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Abstract: In this article, we extend the information matrix tests proposed by White
(1982) for detecting parametric model misspecification to the partial likelihood set-
ting with particular interest in the Cox semi-parametric regression model. First we
identify two model-based consistent estimators for the inverse of the asymptotic co-
variance matrix of the maximum partial likelihood estimator in the Cox model. We
then show that under the assumed model the difference between these two estima-
tors is asymptotically normal with mean zero and with a covariance matrix which
can be consistently estimated. Goodness-of-fit tests for the Cox model are con-
structed based on these asymptotic results. Extensive Monte Carlo studies indicate
that the large-sample approximation is appropriate for practical use. In addition, we
demonstrate that the proposed tests tend to be more powerful than other numerical
methods in the literature. Two examples are provided for illustrations.
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1. Introduction

The Cox (1972) regression model has become the most widely used statistical
tool for analyzing censored failure time data due to its flexibility and versatility.
The model specifies that the hazard function h(t) = limajo d=* Pr[T < t+d|T > {]
for the failure time T of an individual with a possibly time-varying p-vector of
covariates Z has the following form

h{t|Z(2)} = do(t) exp{B5 Z(1)}, (1.1)

where f is a p-vector of unknown regression coefficients, and A¢(t) is an unspec-
ified baseline hazard function.

Let Xj,...,X, be n possibly right-censored failure times and Zi,... s Ln
be the corresponding covariate vectors. Then the parameter vector Bo is usu-
ally estimated by 8 which maximizes the partial likelihood function (Cox (1972,
1975))
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n*

- exp{B'Z:(X:)} B
o= .Il [ZJ'ER.- exp{ﬂ’zj(X,')}] ’ (1.2)

where R; is the set of labels attached to the individuals at risk at time X", and
A; = 1if X; is an observed failure time and A; = 0 otherwise.

Model (1.1) assumes that (i) all relevant covariates are included; (ii) the
regression form of the hazard function on covariates is exponential; and (iii) the
relationship between the baseline hazard function and the regression function of
covariates is multiplicative. The violation of these assumptions may have adverse
effects on the statistical inference. For instance, when an independent covariate
is omitted from a proportional hazards model, 3 as an estimator of the regression
parameter in the true model is asymptotically biased toward zero (Struthers and
Kalbfleisch (1986)). In addition, model misspecification can lead to distortion of
the size and reduction of the power of the partial likelihood score test (Lagakos
and Schoenfeld (1984), Lagakos (1988), Lin and Wei (1989)).

Various graphical techniques have been proposed to check the aforemen-
tioned assumptions (e.g., Crowley and Hu (1977), Kay (1977), Cox (1979),
Kalbfleisch and Prentice (1980, pp. 87-98), Lagakos (1980), Andersen (1982),
Schoenfeld (1982), Crowley and Storer (1983), Arjas (1988)). The diagnostic
plots can be quite informative. The difficulty with these procedures is that they
are rather subjective.

Numerical tests for the fit of the Cox model have also been studied. In his
original paper, Cox (1972) proposed a way of model checking by introducing a
‘dummy’ time-varying covariate. This method is restricted to testing against a
specific alternative. Schoenfeld (1980) compared the observed and the expected
numbers of deaths in the cells arising from a partition of the Cartesian product
of the range of covariates and the times axis. Similar approaches were taken by
Moreau, O’Quigley and Mesbah (1985), and Moreau, O’Quigley and Lellouch
(1986). However, the partitions of time-axis and covariates are often arbitrary.
In addition, different partitions might lead to conflicting results (see Section 3).
Wei (1984) proposed an omnibus test for the two-sample problem. The extension
of his method to the general one-parameter Cox model is straightforward (see
Wei (1984), Haara (1987)). Gill and Schumacher (1987) constructed simple tests
for detecting monotone departures from the constant hazard ratio assumption
by comparing different generalized rank estimators of the relative risk. Other
numerical procedures appeared in Andersen (1982), Breslow, Edler and Berger
(1984), Ciampi and Etezadi-Amoli (1985), Nagelkerke, Oosting and Hart (1984),
and O’Quigley and Pessione (1989). Again, they are only applicable to specific
problems or require arbitrary decisions by the user. Therefore, it is desirable to
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develop global goodness-of-fit tests for the general Cox model without the above
constraints. (

