1,... ,n, implies n|R,(UY,U)| < ¢,
t=1,...,n. Suppose not. Then there is a sequence {n,,} such that

| RA(US™)  U)| > € (4.5)

and p[Gm,A] < 2np 7% for all m, where G,, = n},{z(U(’"‘) U). For each m,
there is a Ky, € A such that |Gy — K loo < 2n_1/ Since A is compact, there
isa K € A and a subsequence {m;} such that ||[Km, — K|loo — 0as j — oo. Then
IGm; — K|loo — 0 and the set Ay = {K,Gm,,j = 1,2,...} is compact. Since  is
second-order compactly differentiable at U, limj, 0 m; |RA(U+nm oy 2Gm, yU)| =
0. This contradicts (4.5). Therefore

P{n|R. (UM, U)| <ei=1,...,n}>1—¢

for sufficiently large n. This completes the proof since € is arbitrary.

It was shown in Shao and Wu (1989, Theorem 5) that (4.1) holds if T is
second-order Fréchet differentiable at F' w.r.t. || - ||co. Compared with the result
there, our Theorem 4.1 requires less condition on T (see Proposition 2.2) but
assumes the continuity of F. The following result shows the consistency of v)
when T is second-order Fréchet differentiable at F w.r.t. the r-norm.

Theorem 4.2. Suppose that T is second-order Fréchet differentiable at F w.r.t.
| - ll- defined in (3.9) (r = 1 or 2) with ¢1(z,y,F) satisfying (2.1) and that
J{F(z)[1 - F(z)]}"/? < co. Then (4.1) holds with o? given in Theorem 3.2.
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Proof. Let wn; = 0™ Yyep jcn, kjps 97(Xes X, F) and 1oy = T(FD) -
T(F)— wn,. Then (4.2) holds and it remains to show (4.3). Let ¢, > 0 be given
and

n n
o=(-D)DNFD —FIIs, and ta(r) = (n=1) S IFD - FIL,,r = 1,2.
=1 =1

From the second-order Fréchet differentiability of T, for any € > 0, there is a
é¢ > 0 such that

{(n I)Erﬂ > co} < Pr{(a+ta(r) > eo/8€}+Pp{ma.x||F(‘) —Fl|, > 6}.
i=1

Since (maxi<n WFY - F|, )¢ < Y IFY = FII, (4.3) follows from ¢, + ta(r) =

0p,(1). From (, <8+ 8n2||Fn - F|& = 0,(1), it remains to show that t,(r) =
0,(1), r = 1,2. Note that

ta(1) < 8(n — 1) Zj [ [1F9@) - Fua(@)lde]" + 80 [ 1Fu(@) - Fealaa]

< '(%41)52 [ [11x.(2) - Feede] 4 (nt’;)s +80] [ [1Fu(o) - Fo)lda] "
From the proof of Theorem 3.2(ii), [ [ |Fa(z) - F(:l:)ld:t:]4 = 0p(n~?). Since
e [ 1) - F@ae] < { [t - ronaes) <,

a3 Y [ Ix(2) - F’(:c:)]dz:]4 —p 0 by Marcinkiewicz law of large numbers.
Hence t,(1) = Op(1). A similar argument shows that

() < 2 )32{ Jixa) - F(z)sz} +0,(1).

Since Er [[Ix,(z) — F(z))*dz = [ F(z)[1~ F(z)]dz < 00, t,(2) = O,(1) follows
from Marcinkiewicz law of large numbers.
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5. Consistency of b]

Let b] be the jackknife bias estimator defined in Section 1. To show the
consistency of bJ, we need a differentiability assumption which is stronger than
that in Definition 2.1.

Definition 5.1. A functional f on N is uniformly second-order Fréchet dif-
ferentiable at H € N w.r.t. || - || if there is a real-valued function ¢s(z,y, K)
defined on R? x {K € N : |K — H|| < 6} for a fixed § > 0 such that
q&;(z,y,K) = ¢f(y’xaK)’ ff d’f(z’y’K)dK(z)dK(y) = 0 and

£(G) = F(K) = [[ #4(2,9, K)dG(2)dG(y) _

IG-H|I+IK-H||-0,G,KeN IG - K||?

0.

It can be seen from Example 7.1 that this uniform second-order Fréchet
differentiability is much weaker than the strong second-order Fréchet differentia-
bility defined in Parr (1985).

