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Abstract: Support Vector Machines (SVMs) have proven to deliver high perfor-

mance. However, problems remain with respect to feature selection in multi-

category classification. In this article, we propose an algorithm to compute an

entire regularization solution path for adaptive feature selection via L1-norm pe-

nalized multi-category MSVM (L1MSVM). The advantages of this algorithm are

three-fold. First, it permits fast computation for fine tuning, which yields accu-

rate prediction. Second, it greatly reduces the cost of memory. This is especially

important in genome classification, where a linear program with tens of thousands

of variables has to be solved. Third, it yields a selection order in which the fea-

tures can be examined sequentially. The performance of the proposed algorithm is

examined in simulations and with data.

Key words and phrases: Genome classification, hinge loss, L1-norm, penalty with,

regularization.

1. Introduction

Support Vector Machines (SVMs), as powerful classification tools, have been

widely used and proven effective in binary classification. For multi-category clas-

sification, several versions of L2-norm multi-category SVMs (MSVMs) have been

introduced, including Vapnik (1998), Weston and Watkins (1998), Bredensteiner

and Bennett (1999), Guermuer (2002), Lee, Lin and Wahba (2004) and Liu and

Shen (2005). Although MSVMs have been successful in a number of applica-

tions, they may not perform well when the number of features is much higher

than that of observations. Recently, Wang and Shen (2005) proposed an L1-norm

MSVM (L1MSVM), which performs classification and feature selection simulta-

neously, and proves to be more effective in high-dimensional problems, especially

in presence of many irrelevant features.

The performance of L1MSVM depends highly on the choice of a tuning

parameter, denoted by s. Selection of the optimal s is typically performed via a

grid search, which requires solving L1MSVM repeatedly at each value of s. This is

computationally intensive. In some applications with a large number of features,

in genome classification via microarrays for example, computation of L1MSVM
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at a single value of s requires solving a linear program with tens of thousands of

variables which, due to memory constraints, is computationally infeasible for a

standard package (such as ”lpsolve” in R). This situation is especially severe for

k-category classification (k ≥ 3), because the size of a linear program increases in

the order of k2. In this article, we address the computational issue by developing

an efficient algorithm to identify an entire regularization path for all possible

values of s simultaneously, which facilitates adaptive selection.

Our algorithm is motivated by Zhu, Hastie, Rosset and Tibshirani (2003),

Efron, Hastie, Johnstone and Tibshirani (2004) and Hastie, Rosset, Tibshirani

and Zhu (2004). Most relevant here is that Zhu, Hastie, Rosset and Tibshirani

(2003), which showed that the solution path of the L1-norm binary SVM is

piecewise linear in its tuning parameter s, based on which an algorithm was

developed to identify the linear segments of the solution path sequentially. It is

observed that, as s increases from 0, the features may enter or leave a fitted model

along the path. Furthermore, at most one variable enters or leaves the fitted

model, and it happens only if the path reaches a joint, at which the direction of

the path changes. Consequently, the segment following the joint can be identified

by solving no more than p systems of linear equations, where p is the number of

features.

A generalization from the binary case to the multi-category case is highly

non-trivial. In binary classification, the classification rule is determined by one

decision function, while in the k-category classification (k ≥ 3), k decision func-

tions need to be trained subject to a zero-sum constraint. Therefore, each feature

is associated with k coefficients in k decision functions. Consequently, at a joint

of the solution path, more than one coefficient may be added to the model simul-

taneously, which requires examining up to p!/[(p − k + 1)!(k − 1)!] possibilities.

In this complex situation, linear programs need to be solved, which makes com-

putation much more difficult than the binary case. We tackle this problem by

adding small perturbations to samples, which implicitly arranges the coefficients

of features in a sequence such that at most one coefficient enters or leaves the

model at a joint, thus bypassing the difficulty.

This article is organized as follows. Section 2 briefly introduces the method-

ology. Section 3 proposes an efficient algorithm that yields the entire solution

path. Simulations and applications to data are presented in Section 4, followed

by a summary.