In the ordinary likelihood setting, White (1982) exploited the properties of
the information matrix to yield several useful tests for model misspecification.
The idea of White is as follows. Let Xj,...,X, be a random sample (without
censoring) from a distribution F(X). Suppose that one is interested in testing
whether the density function of F(X) is given by fo(X;0o), where 6, is a vector
of unknown parameters. Let § denote the maximum likelihood estimator of 6,
from the log-likelihood function {(6) = 3~ 1;(8), where [;(6) = log fo(X;;6). Then,
under the assumed model, the Fisher’s information matrix can be consistently
estimated by either the score derivative matrix A,(§) = —n~19%!()/36?|,_; or
the squared score matrix Bn(8) = n=1 Y {81:(9)/06}{1:(8)/6}'|,_;, provided
that some regularity conditions are satisfied. A significant discrepancy between
A,(6) and B, () indicates that the model fo(X;0p) is misspecified.

In Section 2, we apply White’s idea to the partial likelihood setting with
particular interest in the Cox regression model. First, we identify two model-
based consistent estimators A,(3) and B,(3), which are similar to A,(#) and
Bn(é) defined above, for the inverse of the asymptotic covariance matrix of n1/2 ﬁ
Secondly, it is shown that under model (1.1) the statistic n1/2(A4,(8) — Bn(8))
is asymptotically normal with mean zero and with a covariance matrix for which
a consistent estimator is proposed. Goodness-of-fit tests are then constructed
based on this statistic. Two real-life examples are provided in Section 3 for
illustrations. The finite-sample properties of the proposed tests are investigated
in Section 4.

2. Construction of Test Statistics

For: = 1,...,n, let N,'(t) = I(X,' < LA = 1) and Y,(t) = I(X,' > t),
where I(-) is the indicator function. We assume that (N;,Y;, Z;) (i = 1,... ,n)
are independent and identically distributed and that covariates are bounded.

The logarithm of the partial likelihood function (1.2) can be expressed as
I(8) = S 1:(8), where

LB) = [ {82 - 1oglsO (8,0 N, (2.1)

with SO(8,u) = n=! TY;(u) exp{6'Z;(u)}.

The asymptotic normality of the maximum partial likelihood estimator ﬁ for
the Cox model has been established by Liu and Crowley (1978), Tsiatis (1981),
Andersen and Gill (1982), Naes (1982), and Bailey (1983) among others. Let
Q denote the inverse of the asymptotic covariance matrix of n1/2(3 — f,) under




4 D. Y. LIN AND L. J. WEI

the assumed model (1.1). Then Q can be consistently estimated by the score
derivative matrix 4,(8) = —n~! 0*U(B)/0B%| 5= p» i€,

Nt (2[5O SO@wey
A =7 | { G SO }dN( ) (2.2)

where

5M(B,1) = n™' Y Y;(t) exp{B'Z;(1)} Z,(1),
S®(B,8) = n~ Y Y;(t) exp{B'Z;(£)} Z;(1)®?,

N = Y Nj, and a®? denotes the matrix aa’ for a column vector a (see Andersen
and Gill (1982), Theorem 4.2). On the other hand, we show in the theorem given
below that the estimator in the outer-product form

Ba(B) = n"' ) _{0L(8)/08}{01:(8)/08Y | 5_ 5,
i=1

ie.,

Ba(B) = n~? z":{ / ~ [z,-(u) _ M] dN;(u)} > (2.3)
i=1 L /0

SO(B,u)

is also consistent for Q. A significant difference between A,(3) and B,(3) sug-
gests that model (1.1) is incorrect.

Let Do(B) = An(B8) — Bn(B), and let vec(H ) denote the mn-vector whose
((: = 1)m + j)th component is the (i,5)th element of an m x n matrix H. The
asymptotic null distribution of n'/2vec(D,(8)) is given in the following theorem.

Theorem 2.1. Under the assumed Coz model (1.1), n'/?>vec(D,(B)) is asymp-
totzcally normal with zero mean and with covariance matriz Q(B,), where the

p* x p* matriz Q(Bo) can be consistently estimated by Q. (B) given in (A. 5) of
Appendiz A.

The proof of Theorem 2.1 is given in Appendix A.

Let the p(p + 1)/2-vector d,(8) consist of the upper triangular elements of
D (ﬂ ). The covariance matrix of dn(ﬂ) denoted by Q,, (,3), is a subset of Qn(ﬂ)
A class of goodness of-fit tests can be constructed based on the asymptotic dis-
tribution of dn(ﬂ) For example, let T,, be the maximum absolute value of the
p(p + 1)/2 standardized components of d,(3). Then an extremely large value of
T, is an indication of model misspecification. The p-value for this maximum test
T» can be easily obtained by either numerical integration or simulation. Alter-
natively, one can form the Wald statistic W, = nd,(8)'Qn(8)~1d.(3). It follows
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from Theorem 2.1 that W, converges weakly to a central chi-square variable with
p(p + 1)/2 degrees of freedom under model (1.1). Notice that the maximum test
T, and the Wald test W,, are equivalent for the one-parameter Cox model. The
consistency of the proposed tests is discussed in Appendix B.