Lemma 5.1. Let g(z, K) be a real-valued function defined on Rx{K € N : || K —
F|| < 6} for a fized § > 0, where the norm ||-|| satisfies || F, — F|| —, 0. Suppose
that Er|g(X1, F)| < oo and for any ¢ > 0, sup ;<. |9(z, Fn) — g(z, F)| =, 0.
Suppose also that there is a function h(z) > 0 such that Eph(X;) < oo and
limn oo Pr{|9(z, Fr)| < h(z),z € R} = 1. Then

(o= / |9(z, Fa)  o(z, F)|dFa(z) — 0.

Proof. Let S, = {||Fn — F|| < 6 and |g(z, F,)| < h(z) for all z} and S¢ be its
complement. Let € > 0 be given. Then there is a ¢ > 0 such that

a= /lxlx[h(z) + lg(z, F)||dF(z) < ¢/3.

Let a, = flz|>c[h(z) + |9(z, F)|JdF,(z) and b, = sup ;<. l9(z, Fr) — g(z, F)|.
Then

Pr{(s > €} < Pr{an > €/2} + Pr{b, > €/2} + Pr(S}).

Under the given conditions, Pr(S;) — 0, b, —p 0 and an —p a. Hence Pr{(n >
€} —0.
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Theorem 5.1. (i) Suppose that T is uniformly second-order Fréchet differen-
tiable at F w.r.t. ||-||co with ¢p(z,y, K) satisfying (2.1) and ¢1(z,z, K) satisfying
the conditions in Lemma 5.1. Let v be given in Theorem 3.2. Then

nby —, 7. (5.1)

(ii) Result (5.1) also holds if || - || in (i) is replaced by ||- || and Er|X1|*/" < oo
(r=1o0r2).
(iii) Assume the conditions in either (i) or (ii). If ¢r(z,z,K) is defined on Rx N
and satisfies

E(ﬁT(X.,X,,F ) is uniformly integrable (5.2)
t—l

(which is implied by sup,, Ep|®,|t < 0o fort > 1) and T satisfies

I(G) - T(H) — [] ¢r(=,y, H)dG(z)dG(y)

sup < oo, 5.3
Byt G~ HJp ¢
where || - || is either || - |lo or || - ||+, then

nEpbl — v. (5.4)

Proof. (i) From the uniform second-order Fréchet differentiability of T at F, for
any 0 < € < €g, there is a §. > 0 such that

Pr{lsnl > @0} < PF{ Z”F(')-—F 12, > eo/c}+PF{ max [|F{~Flo > 56},
=1
(5.5)
where F.,(P) = F, and

m=(n=D)Y [TED) = T(Fn) = [[ b2(a,0, FNFO@FOG)]. (56)

Since IIF,(.") — Fulleo £ 771, 8, =, 0. A straightforward calculation shows that

n;li:[(n—ll)z 3 ¢T(Xk,Xj,Fn)]

1<k, i< n k j#i

L T bR,

1<i<ji<n

- Z¢T(XHXHF ) +
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Since 371 ¢; i<n O7(Xis Xj, Fo) = 0 [[ ¢p(2,y, Fr)dFy(z)dF(y) = 0, we have
1 n .
J_ . X
nby = — §¢T(X,,X,,Fn) + op(1). (5.7)

Hence (5.1) holds since by the law of large numbers and Lemma 5.1 with
g(z9 K) = ¢T($,Z, K)7

=Y br(Xe Xey Fa) = 7. (58)
=1

(ii) Let s, be given in (5.6). By the second-order differentiability of 7', (5.5)
holds with || - ||, replaced by || - ||,. From the proof of (i), (5.1) holds if

(n=1) Y IIFP - Full}, = 0,(1), r=1,2. (5.9)
i=1

From F{ - F, = (n —1)"Y(Ix, — F), the left side of (5.9) is equal to

1 & 4 &
- Z”IX.- - Fii3, < — Z”Ix.- -Fl}., r=1,2.
i=1 i=1
From the inequality

[ 1@ - F@ldz < Il + Belxal, (5.10)

Erlllx, - FI, < Er(lX:] + Er|XulP®. Also, ExllIx, - FI, = [ F(z)[1 -
F(z)ldz < Ep|X:|. Hence (5.9) holds under the given conditions.