2. Methodology

In the context of classification, a random vector Z = (X,Y ) from an unknown

probability distribution is given, where input X ∈ R
p is a vector of p variables,
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and output Y is categorical, indicating the class label. In k-category classifica-

tion, y is usually coded as {1, . . . , k}. A decision function vector f = (f1, . . . , fk)

is introduced, fc representing class c; c = 1, . . . , k. The resulting classification

rule is Φf (x) = arg max
c

fc(x) that assigns a new input vector x to class c having

the highest value fc(x). To avoid redundancy, a zero-sum constraint
∑k

c=1 fc = 0

is enforced. The goal is to find the f that minimizes the generalization error

E(I[Y 6= Φf (x)]) based on a training sample zi = (xi, yi), i = 1, . . . , n.

For linear problems, decision functions fc(x) = wT
c x + bc, c = 1, . . . , k, are

linear. Here the column vectors wc = (wc,1, . . . , wc,p)
T ∈ R

p and bc ∈ R
1 are

subject to zero-sum constraints
∑k

c=1 wc = ~0 and
∑k

c=1 bc = 0, with ~0 a p-

dimensional column vector. For nonlinear problems, fc(x) =
∑q

j=1 wc,jhj(x)+ bc

based on a basis {hj(x)}q
j=1. This is equivalent to the linear formulation, with

H = (hj(xi))n×q being a design matrix. For simplicity, we use linear representa-

tions. According to Wang and Shen (2005), L1MSVM solves the problem:

min
wc,bc;c=1,...,k

n
∑

i=1

L(f, zi), (2.1)

subject to

k
∑

c=1

‖wc‖1 ≤ s and
∑

c

wc = ~0;
∑

c

bc = 0, (2.2)

where
∑k

c=1 ‖wc‖1 =
∑k

c=1

∑p
j=1 |wc,j| is an L1-norm penalty, s is a tuning pa-

rameter, and L(f, zi) is the generalized hinge loss

L(f, zi) =
∑

c6=yi

[fc(xi) + 1]+, (2.3)

with [x]+ = xI(x > 0). It is worth mentioning that (2.1)-(2.2) can be straightfor-

wardly extended to other existing formulations of MSVMs, using different forms

of L(f, z), such as in Vapnik (1998), Weston and Watkins (1998), Bredensteiner

and Bennett (1999), Guermuer (2002), Liu and Shen (2005) and Zhang (2004).

For any given value of s, (2.1)−(2.2) becomes the linear program

min
w+

c,j ,w−
c,j ,b

+
c ,b−c ,ξi,c

∑

1≤i≤n,1≤c≤k

c6=yi

ξi,c (2.4)

subject to
∑

j

(w+
c,j − w−

c,j)xij + (b+
c − b−c ) + 1 ≤ ξi,c; (2.5)

(i, c) ∈ {(i, c) : c 6= yi}, (2.6)
∑

c,j

(w+
c,j + w−

c,j) ≤ s, (2.7)
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∑

c

(w+
c,j − w−

c,j) = 0; and
∑

c

(b+
c − b−c ) = 0. (2.8)

w+
c,j, w

−
c,j, b

+
c , b−c , ξi,c ≥ 0, (2.9)

which is solved via a standard package, “lpsolve” in R. The solution of (2.1)−
(2.2), ŵc,j(s) and b̂c(s), can be obtained as ŵc,j(s) = ŵ+

c,j − ŵ−
c,j and b̂c(s) =

b̂+
c − b̂−c , c = 1, . . . , k, j = 1, . . . , p, where ŵ+

c,j, ŵ
−
c,j, b̂

+
c , and b̂−c are the solutions

of (2.4)−(2.9). This yields f̂(x) = (ŵT
1 x+b̂1, . . . , ŵ

T
k x+b̂k) and the corresponding

Φ(x) = arg max
c

(ŵcx + b̂c).

L1MSVM can be cast into the framework of regularization as follows.

min
wc,bc;c=1,...,k

n
∑

i=1

L(f, zi) + λ

k
∑

c=1

‖wc‖1, s.t.
∑

c

wc = ~0;
∑

c

bc = 0, (2.10)

where λ is a nonnegative regularization parameter. When
∑k

c=1 ‖wc‖1 is replaced

by its L2-norm counterpart
∑k

c=1 ‖wc‖2
2, (2.10) is equivalent to MSVM in Lee,

Lin and Wahba (2004). As discussed in Wang and Shen (2005), the L1-penalty

shrinks the estimated coefficients and coerces some small coefficients to be exactly

zero. For sufficiently large λ, or sufficiently small s, many estimated coefficients

ŵc,j become exactly zero, which enables L1MSVM to perform feature selection

within the framework of classification. In addition, the L1-penalty yields con-

sistency of L1MSVM in presence of many irrelevant features (Wang and Shen

(2005)), which is particularly useful for problems where the number of features

exceeds that of observations.

