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RESAMPLING-BASED ESTIMATOR IN
NONLINEAR REGRESSION
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Abstract: In this paper we suggest a resampling-based estimator (RSE) of nonlinear
regression by using Wu’s (1986) resampling idea. The RSE is bias-reducing without
increasing the variance. Some examples are given using the data of Ratkowsky (1983),
and several simulations are also presented.
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1. Introduction

Nonlinear regression models have wide application in a variety of contexts,
and much of the theory is established. The usual model has the form

¥ = f(z4,0) + € v(i=1,...,n), (1)

where f is a nonlinear function of the p-dimensional parameter § and assumed
twice continuously differentiable in 4, and the errors ¢; are assumed to be inde-
pendent and identically distributed random variables with mean 0 and unknown
variance o2. For this model, the least square estimator (LSE) § of 8 can be
obtained by minimizing the objective function

J(0) = {yi — f(z:,0)}? (2)
1=1
or
Of;

Z 5 i fles 0l =0 3)
The estimator of o2 is 6% = J(8)/(n — p). Let f, = f(z;,0) ¢ =1,...,n), V
denote the n x p matrix with elements

Ofi

fi = (i=1,...,n, 7=1,...,p).

00,
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W denote the n X p x p array with elements

o2 f;
fro= 21
00,00,

i=1,...,n, r,s=1,...,p)

and e denote the residual vector with elements
e =y — f(zi,é).
Then, Equation (3) can be written as

VvT(f)e =o0. (4)

2. Bias of § and Jackknife-Based Estimators

The LSE of the parameters in the model (1) are generally biased estimators
of the true parameter values. The bias Bias(f) = E(6 — 6) can be expressed as

Bias(f) ~ _5‘-2-2-(VTV)—1VTtr{(VTV)-1W} (5)

where tr{(VTV)"'W} is an n x 1 vector with elements tr{(VTV) " !W;}(i =
1,...,n) and W;, is the ith face of W, a p X p matrix with elements

s _ O fi
f'i _801-803 (T,S—l,...,p).

Bates and Watts (1980) pointed out that the bias of the LSE (5) is only a function
of the parameter-effects curvature array and thus could be reduced or eliminated
by reparameterization. For the single-parameter case, Hougaard (1982) showed
that there is a transformation which eliminates bias, but the appropriate transfor-
mation does not exist in general for the multiparameter case (Hougaard (1984)).

Many Jackknife-based estimators are supposed to construct confidence re-
gions in nonlinear regression, but, these estimators are not valid in bias-reduction
as shown in Simonoff and Tsai (1986).

The linear Jackknife was developed by Fox et al. (1980). With pseudo-values
defined as

LP =6+ (n(VTV)WVies) /(1 — ki) (6)

where V is the values of V evaluated at 9, V; is the ith row of V, and izii is the
ith diagonal element of the matrix V(VTV)~1VT, the linear Jackknife estimator
f.p is defined as the average of the pseudo-values

. 1 <&
frp ==Y LP. (7)
n i=1
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By extending the work of Hinkley (1977) to nonlinear regression, Fox et al. (1980)
proposed a weighted linear Jackknife estimator to improve the bias reduction.
Weighted pseudo-values are given by

LQ; = é + n(VTIA/)“IVie,- (8)

and replacing LP; by LQ; in (7) yields the weighted linear Jackknife estima-
tor. The linear Jackknife estimator and the weighted linear Jackknife estimator
do not have the first-order bias term eliminated; this is due to using a linear
approximation and to lack of design balance.

Simonoff and Tsai (1986) proposed three new Jackknife-based estimators.
The pseudo-values are given by

MLP;, = §+nT 'Ve;/(1 - h}) (9)
MLQ; = 0+ nT, Wie; (10)
RLQ; = 0+ n(VTV) Wiei(1 — hi) (11)

where T; = {VTV — [e(i)][W(i)]}, hy = VIT,V;,V, W are all evaluated at 9, e(i)
and W(;) are respectively the (n — 1) x 1 vector and (n — 1) x P x P array with
the ith component removed from the n x 1 vector e and the n x p x p array w.
If the term [e(;)][W(;)] is ignored, then (9) and (10) are identical to (6) and (8),
respectively. These Jackknife-based estimators do not reduce the bias of the LSE
because of the linear approximation in producing the pseudo-values.