In the ordinary likelihood situation, some components of d,, may be linear
combinations of others (White (1982)), leading to singularity of the covariance
matrix Qn. It is not clear whether this is likely to occur in the Cox model.
The singularity of Q,(3) would not be an obstacle to the test T}, but would
require appropriate adjustment for the test W,. Specifically, §,(3)~! would be
replaced by a reflexive g-inverse of Qn(ﬂ) (Rao (1973), p. 26), and the degrees
of freedom p(p + 1)/2 by the rank of Q,(8). The singularity of §,(3) can be
deleted empirically by the so-called condition number, which is defined as the
ratio of the largest over the smallest eigenvalue (see Kennedy and Gentle (1980),
p. 279).

A FORTRAN-77 program for implementing the above two tests is available
from the first author.

3. Examples

We now apply the proposed goodness-of-fit tests to two familiar data sets.
The first one is taken from Freireich et al. (see Cox (1972)). As shown in Table
1, the data set consists of the times to remission for two groups of leukemia
patients. The only covariate is the group mdlcator, which is coded as 0 or 1.
The Cox estimator ﬂ is 1.5092. Let SE;(B) and SE,(3) denote the estimated
standard errors of 3 based on A,,(,B) and B,.(,B) respectively. In this example,
SE;(B) = 0.4096 and SE3(B) = 0.4227. The z-score for T, or W,, equals 0.7049,
which provides no evidence against the assumed model. This result confirms the
findings of Cox (1972), Nagelkerke, Oosting and Hart (1984), Wei (1984), and
Gill and Schumacher (1987). Schoenfeld’s test for this data set yields a p-value
of 0.43 when the time axis is divided at 11 weeks (Schoenfeld (1980)) versus a
p-value of 0.08 when the time axis is divided at 5 weeks (Schoenfeld (1982)).

As another example, we consider the Stanford heart transplant data as of
February 1980. This data set contains the survival times of 184 heart-trans-
planted patients along with their ages at the time of the first transplant and
T'5 mismatch scores. The 27 patients who did not have T5 mismatch scores are
excluded from our analysis. Out of the remaining 157 patients, 55 were censored
as of February 1980. Data listings and further details can be found in Miller and
Halpern (1982).

Three proportional hazards models are fitted to this data set and the results
summarized in Table 2. For computational reasons and ease of interpretation,
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the variable age is centered around 41.7, the approximate sample mean of the
patients’ ages. The condition numbers for the three covariance matrices 0.(3)
are 2.23, 7.90 and 6.27, respectively, which indicates that none of them are near-
singular.

The first model B, (age) + B2(T'5), which is labeled Model 1 in Table 2, in-
cludes only the linear effects. Notice that SE;((;) is about 20% larger than

S Eg(ﬁl). The goodness-of-fit tests provide strong evidence to discredit this
model.

The more general model f1(age) + B2(T5) + ﬂa(ag§)2, which is denoted by
Model 2 in Table 2, fits the data quite well. Here, § E;(3,) is almost identical to
SE2(B1). T5 is clearly insignificant and could be deleted.

The final age quadratic model §;(age) + 33(age)?, which is Model 3 in Table
2, provides a satisfactory description of the data. As in the previous two models,
the p-value based on T, is rather similar to that of W, in this model. The two
sets of standard error estimates agree extremely well. Both linear and quadratic
age effects are highly significant. Incidently, the plot of generalized residuals by
Miller and Halpern (1982) also indicated the appropriateness of this age quadratic
model.

4. Finite-Sample Properties of Test Statistics

Extensive Monte Carlo studies were carried out to assess the performance of
the new goodness-of-fit tests for practical sample sizes. For comparisons, the tests
proposed by Cox (1972), Schoenfeld (1980), Wei (1984), and Gill and Schumacher
(1987) were also evaluated. The fitted models were proportional hazards models
with a dichotomous or continuous covariate. The Cox goodness-of-fit test was
defined as the partial likelihood score test for testing the hypothesis that the
regression coefficient associated with the ‘dummy’ time-varying covariate tZ is
0. The log-rank and Prentice’s Wilcoxon weight functions were used in Gill-
Schumacher’s test. For Schoenfeld’s test, the time axis was always partitioned at
the sample median of survival times; each value of a dichotomous covariate was
used as a partition in two-sample cases; and a continuous covariate was split at
its mean. For larger samples, finer partitions might have been more appropriate
but for simplicity were not chosen in our studies.