2.3. Computational issues

A key to the performance of L1MSVM is the choice of tuning parameter s,

which controls the tradeoff between training and generalization, and determines

the number of features used in classification. To obtain a classifier with good

generalization performance, adaptive selection of s is necessary. In application,

selection is usually performed based on cross-validation applied to different values

of s to seek the s yielding best performance. In this process, (2.4)−(2.9) are solved

repeatedly with respect to s. This is computationally intensive, particularly in

high-dimensional problems.

The memory required for computation is also of concern. For any fixed s,

L1MSVM solves (2.4)−(2.9), which is a linear program of dimension 2(p +1)k +

n(k − 1). When p exceeds thousands, a standard package such as ”lpsolve” in

R, fails to allocate memory required to store the constraint matrix. Therefore,

a straightforward computation of L1MSVM is not feasible without an efficient

algorithm.
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Motivated by Zhu, Hastie, Rosset and Tibshirani (2003) and Hastie, Rosset,
Tibshirani and Zhu (2004), we develop an efficient algorithm that constructs an

entire path of solution ŵc,j(s) of (2.1)−(2.2) as a function of s. This permits rapid
computation of the adaptive selection of s, reducing the memory requirement
and making computation of extremely high-dimensional linear program feasible,
since L1MSVM selects no more than nk features and, consequently, at most nk

variables need to be stored.

3. Solution Path

The idea for computing the whole solution path originated from parametric
linear programming in operations research. A general parametric linear program
can be written as

min
x

cT x

subject to Ax = b + θd and x ≥ 0.

(3.1)

It can be shown that the optimal solution x̂(θ) is piecewise linear in θ and
can be determined by tracking the basis B, consisting of those indices of the
nonzero variables in x, c.f., Bertsimas and Tsitsiklis (1997).

In the context of L1MSVM, we have a similar problem with a tuning pa-
rameter s in place of θ in (3.1). For simplicity, write wc and bc in the form of
a k × (p + 1) matrix w, where wc,j, j = 1, . . . , p, is the jth entry of ~wc and

wc,0 = bc. The input vector xi is now expanded to (1, xi), with 1 corresponding
to wc,0 = bc. A key technique in our algorithm is to add a small perturbation εi

to the constant term xi0 such that xi0 = 1 + εi, where εi depends on i. In imple-

mentations, we take εi = σui, i = 1, . . . , n, with ui generated independently from
a uniform distribution over [0, 1], and σ = 10−5. When σ is sufficiently small,
the perturbation has little effect on ŵ(s), while making our algorithm efficient

and numerically stable. The effect of this perturbation is twofold.

• The perturbation yields a unique solution at s = 0. When s = 0, (2.1)−(2.2)
reduce to

min
∑

c wc,0=0

k
∑

c=1

(
∑

c6=yi

[xi0wc,0(0) + 1]+), (3.2)

with xi0 = 1 + εi. Without the perturbation, xi0 = 1, i = 1, . . . , n, and (3.2)
becomes

min
∑

c wc,0=0

k
∑

c=1

(n − nc)[wc,0(0) + 1]+, (3.3)

where nc is the number of samples in class c, c = 1, . . . , k. This may not

yield a unique solution. For instance, consider a situation where there exist
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two classes j and j ′ such that nj = nj′ = arg maxc nc. It can be verified that

any wc,0, c = 1, . . . , k, satisfying wc,0 = −1, c 6= j, j ′, wj,0, wj′,0 ≥ −1 and

wj,0 + wj′,0 = k − 2, minimize (3.3).

• The perturbation is a necessary condition for Theorems 1 and 2, which lead to

efficient initialization of the solution path. In our algorithm, the initialization

starts from s = 0 as in (3.2), which is a linear program in k-dimensional

Euclidian space. In contrast, without this perturbation, the path in a small

neighborhood of s = 0 seems intractable; see Remark A for details. In Zhu,

Hastie, Rosset and Tibshirani (2003), this difficulty is bypassed by initializing

the path at s = ∆s > 0, which requires solving a linear program of order p.

This becomes a more difficult problem in the high-dimensional case.