In this article we suggest an alternative weighted scheme and quadratic ap-
proximation whereby the bias reduction properties hold, and the first-order bias
term of the LSE is eliminated. Some examples are presented to illustrate this

property.

3. Resampling-Based Estimator (RSE)

Let s = {i1,...,i,} be a subset of {1,...,n}, and 6, be the LSE of Model
(1) based on the (z;,y;) in s, i.e. §5 can be obtained by minimizing the objective
function,

Jo(0) = {vi — f(z:,0)}.

1€3
For a linear model, 6, can be expressed as
b, = (VIVy) V] y, (12)

where ys = (i, ---,¥i,)7 and Vs = (Viy,...,Vi,), Vi, is the i;th row of V. The
following results are based on Wu (1986).
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Result. For any r > p, we have
(”‘p)VTw Z|VTV| (13)
r—p

where 3, denotes the summation over all the subsets of size 7, and when the
model (1) is linear, the LSE can be expressed as

~ — (VTV)—].VTy — Zwsés’ (14)

where w; is a weight defined as

x |VIV,| Zws = 1.
r

For the nonlinear model (1), we suggest a resampling-based estimator (RSE).
The RSE is given by

R o r—p+1 o ”
brs =6+ —2T-5"0,(0 - 0), (15)
n—-r 4
where @, are evaluated at 6 to reduce the computation of RSE. We construct a
Taylor series approximation to 8, yielding

P

b, = b+ (VTV) Ve, — (VT V)~ VT [A6T, W, 20, (16)

where W, = (If?}l, ey W,-, )T and V, are evaluated at §, and Ay, = (f/;Tf/;)‘leTes.
Substituting 8, into (15), and utilizing (12) and (14), yields

by = 6- TP LTy,
n-—r
”2—(;-’3_:’;)1 S 0, (VIVL) " WT A6, W, A6y, (17)
and from (4), we have
brs =6+ ’"(_p +1 Z &s(VIV,) "I [AOT, W, A64,). (18)

In the remainder of this paper, the RSE is defined as (18).
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Theorem. For r = n — 1, and under some appropriate regularity conditions
(Mong (1988))

A

(i) Bias(,s) = (n —p+ 1)Bias(d)

0.2 T " T g —-1y/T r T g -1 . 3
+ 7 Z ’Vs |Z |(Vs V) |V‘;s‘/tl [(Vs V) W] + O(TL 3/2) (19)
= O(n73%) (20)
(ii) Var(8,s) = Var(d) + O(n=3/?) (21)

i.e. the RSE eliminates the first-order bias term of the LSE, and the variance of
the RSE and LSE have the same first-order term.

Proof.
(1)
Bias(6,,) = Bias(d) + E"—;—?i S &, (VIV) VI AT, W, A1) (22)
Let
A=E" - LN 0,(VIV,) VT (A6, W, A64). (23)

Since = 0 + O,(n~1/?), substituting into (23) yields

n— - - - -
A= E S (VIV) TV b W (VIV,) TV Beyel Vi(VTV) T + O(n 2.

2
(24)
Note that
€s = Ys — f(:z:s,B)
= ¢ - VIWVTV) WTe 4+ 0,(n71).
We have

2
A =T (n=p) Y wy(VIV) TV e [Wa((VT V) T =(VTV) )] +0(n %), (25)
From (14), A can be described as

A= 53(—”22”—) S wy(VEIV) WVt (W, (VI V)™ + (n — p)Bias(d) + O(n™3/2).
T (26)
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Now, Equation (19) follows from (26) and (22). Using (25), another expression
can be obtained:

A = %2Z(V;T%)—IVsTtr[WS(VTV)—lviviT(VTV)—l] + O(n“3/2) (27)

r

since [VIV.| = [VTV|(1 = ki) and (VTV;)™t - (VTV)~1 = (0 fRmi,

Replacing (VIV;)~! by (VTV)~! in (27), the difference can be ignored. Thus,
A= 9;Z(VTVersTtr[Ws(v’-”V)*lmT(VTV)*] +0(n™%?)
= %%(VTV)‘IVTtr[W(VTV)"l]
_ %2 Z(VTV)—lvitr[Wi(vTv)—-IViViT(VTV)—l] + O(n‘3/2)

= — Bias() + O(n~%/?%). (28)
From (28), (22) and (2) Equation (20) is obtained immediately.
(ii) Under some regularity conditions, the RSE can be written as
frs =6+ O0,(n71)
and it can be proved that
Var(6,,) = Var(d) + O(n=%/2).

