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CONVERGENCE RATES FOR THE CRITICAL
BRANCHING PROCESS WITH IMMIGRATION

C. Z. Wei

University of Maryland and Academia Sinica

Abstract: TFor a critical branching process with immigration, {X,}, (log X,)/logn
is shown to converge almost surely to 1 when {X,} is transient. The rates of growth
for ¥7_,X; and X_,(14+X:)~? are then derived and used to obtain convergence
rates for the conditional weighted least squares estimators of the generation and
immigration means.
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1. Introduction

Let {X,} be a branching process with immigration defined by

Xn—l

Xo=) Yo+, n=12,.., (1.1)
=1

where {Y, ;} and {I,} are independent sequences of i.i.d. nonnegative, integer
valued random variables and X is a nonnegative, integer valued random variable
which is independent of {Yy ;} and {I.}. We can interpret X,, as the size of the
nth generation of a population, where Y, ; is the offspring size of the jth individ-
ual in the (n — 1)st generation and I, is the number of immigrants contributing
to the population’s nth generation.

When the generation mean m = E(Y;,;) < 00, the process {X,} is referred
to as subcritical if m < 1, critical if m = 1 and supercritical if m > 1. The
study of {X,} dates back to Smoluchowski (1916), and there is a substantial
literature on asymptotic behavior of functionals of {X,}. It is now relatively
well understood for the subcritical and supercritical cases. (See Athreya and
Ney (1972) for the basic properties of {X,}.) But for the critical case the path
properties of {X,} and its functionals are quite intricate and remain unknown.

Let A= E(I;) < 00,0< 0? = E(Y1,-m)?! < oc0and 0 < b? = E(I; -\)? <
oco. For the critical case, it is known (Pakes (1972), Mellein (1982b, 1983a), Wei
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and Winnicki (1989)) that as a Markov process, {X,} is transient or recurrent
according as 7 = 2A/0? > 1 or 7 < 1. It is also known (Kawazu and Watanabe
(1971), Mellein (1982a, 1983b), Wei and Winnicki (1989)) that X|,/n converges
weakly to a diffusion limit. For the path properties, when 7 > 1, i.e. {X,.} is
transient, it is obvious that X,, — oo a.s. In this case, under the assumption

that EYf"lH < oo for some § > 0, Wei and Winnicki (1989, Theorem 2.15) also
show that

limsup | Xp — Xpn-1|/(20° X p-1 logX,._l)]i =1 a.s.
n—oo

However, these results do not provide any clue about the growth rate of {X,}.
It is the purpose of this paper to investigate this problem.

In Section 2, using the martingale convergence theorem, we obtain the fol-
lowing result.

Theorem 1.1. Assume that for some 6 > 0,
m=1, 0<o’<o0, 0<b?<oo, 7>1 and E(Y?}’) <oo. (1.2)
Then
nli_’ngo(loan)/logn =1 as. (1.3)
As a corollary of Theorem 1.1, we also obtain the following theorem con-
cerning the functionals of {X,}.

Theorem 1.2. Assume that (1.2) holds. Then

Jim zn:(l + X)) logn=(A-02/2)"! as. (1.4)
=0

The functional Y [ (1 + X;)~! plays an important role in the estimation
of m and A. Recently, in an attempt (Wei and Winnicki (1990)) to solve a long
standing estimation problem raised by Heyde and Seneta (1974), we proposed

the conditional weighted least squares estimators 7, and An. Specifically, 7,
and A, are defined by

Ty = [ix,- Zn:(l +X) 1 -n zn:X.-(l + X,-)-l]-

=1 i=1 i=1

n n -1
[Z(l + X)) (A4 X)) - n2] (1.5)
i=1 i=1
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and

n n ) n n
A = [2 X 3 X1+ Xim) = 26 Y Xaa (14 Xaon) ™|
i=1 i=1 =1 =1

n n -1
[2(1 + X;-1) Z(l + X))t - nz] . (1.6)
=1 =1

In Wei and Winnicki (1990) under assumption (1.2), 7, and A, are shown
to converge in probability to m and A. The key tools are the weak convergence
of the functional } 7 X; and a weaker version of Theorem 1.2 in which the al-
most sure convergence is replaced by convergence in probability. In Section 2,
using Theorems 1.1, 1.2 and an iterated logarithm type result for the martingale
transform (Lemma 2.4), we are able to obtain a lower bound for Y X; (Lemma
2.5). This lower bound not only enables us to establish the a.s. convergence for

thy and A, but also their convergence rates. This is the context of the following
theorem.