(iii) By conditions (5.2) and (5.8), Er[X Y7, ¢7(Xi, Xi, Fn)] — 7. Hence (5.4)
holds if EFs, — 0, which follows from the uniform integrability of {s,}. If (5.3)
holds with || - ||, then (5.4) holds since |s,| < (n — 1) 2", |FS) — F,||%, < 1.
Suppose that (5.3) holds with || - ||,. Then

n n
i 8
lsal < 242(n = 1) 3 IFD - Fall}, <2+ —5 Y llx, - FIl, .

=1 =1

Note that ||Ix, — F||3 arei.i.d. random variables with

2/r
Erlitx, ~ FIt, = Ee| [I1x@) - F@)ds| - < Be(xi] + Bia?r
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(by inequality (5.10)). Hence if Ep|X1|*/" < 00, {(n—1)"* ¥, Ix, - F|i} }
is uniformly integrable, which implies the uniform integrability of {s,}. This
completes the proof.

6. Asymptotic Properties of T/(F,)

The jackknife estimator T7(F,) = T(F,) — b is designed to remove the
leading term y/n (see Theorems 3.1 and 3.2) in the bias of T(F,,). The following
result rigorously justifies this “bias reduction” property of the jackknife method.

Theorem 6.1. (i) Suppose that T is uniformly second-order Fréchet differen-
tiable at F w.r.t. ||-||cc with ¢1(z,y, K) satisfying (2.1) and ¢1(z,z, K) satisfying
the conditions in Lemma 5.1. Let &;,0%,\; and Y be the same as in Theorem
3.2. Then

22T (F,) - T(F)] » N(0,0?) in distribution, (6.1)
and .
TI(F,) = T(F) + ;1; ;z; +T; (6.2)
with
al'l — i,\k(y,c —1) in distribution. (6.3)
k=1

(ii) Results (6.1)-(6.3) hold if ||-||oo in (i) is replaced by ||-||, and Er|X;|?/T < oo
(r=1o0r2).

(iii) Assume the conditions in either (i) or (ii) hold. If (3.6), (5.2) and (5.3) hold
(with || - || = either || - |lo or || - ||r), then

nEp[T?(F,) - T(F)] — 0. (6.4)

Proof. Let h(z,y,F) = ¢r(z,y,F) - [[dr(2,u,F) + ¢r(u,y, F)ldu. From
(3.10), (5.6)-(5.8),

TJ(Fn)zT(F)+%Z§;+77'(+_1) Z h(X,',Xj,F)-{-OP(n‘l).
i=1

1<i<j<n

Hence results (6.1)-(6.3) follows from Theorem 5.5.2 in Serfling (1980) under

the given conditions. Result (6.4) follows from (3.6) and (5.4) under the given
conditions.
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From (3.1) and (6.1), the jackknife estimator 7 (F,,) has the same first order
asymptotic distribution as T(I;’,.). The second-order asymptotic representations
of T(F,) and T7(F,), however, are different: T'J in (6.3) converges in distribution
to a random variable with mean zero whereas I',, in (3.3) converges in distribution
to a random variable with mean 4 (which is not necessarily zero). Hence the
jackknife estimator T'/(F,) is less biased. Formal results such as (6.4) may be
established under weaker conditions than those in Theorem 6.1(iii). Note that
both T(F,) and T7(F,) have the same asymptotic variance (=o¥Ynifa® >0
and = 37, A\}/n? if 0> = 0). Hence the jackknife estimator 77 (F,) improves
T(F,) in the sense that it reduces the bias but does not increase the asymptotic
variance.

7. Examples

Example 7.1. Functions of mean. Suppose that F comsists of all the distri-
butions with finite mean and T(G) = g(ug), where pg = [zdG(z) and g is
a real-valued function which is second-order differentiable in a neighborhood of
pp. Let

¢r(z,9,K) = ¢'(nx)l(z + ¥)/2 — px] + 9" (kx)lzy — px(z + v) + 6%]/2. (7.1)

Let X be the average of X;. Then ¢(z,z, F,) = g (X)(z-X)+9"(X)(z-X)?/2.
If EpX{ < o0 and ¢” is continuous at p, it can be easily shown that (2.1) holds

and ¢(z, z, F,,) satisfies the conditions in Lemma 5.1. If there is a constant ¢ > 0
such that |g"(z)| < ¢, then

1¢ _ 1 e 712 ¢ I y2

|; §¢T(Xi,X5aFn) =219 (X)IZ;(Xi -X) <o gxi
and (5.2) holds since {1 3" | X2} is uniformly integrable under ErX} < oo.
The following result shows that T is uniformly second-order Fréchet differen-
tiable at F w.r.t. the L;-norm. Note that T is not necessarily strongly Fréchet
differentiable at F' (Definition 2 in Parr (1985)).