The details can be found in Mong (1988).

The theorem can be established when n — r is bounded. More information is
available in Mong (1988).

4. Examples

In this section several examples are presented to illustrate the result of Sec-
tion 3. The biases, given in following Tables are defined as

%Bias(f) = Bla;(e) x 100% (29)

Bias(6,)

%Bias(fys) = x 100%. (30)

s

These examples were all analyzed by Ratkowsky (1983). The first example is the
Gompertz model, with the form

y = aexp{—exp(8 — rX)}. (31)
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The example involves two sets of data, based on data sets 2 and 4 in Ta-
ble 4 of Ratkowsky (1983). The parameter estimators, with associated bias and
parameter-effects curvature, appear in Table 1. For data set 1, the LSE’s biases
of the two parameters 3 and -y are serious, but for RSE the biases of parameters 3
and v are reduced. Data set 2 also shows that the bias reduction property holds,

and in the two data sets, the parameter-effects curvature for LSE and RSE are
quite close.

Table 1. LSE and RSE (Model (31)), with associated estimated biases
and parameter-effects curvature (PE)

Data 1 Data 2
Q I} v PE o B 07 PE
LSE 723.1 2.5 0.45 0.70 22.51 2.106 0.388 0.880
%Bias  0.185 1.088 1.007 0.271 1.066 0.976
RSE 721.539 2.4881 0.446 0.71 22.441 2.086 0.384 0.896
%Bias -0.077 0.027 0.0116 -0.112 0.066 0.0177

The second example is based on the model

1/2
y =01+ ba(z — 00) + 05 {(z — 02" + 05} (32)

and data set 3 in Table 6.18 of Ratkowsky (1983). Ratkowsky (1983) showed that
the most effective method to reduce the bias of the LSE is reparameterization.

However, it is difficult to find an appropriate transformation. We propose a
transformation for Model (32). Let 6f = 0;/2,

1/2
y =01+ 02(z - 6) + 6 { (2 - 0)? + 67} ", (33)

The results for models (32)and (33) are presented in Table 2. The calculations
indicate that the transformation has reduced the bias of LSE, but it is still serious.
The bias of RSE is the only one that can be ignored.

Table 2. LSE and RSE (Models (32) and (33)), with associated estimated
biases and parameter-effects curvature (PE)
LSE  %Bias(d) RSE  %Bias(6,s) LSE*  %Bias(d)
#, 136.822 0.124 136.501 0.060 136.822 0.124

0> 0.696 -0.996 0.713 016 0.696 -0.996
f;  —0.587 1.761 -0.566 .007 -0.587 1.761
04 18.752 0.330 18.609 .004 18.752 0.330
s 6.727 20.521 4.627 .750 2.594 1.609
PE  1.812 1.893 4.497

*Note: The LSE and biases of parameters in Model (30)
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For the third example, we consider the Morgan-Mercer-Flodin model (Ratkow-
sky (1983)),

_ By + az®

T
Two data sets are used to fit this model; the results are shown in Table 3. This
example also shows that RSE is an effective bias-reducing estimator.

(34)

Table 3. LSE and RSE (Model (34)), with associated estimated biases

Data 1 Data 2
a B v Y a B ¥ 4
LSE 723.9 33.35 6266 4.641 22.08 1.653 5586 4.56
%Bias 0.313 —2.468 86.600 1.424 0.237 -0.794 55.327 0.942
RSE 722.918 33.546 3714.59 4.592 22.006 1.663 2238.86 4.510
%Bias -0.02 0.836 0.432 0.053 -0.034 0.771 -0.078 0.005

5. Simulation

In this section, several simulations are provided to examine the properties of
RSE, LSE and other Jackknife-based estimators.