Theorem 1.3. Assume that (1.2) holds. Then

i

My —m =20 ((loglogn/ f:X.-) 2) = O(loglogn/n) a.s. (1.7)
1

and
An— A= O((logloglogn/ log n)%) a.s. (1.8)

2. Proofs of Theorems 1.1, 1.2 and 1.3

Throughout this section, we assume that X¢ = k a.s. where k = inf{j > 0:
P[I; = j] > 0}. As shown by Lemma 2.8 of Wei and Winnicki (1989), for the
case of general Xy, one can always find a branching process with immigration
{Z.} such that {Z,} has the same transition probabilities as {X,}, Zo = k a.s.
and Z, eventually coincide with X,,. Hence, as far as the asymptotic results are
concerned, our assumption does not affect the generality of the proved results.

Lemma 2.1. Assume that (1.2) holds. Then for any positive and increasing
sequence a, such that Y>> na;? < oo, we have

lim X,/a, =0 as. (2.1)
Proof. Note that n "
Xo=Xo+ ) Wi+ L, (2.2)

=1 =1
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where W; = Ef__ff‘(Y.-,,- —1) is a sequence of martingale differences with respect
to the o-field , = 0{Xo,Y; j,I;,1 < i< n,1 < j}. By the strong law of large

numbers, we have
n

.1
nlg%o - ;I, =)\ as. (2.3)

The assumed condition on {a,} implies that lim n/a, = 0. Hence
n—oo

1 n
lim — ZI,, =0 a.s.
i=1

n—00 aﬂ

Now it is sufficient to show that

E?:l W

lim -0 as.

n—oo Ay

But this follows from Kronecker’s lemma, martingale convergence theorem and

f:E(W?)ai’2 = icﬂ[n + (i = DAla;? < 0.

t=1 i=1

The last identity is ensured by the facts that
E(W})= E[E(W}|Fi_1)] = 0’ E(X:-1)

and
E(X;) = E(X;21) + A = E(Xp) + ).

Lemma 2.2. Let M,, = maxXj<i<n Xi. Assume that (1.2) holds. Then
lim log M,/logn =1 a.us. (2.4)
n—oo
Proof. Applying Lemma 2.1 with a, = nlogn, we have that X, = o(nlogn)
a.s. This in turn implies that

limsuplog M, /logn <1 a.s.

n—o00

To prove (2.4), it is sufficient to show that

liminflog M, /logn > 1 a.s.
n—+00
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or, more strongly,
liminfn~'M,log M, > 0 a.s. (2.5)

n—00

By (2.2), (2.3) and the fact that
nlingo(X,, ~ Xo)/(M,logM,) =0 a.s.,

to prove (2.5) it suffices to show that

n
lirrgoEW',-/(Mn logM,) =0 as. (2.6)
i=1

Since My, T oo a.s., Kronecker’s lemma can be used to obtain (2.6) if
n A o~
E W;/(M;_1log M;_1) converges a.s.,
1=2

where M, = M; + 2. But this follows from the local martingale convergence
theorem (Chow (1965)) and

ZE [W’.'z/(jii—l log 1‘7.'—1)2|-7:£—1]
=2

= o? Z Xio1/(Mi-1log M;_, )?

=2

< 0?3 (Xict + ) (log(Xics + )
=2

< 0 a.s.

The last inequality is a simple corollary of Lemma 2.13 of Wei and Winnicki
(1989).

Lemma 2.3. Let T, = Y7 (1+ X;)~!. Assume that (1.2) holds. Then

nlgr;o log X, /Tp = A —0%/2 as. (2.7)

Proof. This is (2.24) of Wei and Winnicki (1989).

Proof of Theorem 1.1.
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By the definition of M, for each n there is a random variable j(n) such that
j(n) < n as. and M, = Xj(n,). Since X, — o0 a.s., j(n) — 0o a.s. Observe that

12> log X,/log M,
= (10g Xn/Tn) (Tjn)/ 108 X j(n)) (Tn/ Tim)- (28)
But T, 1 as n 1. Hence T,,/Tj(n) > 1 a.s. In view of (2.8) and Lemma 2.3,

1 > limsuplog X,,/log M,,

n—o00
> liminflog X,/log M, > 1 as.
n—oo
This and Lemma 2.2 complete our proof.

Proof of Theorem 1.2.
Theorem 1.2 follows immediately from Theorem 1.1 and Lemma 2.3.

Now let us study the asymptotic properties of the conditional weighted least
squares estimates 7, and A,, defined by (1.5) and (1.6). For this, we need a
lower bound for ¥_;_, X;. Before stating such a result, we need a martingale
result which can be found in Wei (1985, p. 1500).