Proposition 7.1. If ¢''(t) is defined on [up—a, pp+a), a > 0, and is continuous
at pp, then T is uniformly second-order Fréchet differentiable at F w.r.t. |||z,

with ¢1(z,y, K') given in (7.1). If, in addition, g is defined on R and is bounded,
then (5.3) holds with || - ||z, .

Proof. For G,K € N with |G- K||L, < a, wehave |pg —pg| < |G- K|z, < a
and '

T(G)-T(K) = ¢'(ux)(ne — rk) + 279" (Co.x ) (g — K )%,
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where (g, x is on the line segment between ug and pg . Since [[ zydG(z)dG(y) =
2
| red)

[R2(G,K)| = |T(6) - T(K) - [[ b2(a,v, K)aG(@)dG(w)|

=27Y¢"(Ce.x) — 9" ()G — k) < 279" (Ca k) — 9" (K)IIG - KL,

Hence the first assertion follows from the continuity of ¢” at ur and (5.3) follows
from the boundedness of g".

Example 7.2. L-statistics. Let J(t) be a real-valued differentiable function on
[0,1] and T(G) = [zJ[G(z)}dG(z). T(F,) is called an L-statistic (see Serfling
(1980), Chapter 8). Define a(z,K) = [[K(u) — L(u)/J[K(u))du, b(z,y,K) =
~ JIK(w) - L)]K(w) - L()J'[K (4)}du and

¢1(2,9, K) = [a(z, K) + a(y, K) + b(z,y, K)]. (7.2)

If ErX? < o0, it can be shown that (2.1), (5.2) and the conditions in Lemma
5.1 hold (with h(z) = |z| + Er|X1|+1). The following result shows the differen-
tiability of T'. Note that T may not be second-order differentiable w.r.t. || - |00
unless J is trimmed (see Proposition 7.2(ii)).

Proposition 7.2. (i) If J' is continuous on [0, 1], then (5.3) holds with || - ||,
and T is uniformly second-order Fréchet differentiable at F w.r.t. | - ||z with
ér(z,y, K) given in (7.2).

(ii) Suppose that J(t) =0 fort € [0, a)U(B,1],0< a < f < 1, and that J' is
continuous on [a, 8]. Then T is uniformly second-order Fréchet differentiable at
Fwrt. |||l with ¢5(z,y,K) given in (7.2). Furthermore, for each K € N,
there is a constant cy such that | (z,y,K)| < ck.

Proof. (i) Let Rr(G,K) = T(G) - T(K) — [f ¢7(z,y, K)dG(z)dG(y). From
Serfling (1980) (p.289),

Re(G.K) = [ WIG(2), K@)lIG() - K(=)Pdz,

where W(s,t) = [ [ J(u)du—J(t)(s—t) - 27T (t)(s —1)*] /(s —t)* if s # t and
W(s,t) = 0 if s = t. From the contimuity of J', sup, |W[G(z), K(z)]] < ||7'lleo
< oo and sup,, |W[G(z),K(z)]| — 0 as |G — K]|coc — 0. Hence the results in (i)
hold.

(ii) Let ¢ and d be two real numbers such that F(c) > 8 and F(d) < a, and
6 = min{a—F(d), F(c)—pB}. Note that if both G(z) and K(z) arein [0, a)U(8, 1],
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then W[G(z),K(z)] = 0. Suppose that G and K satisfy ||G — F|lc < § and
|IK — Fllo < 6. Then if z < d, both G(z) and K(z) < a and if z > d, both
G(z) and K(z) > 3. Hence

1R2(G, K0l = | [ WIG(e), K@G(e) - K(e)de|
<IG - Kl [ IWIG(@), K@)z

Then the first assertion follows from [ [W[G(z),K(z)]|dz — 0 as ||G — K||oo
— 0. Similarly, for each K, there are constants ¢(K) and d(K) such that

«(K)
oz, K) = / K (v) - L(w)]J[K (x)}du
d(K)

and

oK)
b(z,9,K) = — /d oy ) = LU () = L) (K ()l

Thus the second assertion holds since J and J' are bounded.
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