Suppose that 6 and 62 are treated as the true values of 8,02 and M sets of
size-n samples are simulated from

Y}:f(zi,é)+ei (i=1,...,n)

where ¢; are i.i.d. N(0,6%). For each set we obtain an estimator g™ (m =
1,...,M). We consider the estimation characteristics in regard to bias, variance,
skewness and kurtosis. They are defined as follows:

~ M -~
8 = 3 6™ /mM,
m=1

~

Bias; = 51(.') - 0,
1 & om0y

V. i = 0m -6; )
ar Mm§=1( ; ;)

- ~(\ 3
MY T (6 - 60
g1i = )2 3/2°

(2, (3

MZrATg.I:l (é'fm) - éz
g2i = -3

(s, (8 - 60))

) 4
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The absolute relative biases (ARB) of LSE and RSE are also presented, they are
computed as:

ARB; = ||Bias;||/S.E .,

where S.E.; = \/v;/M, v; is a linear approximation variance of LSE and RSE.
Let C = 5’2(VTV)—1; then v; = Cj;.

The first simulation set is based on the Gompertz model (Section 4, Model
(31)). The simulation results (Table 4) show that simulation biases and variance
of LSE are very close to the theory values, and the results also quantify the
bias-reduction property of RSE. The simulation variances of RSE are close to
the variances of LSE. This supports the theory of theorem part (ii); RSE is less
biased without increasing variance and has lower ARB.

The second simulation is based on Duncan’s (1978) example. The model is

61

Y=
01— 0

(e702% — g=017), (35)
All of the estimators are quite close as regards bias, variance, ARB, skewness and
kurtosis, and RSE is still a good estimator, with lower bias, variance and ARB.
(Table 5)

The final simulation is based on a chemical-reaction rate model from Meyer
and Roth (1972, Example 1) previously analyzed by Rotkowsky (1983, Sec. 6.3)
and Simonoff and Tsai (1986). The model is:

01932:1

Y = .
140,21 + 6229

(36)

The results of simulation are presented in Table 6. There are some differences in
this example; Only 9, QRLQ and 6, perform well. Although the biases of 61 p are
close to those of LSE, the variances of f.p are much bigger than the variances
of LSE. Both the biases and variances of 9ML p and 9MLQ are much larger than
those of LSE. The RSE is still good at bias-reducing and yielding lower variance.