The survival distributions selected in the studies included exponential with
- density function pexp(—pz), Weibull with density 7p(pz)"~!exp{—(pz)"},
gamma with density 2*~1e~/T'(k), and log-normal with density (27)~1/?(oz)"1
exp{—(log z—p)?/(20?)}. Censorship was imposed by the generation of indepen-
dent uniform random variables U on the interval (0,c), where ¢ was a suitably
chosen integer so that observations in each simulation sample had about 25%
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chance of being censored. Uniform random numbers were generated through
an algorithm provided by Press, Flannery, Teukolsky and Vetterling (1986, pp.
196-197).

The key results from these Monte Carlo studies are summarized in Tables
3 through 7. Shown in the headings to the tables are the true survival model,
censoring distribution, empirical proportion of censored observations, sample size
and nominal level a. The empirical sizes or powers of the goodness-of-fit tests
being compared are presented in the same order as the order of their appearance
in the title of the table. Each entry in the table was calculated from 1,000 -
replications, so the observed tail probabilities have standard errors of about 0.003
for the first percentile and about 0.007 for the fifth percentile.

Table 3 displays the empirical Type I error probabilities of the five goodness-
of-fit tests for the one-parameter Cox model with a normal or dichotomous co-
variate. The empirical error probability of the new test (T, or W,,) may slightly
exceed the nominal level in some smaller samples especially at the 1% level,
whereas Wei’s test seems rather conservative. The empirical sizes of the other
tests are fairly close to the nominal level.

Table 4 presents the empirical powers of the five tests for detecting the
violation of the constant hazard ratio assumption in the two-sample case. The
new test has greater power than the other four tests in case (A) but is not as
powerful as the others in case (B). Cox’s and Gill-Schumacher’s tests are expected
to perform well in case (B), where the true hazard ratio is 3t, since these two
tests were designed to detect such a monotone departure from proportionality.
As one referee pointed out, the new test may not be very sensitive to monotone
deviations because the two model-based variance estimators contain no direct
information about the relationship between residuals (Schoenfeld (1982)) and
failure times.

Table 5 demonstrates the superior performance of the new test for detecting
the omission of relevant covariates. In both cases (A) and (B), the omission of
covariates induces non-monotone departures from the proportional hazards as-
sumption, which Cox’s and Gill-Schumacher’s tests have little power in detecting.
In addition, one would not expect Schoenfeld’s test with two partitions on the
time axis and the covariate space to be sensitive to a non-monotone departure
from proportionality or to a quadratic alternative to a linear fit. Case (A) is
more interesting than case (B) because the size of the partial likelihood score
test for testing the effect of Z being zero is distorted in the former but not in
the latter (see Lin and Wei (1989)). In case (A), the partial likelihood score
test for testing no effect of Z? with 0.05 Type I error has power of 0.75, 0.95
and 1.00 for » = 50,100 and 200, respectively, without censoring, and 0.68, 0.92
and 0.99 for n = 50,100 and 200, respectively, in the presence of censoring. The
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score test, which is optimal for this specific alternative, is more powerful than the
proposed goodness-of-fit test, but the difference becomes marginal as the sample
size increases.

In cases (A) and (B) of Table 6, the true regression forms of the hazard
function on the normal covariate are, respectively, linear and natural-logarithmic
instead of exponential. Again, only the new test has adequate power.

Table 7 consists of two models which are not proportional hazards models.
Case (A) is an accelerated failure time model with a normal error term, which
specifies that the effect of the covariate is multiplicative on the failure time 7
rather than on the hazard function. Case (B) is similar to case (A) except that
the error term acts on T additively rather than multiplicatively. Cox’s test is
somewhat more powerful than the other three tests in case (A) whereas the new
test performs the best in case (B).