Lemma 2.4. Let {¢,,G,} be a martingale difference sequence satisfying

sup E(|en|**®|Gn-1) <00 as. for some &> 0. (2.9)
n

Let {u,} be a sequence of random variables such that u, is G,_,-measurable.
Define £, = S0, ul. If

ul = o(t) as. for some 0<c<]1, (2.10)
then
n
Euge; = O(tn(loglog t,.)%) a.s. (2.11)
=1

Lemma 2.5. Let S, = Y.\ Xi. Assume that (1.2) holds. Then

liminf §_"._1_9ﬁ521°£ >
n~>00

0 as. (2.12)

Proof. By (2.2),

r n r

Sn=(n+1)Xo+ zn: Swi+dY M L (2.13)

r=1 i=1 r=1i=1
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Observe that
Xi-1

Wi‘ =) (Y- 1) = ue,

i=1

181

where u; = \/X;—; and ¢; = W;/u; if u; # 0 and 0 otherwise. By Lemma 2.1 of

Lai and Wei (1983), there is a constant Cs such that
E{|ei**?|Fic1} < CsE|Y11 - 1PF° as.
Hence (2.9) of Lemma 2.4 holds with G; = ;. Now by Lemma 2.1,
X, =o(n'*%) as. forany €>0.
But Theorem 1.1 ensures that
linn_x’iolcl’fS,./n"‘ >0 as. for any a < 2.

Consequently,

X, =0(S:) as. for ¢> %

Thus (2.10) is satisfied with t2 = Y, u? = S,_;. Applying Lemma 2.4, we

obtain .
S wi= 0( ,]f_l (loglog S,,_l)%) a.s.
=1
Hence .
> > Wi=0(nS},(loglog Sn_1)?) as.
r=1 i=1

Dividing both sides of (2.13) by S,, we then have that

r=1 i=1

n T 1
(S5 0)r0= -5 x40 (28827

In view of (2.3),

[

) as

(nz/Sn)(l + 0(3—)) =0(1) + o(n/s,% (loglog S,,)
n
This implies that
n/S% = 0(1 + (loglogSn)%) a.s.

= O((loglog S,,) %) a.s.

(2.15)

(2.16)

(2.17)
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But Theorem 1.1 gives
nan;o loglog S, /loglogn =1 a.s. (2.18)
As a corollary of this and (2.17), we have that
n?/S, = O(loglogn) a.s.
Therefore, (2.12) of Lemma 2.5 is proved.

Remarks. (a) By Lemma 2.1, it is not difficult to obtain upper bounds for X,
and S,:

X, = o(n(log n) ¥ (loglog n)ite) as.,
Sn = o(n?(log n)%(loglog n)%+°‘) a.s. forall a>0.
These bounds can be improved. First, in view of (2.13) and (2.16),
Sp = O(nS:f (loglog S.) %) +0(n?)  as.

Consequently, by (2.18),

i
2

st = 0(n(loglog 5,)*) + O(n)
= O(n(loglogn)?)  as.
Thus
Sn = O(n®loglogn) a.s. (2.19)

From (2.2), (2.3), (2.15) and (2.18)

Xo = 0(53_, (loglog 51-1)*) + O(n)
= O(nloglogn) a.s. (2.20)

(b) It is not known what the exact bounds are for X,, and S,,. To solve this
problem, it seems that a functional law of iterated logarithm for {X,} is needed.
For a related problem in random walk, see Jain (1982).

Proof of Theorem 1.3.
It is not difficult to see that

p —m = (Xn — Xo)Tn/{(n + Sn-1)Tn — n?}
= [(Xa = Xo)/(n + Saz1)] [1 + o(1)] a.s.
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By (2.20) and (2.18),
1 1
n —m = 0 [S3_, (1oglog Sa_1)}/(n + Su_1)|

= O((loglog n/Sn) %)
= O(loglogn/n) a.s.,

where the last identity is ensured by Lemma 2.5. Now, let us show (1.8). By
Theorem 1.2, Lemma 2.5 and simple algebra, we have that

3 X Xt—l+A
,\,,-,\=[,,IZ T — (X - X0)21+X,1 ,\nT+,\n]

{(n + S —I)Tn - nz}_
= {.l. ~X;-Xi1-2 X, -O(n) + O(nz)
1
=1

i=

= 1 Z XizXin =2 (14 0(1)) + O(loglogn/logn) a.s., (2.21)
n 1+ X

1

Tﬂ : 1+ Xi—l - S‘n—lTn }(1 * 0(1))
T,

where the last identity is ensured by Theorem 1.2, Lemma 2.5, (2.20) and (2.18).
Note that X; — X;_; — A = W; +(I; — A). Now

E[(L = M\ Fia] _ 2
P Y z:(1+X.1)2

< o0 a.s.,
i=1

by Lemma 2.13 of Wei and Winnicki (1989). Hence, in view of the local martin-
gale convergence theorem (Chow (1965)),

n

E(I; - A)/(1+ Xi-1) converges a.s. (2.22)
i=1

Furthermore, by Lemma 2.4 and arguments similar to the proof of (2.15),
> Wi/(1+ Xi_1) = O(Va(loglog Vn)?)  as. (2.23)

where V2 = 37 | X; 1 /(14 X;_1)%. In view of (2.21), (2.22), (2.23), Theorem
1.2 and the fact that V2/T,, — 1 a.s.,

An— A= O((log log T, /Ty) ;’L) + O(loglog n/log n)

-0 (logloglog n) 1
= ——log - a.s.
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