In conclusion, RSE is effective as a bias-reducing estimator without increasing
the variance. In addition, RSE could be applied to construct confidence regions.
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Table 4. Simulation results for the Gompertz Model
LSE RSE LP RLQ MLQ MLP
Data set 1.
Bias 6, 2.3211 0.9883 2.4441 2.2495 0.1231 -0.6779
(%Bias) (0.3210)  (0.1367) (0.3380) (0.3111) (0.0170) (-0.0937)
0 0.0275 0.0010 0.0236 0.0294 0.0603 0.0885
(1.0983)  (0.0396)  (0.9435) (1.1855) (2.4126)  (3.5390)
03 0.0041 ~0.0003 0.0034 0.0044 0.0102 0.0150
(0.8998) (-0.0733) (0.7598) (0.9798) (2.2662)  (3.3418)
ARB 01 3.3271 1.4167
8- 3.0502 0.1100
853 2.4739 0.2016
Var f; 500.8908 493.9358 505.5539 501.9933 507.8207 548.6551
6 0.0866 0.0839 0.0884 0.0873 0.0926 0.1128
;s  0.0029 0.0028 0.0029 0.0029 0.0031 0.0037
Ske. 01 0.5193 0.5266 0.5313 0.5130 0.5225 0.4847
0 0.4669 0.4660 0.5843 0.4277 0.5033 0.8462
03 0.3583 0.3550 0.4370 0.3376 0.3786 0.6463
Kur. 01 0.6589 0.6841 0.6802 0.6419 0.6649 0.7686
6 0.7583 0.7715 1.1560 2.5605 2.5887 2.5012
05 0.5082 0.5153 0.7781 0.4094 0.5308 1.3310
Data set 2.
Bias 6, 0.0934 0.0313 0.0979 0.0905 0.0111 0.0162
(%Bias) (0.4150)  (0.1393)  (0.4349) (0.4023) (0.0491)  (0.0719)
f,  0.0247 0.0030 0.0221 0.0262 0.0498 0.0643
(1.1703)  (0.1405)  (1.0502) (1.2415) (2.3620)  (3.0528)
63 0.0037 0.0001 0.0033 0.0040 0.0088 0.0111
(0.9533)  (0.0180) (0.8399) (1.0203) (2.2545) (2.8548)
ARB 0, 3.5281 1.1837
6, 3.3154 0.3981
B;  2.5472  0.0482
Var 61 0.7520 0.7333 0.7610 0.7558 0.7707 0.9054
f>  0.0590 0.0574 0.0598 0.0593 0.0635 0.0762
03 0.0023 0.0022 0.0023 0.0023 0.0024 0.0029
Ske. 6, 0.5934 0.5998 0.6058 0.5907 0.6171 0.7189
8- 0.4696 0.4711 0.5690 0.4299 0.5054 0.7560
03 0.3530 0.3525 0.4150 0.3296 0.3606 0.4797
Kur. 61 0.6613 0.6940 0.6709 0.6571 0.7305 1.1844
82 0.6832 0.6956 1.0212 0.5500 2.1706 2.1092
03 0.5166 0.5282 0.7601 0.4159 0.5385 1.1274
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Table 5. Simulation results for Duncan’s Model
LSE RSE LP RLQ MLQ MLP
Bias #, 0.0017 -0.0001 0.0016 0.0017 0.0051 0.0051
(%Bias) (0.7798) (-0.0567) (0.7656) (0.7940) (2.4103) (2.4103)
8, 0.0024 -0.0002 0.0023 0.0025 0.0141 0.0167
(0.5335) (-0.0448) (0.5089) (0.5515) (3.1585) (3.7436)
ARB 6, 2.0871 0.1518
0, 1.4598 0.1227
Var 61 6.2285 6.1741 6.2660 6.2158 6.3399 6.4061
x104 g, 29.7200 29.2228 29.7699  29.7606  32.7239  33.5404
Ske. 01 0.2478 0.2502 0.2457 0.2497 0.2452 0.2437
0, 0.4529 0.4566 0.4546 0.4501 0.4605 0.4613
Kur. 04 0.0551 0.0615 0.0284 0.0749 0.0386 0.0033
6, 0.1951 0.2089 0.1939 0.1936 0.1925 0.1955
Table 6. Simulation results for Model (36)
LSE RSE LP RLQ MLQ MLP
Bias 61 0.0171 -0.0167 0.1565 0.0186 -2.8677 -0.2644
(%Bias) (0.5451) (-0.5333) (4.9960) (0.5927) (-91.5756) (-8.4426)
0 0.0373 0.0102 0.8352 0.0379 -0.5020 -10.6552
(0.2461) (0.0670)  (5.5097) (0.2501) (-3.3114) (-70.2881)
03 0.0401 0.0009 0.0489 0.0397 0.6719 -0.6768
(5.1342) (0.1141) (6.2700) (5.0932) (86.1280) (-86.7651)
ARB 01 0.6678 0.6533
9, 1.8673 0.5086
f;  8.3329 0.1852
Var §, 0.6344 0.6204 60.7894  0.6425  4710.9600 7916.0800
8, 0.3630 0.3601 958.1200 0.3660 163.9922 4884.8700
03 0.0336 0.0274 0.6649 0.0338 204.4682 843.0529
Ske. 6, 0.2984 0.2994 0.0684 0.3197 -30.2997 29.0962
82 0.1650 0.1668 -0.0857 0.1839 -29.8790 -22.4977
03 1.5195 1.3416 1.5660 1.5162 28.6021 -31.1751
Kur. 01 0.1830 0.1992 0.8167 0.2638 938.9550 899.5855
6, -0.0073 -0.0348 -0.0857 0.0556 920.8717 593.3932
03 3.7300 3.2149 8.3050 3.7577 852.1255 978.6693
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