In summary, the new test maintains its size near the nominal level, which
reflects the appropriateness of the normal approximation for practical use. Fur-
thermore, it has adequate power for detecting violation of the three assumptions
in the Cox model. The tests proposed by Cox (1972), Schoenfeld (1980), Wei
(1984), and Gill and Schumacher (1987) are sensitive to monotone departures,
but are not powerful for testing other alternatives. Since the proposed test is
designed to detect general departures from Model (1.1), it can not be expected
to have optimal power properties against specific alternatives that can be tested
by specific tests. To identify the direction of model misspecification after the
proposed test rejects the null hypothesis, the user is encouraged to use some
specific tests and diagnostic plots.
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Appendix A: Proof of Theorem 2.1

The Cox model (1.1) can be re-expressed in terms of the multivariate count-
ing process N = (Ny,... , N,) with the intensity process

Ai(®) = Yi(t)ho(t)exp{ByZi(t)}, i=1,...,n (A.1)
(see Andersen and Gill (1982)). We will repeatedly use the assumptions that

(Ni,Yi, Z;) (i = 1,... ,n) are independent and identically distributed and that
the covariates are bounded without specifically referring to them in the proof. We
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also assume that Q is positive definite and that Pr(Yi(t)=1, forallt <7) >0
for each 7 < oo and all i. R
Taylor series expansion of vec(D,(3)) around S, gives

vec(Dn(,é)) = vec(Dn(fo)) + VveC(Dn(B))(ﬁ - Bo),

where 7vec(Dyn(8)) is the p? X p Jacobian matrix of vec(Dy(8)) with respect
to 8, and B is on the line segment between B and Bo. Using the arguments
similar to those given in the proof of the consistency of An(,@) for  on pp. 1107-
1108 of Andersen and Gill (1982), we can show that yvec(D,(f3)) converges in
probability to a deterministic matrix J(8) uniformly in 8 around f.

Now, let

Mi(t) = Ni(t) - /0 Mwydu, i=1,... (A2)
Then n!/2(f — o) is asymptotically equivalent to

n-1/2g-1 2; [ - B, warco)
where E(8,u) = SM(8,4)/5©®(8,u). The matrix B,(8) can be rewritten as

n~rY [7{Zi(u) - E(B,w)}®2dN;(u) due to the fact that [ G(B,u)dNi(u) =
A;G(B,X;) for any predictable matrix G(S8,u). Thus,

2vec(Dp(fBo)) = n~1/? Z /0°° vec(Ri(Bo, u))dNi(u), (A.3)

where R;(8,u) = S®)(8,1)/S©(B,u) ~ E(B,u)®? — {Zi(u) — E(B,u)}®2. It is
easy to show that the right hand side of (A.3) equals n=1/2 ¥ [* vec(Ri(Bo,u))

dM;(u) under the assumed model (A.1). It follows that n!/2vec(D,(4)) is asymp-
totically equivalent to

1230 /0 {vec(Ri(Bo, w) + T (B0)27 [Zi(w) - E(Bo,w)] JaMi(w). (A4)
i=1

By Rebolledo’s Central Limit Theorem for local square integrable martingales

(see Theorem 1.2 of Andersen and Gill (1982) and Theorems 4.2.1 and 4.3.1 of

Gill (1980)), expression (A.4) converges weakly to a normal variable with mean
0 and with covariance matrix Q(8s), which can be consistently estimated by

@)=Y [ {vectri(hu+

- a - ®2
v vee(Da(B)An() 7 [Zi(w) — EB,w)]} dNi(w).  (A5)
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Note that yvec(Dn(8)) = nt 3 J5” yvec(Ri(B,u))dN;(u). Again, the consis-
tency of Qn(ﬁ) for Q(Bo) can be established by the arguments on pp. 1107-1108
of Andersen and Gill (1982), which completes the proof.

Appendix B: Consistency of Test Statistics

Let h;(t) denote the true hazard function of the ith individual. It is conve-
nient to introduce the following notation

50() =0 Y HOMOZO®,
i=1

O =e(sO@},  sD(8,1) = £{sD(8,1)}

for r = 0,1,2, where the expectations are taken with respect to the true model
of (Xi,Ai,Z;) (i = 1,...,n). Also, let E(B,t) = §1)(8,t)/5©(8,1), e(8,t) =
s(B,t)/sV(B,1), V(B,t) = SP(B,1)/SO(8,t) - E(B,t)®?, and v(8,t) =
s((8,1)/s0(B,t) — e(B,t)®2. The quantities E(t),e(t),V(t), and v(t) are de-
fined similarly.

Under a possibly misspecified Cox model, the maximum partial likelihood
estimator ,B converges in probability to a p-vector of constants 3* which is the
unique solution to the system of p equations

/0 oo{e(t) — e(8,1)}s©(t)dt = 0 (B.1)

provided that the p X p matrix f0°° v(B*,t)s(®)(t)dt is positive definite (Struthers
and Kalbfleisch (1986), Lin and Wei (1989)).
It follows from (A.2) and (A.3) that

Do8) =71 Y [T{V(8,0 - (20) - B, 01 }aNi(t)
=1
=n"1 Z /Ooo{V(ﬂ,t) —[Zi(t) - E(B,1)]®% }dM;(t)

- /OM{V(t) - V(B,1) + [E(t) — E(8,1)]®2} 5O (t)dt.

By standard counting process techniques, we can show that Dn(ﬁ) converges in
probability to D(3*), where

D(e)=- | " {0(t) — v(B,1) + [e(t) — e(B, )%} sO (1)dt.
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In addition, the covariance matrix estimator Q,(8) given in (A.5) converges in
probability to a positive semidefinite matrix. Therefore, the goodness-of-fit tests
based on D,,(,é) are consistent against any model misspecification under which
D(3*) is nonzero.

When model (1.1) is incorrect, for any fixed 3, e(t) # e(8,t) and v(t) #
v(B,t) in some time interval of t. The p-vector 3* determined by (B.1) entails
{e(t) — e(B*,t)} to vary over ¢ in such a way that the integration of {e(t) —
e(8*,t)}s9(2) is zero. This value of §* generally does not satisfy D(8*) = 0.

We now examine D(3*) in detail for the two-sample problem. Let Z be the
treatment indicator with Pr(Z = 1) = p. Also, let hy(t) and ho(t) denote the
hazard functions of the treated and the control groups, respectively. By the basic
properties of conditional expectations, we have

sV(8,t) = pe Pr{Y (t) = 1|Z = 1}
sO(B,t) = peP Pr{Y(t) = 1|1Z = 1} + (1 — p) Pr{Y () = 1|Z = 0}
s() = pha(t) Pr{Y (1) = 1|2 = 1}

sO(2) = phy () Pr{Y (t) = 1|Z = 1} + (1 — p)ho(t) Pr{Y (t) = 1|Z = 0}.
Thus,

B (1-p)Pr{Y(t)=1|Z=0})"
«(b,t) = {1 T PHY () = 1Z = 1)eP } ’ (B-2)
B (1= p)Pr{Y(t) = 1|Z = O}ho(t) | *
o) = {1 PV () = 112 = () } ' (B-3)

By noting that s(¥)(8,t) = s(1)(8,t) and s®)(t) = s(1)(t) and that 8* satisfies
(B.1), we can show that

D(g") =2 /ow (8", D){e(t) - e(B*,8)}sO)(2)dt.

Next suppose that the hazard ratio hy(t)/ho(t) is monotone. Then according to
(B.1)~(B.3) there exists a time point 0 < t* < oo such that {e(t) —e(8*,t)} takes
opposite signs between (0,t*) and (t*,00). Hence, D(8*) will be nonzero if, for
example, e(3*,t) is monotone in ¢, which is true if the curves of hy(t) and ho(t)
do not intersect and the censoring distributions are identical between the two
groups.
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Table 1. Times to remission (weeks) for leukemia patients

Sample 0 67, 6, 6, 6, 7, 9%, 10%, 10, 11¥, 13, 16, 17¥, 19%, 20, 22, 23, 257, 32%,
32% 34* 35%

Sample 1 1,1,2,2,3,4,4,5,5,8,8,8,8 11,11, 12, 12, 15, 17, 22, 23

NOTE: * indicates censored.

Table 2. Reanalysis of Stanford heart transplant data
as of February 1980 by Cox regression models

Model
1 2 3
age
i) 0.02955  0.04471  0.04478

SE;(B1) 0.01135  0.01095  0.01089
SEy(B1) 0.00949  0.01071  0.01049

T5
B2 0.16956  0.17506 —
SE;(B2) 0.18312  0.18306 —
SEz(B32) 0.16730  0.16908 —

2

age
Ba — 0.00223  0.00221
SE;(B3) — 0.00070  0.00069
SE2(B3) — 0.00072  0.00071
Maximum test
T, 2.466 1.578 1.001
p-value 0.041 0.478 0.631
Wald test
Wh 9.356 6.999 1.587
df. 3 6 3

p-value 0.025 0.321 0.662
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Table 3. Empirical sizes of five goodness-of-fit tests: (i) new test, (ii) Cox’s test, (iii)

Schoenfeld’s test, (iv) Wei’s test and (v) Gill-Schumacher’s test for one-parameter Cox
models

(A) h(t]Z) = exp(0.22)* (B) Weibull(p = 1,7 = 2)
Sample vs. Weibull(p = 2,7 = 2)°
Size No Censoring 25% Censoring® No Censoring 22% Censoring?
a=.0]1 a=.00 a=.01 a=.08 a=.01 a=.05 a=.01 a=.05
50 0.015 0.053 0.023 0.053 0.021 0.070 0.022 0.075
0.018 0.059 0.016 0.064 0.014 0.055 0.013 0.052
0.013 0.056 0.011 0.048 0.013 0.047 0.011 0.062
0.002 0.040 0.005 0.041 0.003 0.030 0.006 0.029
— —_ _— — 0.019 0.059 0.027 0.070
100 0.012 0.047 0.012 0.058 0.009 0.049 0.019 0.068
0.009 0.054 0.015 0.061 0.013 0.054 0.009 0.052
0.009 0.059 0.017 0.061 0.009 0.045 0.007 0.043
0.007 0.044 0.009 0.036 0.004 0.027 0.008 0.033
— — — — 0.010  0.037  0.013 0.050
200 0.010 0.048 0.009 0.044 0.012 0.048 0.011 0.049
0.012 0.045 0.014 0.059 0.009 0.040 0.014 0.052
0.018 0.066 0.009 0.045 0.008 0.041 0.009 0.050
0.009 0.047 0.008 0.043 0.004  0.033  0.005  0.040
—_ —_ —_ — 0.007 0.041 0.015 0.052

. Z is a standard normal variable truncated at +5.

. Subjects are allocated to two groups with equal probability.
U(0,4) censoring distribution.

. U(0, 3) censoring distribution.

fo o

Table 4. Empirical powers of five goodness-of-fit tests: (i) new test, (ii) Cox’s test, (iii)
Schoenfeld’s test, (iv) Wei’s test and (v) Gill-Schumacher’s test for detecting noncon-
stant hazard ratio in the two-sample case

(A) Gamma(k = 2) (B) Weibull(p = 1,7 = 0.5)

Sample vs. Gamma(k = 3) vs. Weibull(p = 1,7 = 1.5)
Size No Censoring 25% Censoring?® No Censoring 26% Censoring®
o=.01 oa=.05 =01 aa=.05 a=.01 a=.05 a=.01 a=.05

50 0.169 0.370 0.124 0.313 0.009 0.120 0.044 0.129
0.062 0.162 0.038 0.126 0.866 0.950 0.709 0.892
0.044 0.135 0.037 0.127 0.673 0.853 0.520 0.772
0.027 0.089 0.022 0.080 0.760 0.901 0.555 0.815
0.077 0.170 0.061 0.168 0.933 0.982 0.852 0.942
100 0.297 0.521 0.214 0.423 0.238 0.719 0.064 0.296
0.129 0.299 0.112 0.258 1.000 1.000 0.977 0.994
0.083 0.211 0.059 0.188 0.968 0.991 0.908 0.966
0.085 0.226 0.058 0.167 0.992 1.000 0.953 0.988
0.161 0.326 0.097 0.241 1.000 1.000 0.988 0.996
200 0.527 0.726 0.391 0.570 0.948 0.991 0.428 0.729
0.296 0.533 0.232 0.492 1.000 1.000 1.000 1.000
0.220 0.452 0.163 0.380 1.000 1.000 1.000 1.000
0.248 0.503 0.157 0.384 1.000 1.000 1.000 1.000
0.397 0.649 0.269 0.497 1.000 1.000 1.000 1.000

NOTE: Subjects are allocated to two groups with equal probability. Cox models with
indicator covariate are fitted.

a. U(0,10) censoring distribution.

b. U(0,4) censoring distribution.
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Table 5. Empirical powers of five goodness-of-fit tests: (i) new test, (ii) Cox’s test, (iii)
Schoenfeld’s test, (iv) Wei’s test and (v) Gill-Schumacher’s test for detecting propor-
tional hazards models with omitted covariates

Sample  (A) h(t|Z) = exp(0.2Z + 0.3Z%)*  (B) h(t|Z, Z*) = exp(0.5Z + 22*)P

Size No Censoring 26% Censoring® No Censoring 28% Censoring?

a=.01 a=.05 a=.01 a=.05 a=.01 a=.05 a=.01 a=.05

50 0.025 0.297 0.024 0.224 0.074 0.220 0.060 0.192
0.023 0.094 0.024 0.090 0.021 0.098 0.010 0.068

0.013 0.057 0.011 0.057 0.009 0.058 0.007 0.049

0.045 0.135 0.034 0.103 0.007 0.027 0.006 0.030

— —_ —_ —_ 0.023 0.060 0.016 0.061

100 0.403 0.790 0.313 0.750 0.078 0.244 0.095 0.221
0.019 0.086 0.029 0.105 0.027 0.106 0.018 0.074

0.011 0.060 0.016 0.054 0.022 0.066 0.013 0.061

0.057 0.172 0.048 0.158 0.017 0.061 0.011 0.052

— —_ —_ —_ 0.033 0.090 0.032 0.098

200 0.946 0.996 0.878 0.983 0.133 0.307 0.099 0.254
0.034 0.111 0.052 0.135 0.028 0.100 0.020 0.093

0.010 0.045 0.012 0.060 0.040 0.121 0.024 0.089

0.075 0.204 0.085 0.222 0.034 0.115 0.018 0.076

— — — S 0.056 0.146 0.035 0.104

NOTE: One-parameter Cox models with covariate Z only are fitted.
a. Z is a standard normal variable truncated at +5.
b. Pr(Z = —1) = Prx(Z = 1) = 1/2. Z* is an independent standard normal variable
truncated at +5.

. U(0, 3) censoring distribution.

. U(0,7) censoring distribution.

[="N¢]

Table 6. Empirical powers of four goodness-of-fit tests: (i) new test, (ii) Cox’s test, (iii)
Schoenfeld’s test and (iv) Wei’s test for detecting proportional hazards models with
non-exponential regression forms

Sample (A)Rr(t]Z) =1+0.5Z (B) h(t]Z) = log(2 + 0.52)
Size No Censoring 24% Censoring® No Censoring  24% Censoring®
a=.01 =05 a=.01 a=.05 a=.01 a=.05 a=.01 a=.05
50 0.114 0.224 0.088 0.192 0.118 0.246 0.082 0.207
0.018 0.121 0.012 0.080 0.020 0.109 0.011 0.058
0.020 0.055 0.008 0.067 0.018 0.063 0.009 0.062
0.010 0.035 0.003 0.019 0.007 0.039 0.001 0.026
100 0.152 0.321 0.149 0.290 0.151 0.325 0.139 0.300
0.073 0.208 0.020 0.085 0.060 0.160 0.015 0.068
0.013 0.070 0.013 0.062 0.012 0.059 0.016 0.049
0.018 0.066 0.006 0.034 0.003 0.053 0.005 0.035
200 0.271 0.480 0.258 0.447 0.303 0.529 0.242 0.440
0.179 0.400 0.022 0.125 0.130 0.280 0.024 0.086
0.008 0.058 0.013 0.056 0.011 0.074 0.005 0.040
0.003 0.114 0.009 0.049 0.027 0.102 0.011 0.043
NOTE: Z is a standard normal variable truncated at +1.96. One-parameter Cox models

(with exponential regression form) are fitted.
a. U(0,5) censoring distribution.
b. U(0,7) censoring distribution.
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Table 7. Empirical powers of four goodness-of-fit tests: (i) new test, (ii) Cox’s test, (iii)
Schoenfeld’s test and (iv) Wei’s, test for detecting nonproportional hazards models

Sample (A)logT = —0.5Z + 0.5¢* (B) T = exp(—0.52Z) + ¢°

Size No Censoring 25% Censoring® No Censoring 25% Censoring?
a=.01 a=.05 a=.01 a=.05 a=.01 a=.05 a=.01 o=.05

50 0.075 0.180 0.086 0.177 0.461 0.625 0.384 0.558
0.120 0.281 0.119 0.264 0.286 0.465 0.199 0.374

0.041 0.130 0.031 0.125 0.201 0.395 0.167 0.372

0.048 0.164 0.032 0.118 0.112 0.266 0.085 0.192

100 0.136 0.272 0.116 0.249 0.745 0.855 0.654 0.788
0.301 0.499 0.223 0.433 0.606 0.780 0.470 0.661

0.107 0.258 0.096 0.221 0.514 0.710 0.471 0.701

0.185 0.371 0.131 0.288 0.358 0.597 0.266 0.464

200 0.254 0.404 0.203 0.348 0.934 0.972 0.919 0.957
0.594 0.790 0.501 0.729 0.919 0.968 0.816 0.922

0.269 .49 0.224 0.425 0.900 0.966 0.865 0.955

0.521 0.748 0.363 0.598 822 0.934 0.624 0.817

NOTE: Z is a standard normal variable truncated at £5. One-parameter Cox models
(with exponential regression form) are fitted.

a. € is an independent standard normal variable.

b. ¢ is an independent log-normal variable with 4 = 0 and ¢ = 0.5.

c. U(0,5) censoring distribution.

d. U(0,9) censoring distribution.
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