Under the perturbation, the solution of (2.1)−(2.2), ŵ(s), is uniquely defined

at each value of s. This results in a piecewise linear ŵc,j(s) in s, as shown in

Theorem 1.

Theorem 1. Rewrite
∑n

i=1L(f(xi), yi) as l(w) and define t∗ as inf{ ∑

(c,j):j 6=0

|w∗
c,j| :

w∗ minimizes l(w), subject to
∑

c wc,j = 0; j = 0, . . . , p}. Then the solution of

(2.1) is unique with probability 1 when s < t∗, provided the distribution of x ∈
R

p+1 is absolutely continuous with respect to Lebesgue Measure. Furthermore,

ŵc,j(s) is piecewise linear in s for c = 1, . . . , k and j = 0, . . . , p.

The proof is given in the Appendix. For an illustration, we provide a simple

example and display the solution paths in Figure 1.
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Figure 1. Solution paths of ŵc,j(s) for a three-class classification problem
with three-dimensional input, trained on 15 samples. Nine paths ŵc,j(s),
c = 1, 2, 3, j = 1, 2, 3 are displayed, with asterisks indicating the joints of
ŵc,j(s). Any segment between two adjacent joints is linear.
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3.1. Algorithm

The basic idea of identifying the solution path of ŵ(s) for all s is to lo-

cate joints of ŵc,j(s), and to determine the corresponding right derivative of

ŵc,j(s), denoted as dc,j(s), at each joint. Suppose that ŵc,j(sl) and dc,j(sl)

are determined at the lth joint sl. Then ŵc,j(s) can be obtained as ŵc,j(s) =

ŵc,j(sl) + dc,j(sl)(s − sl) for all sl < s < sl+1, due to piecewise linearity. This

greatly reduces computational cost, that is, there is no need to solve (2.1)−(2.2)

at each s, as long as we determine ŵc,j(sl) and dc,j(sl).

Before stating our algorithm, we first describe the basic ideas behind each

step. Our algorithm keeps track of the following sets:

• A(ŵ(s)) = {(c, j) : ŵc,j(s) 6= 0; c = 1, . . . , k; j = 0, 1, . . . , p}, which collects

the non-zero coefficients;

• J (ŵ(s)) = {j : ŵc,j(s) 6= 0 for some c}, which consists of the indices j from

{0, . . . , p} such that the zero-sum constraint
∑

c ŵc,j = 0 is active;

• E(ŵ(s)) = {(i, c) :
∑p

j=0 ŵc,j(s)xij + 1 = 0, c 6= yi}, so (i, c) ∈ E(ŵ(s)) implies

that xi is on the margin fc + 1 = 0.

Theorem 2. For any 0 ≤ s < t∗, |A(ŵ(s))| = |E(ŵ(s))| + |J (ŵ(s))| + 2 if ŵ(s)

is at a joint; |A(ŵ(s))| = |E(ŵ(s))|+ |J (ŵ(s))|+ 1 otherwise, |S| the cardinality

of set S.

As given in the proofs of Theorems 1 and 2, for s between two joints, dc,j(s)

is 0 for (c, j) ∈ A(ŵ(s))c, and the non-zero right derivatives dc,j(s), (c, j) ∈
A(ŵ(s)), are the unique solution of a system of equation.























∑

j:(c,j)∈A(ŵ(s))

xijdc,j(s) = 0, (i, c) ∈ E(ŵ(s)),

∑

c:(c,j)∈A(ŵ(s))

dc,j(s) = 0, j ∈ J (ŵ(s)),

∑

(c,j)∈A(ŵ(s));j 6=0

sign(ŵc,j(s))dc,j(s) = 1,

denoted as M(s)d = r(s) for simplicity. Evidently, M(s) and r(s) are determined

by A(ŵ(s)), J (ŵ(s)) and E(ŵ(s)). The sets A(ŵ(s)), J (ŵ(s)) and E(ŵ(s)), as

well as M(s), r(s) and the solution dc,j(s), remain unchanged between two points,

which can be used to determine the lth joint sl and the following joint sl+1.

As a first step in our algorithm, we start at the first joint s = 0 by solving

(3.2) and increase s toward t∗. At the second step, as s increases from the lth

joint sl, A(ŵ(sl)), J (ŵ(sl)) and E(ŵ(sl)) need to be updated in view of the

formula in Theorem 2. Two kinds of actions can take place: (a) adding one or

two elements (c, j) to A(ŵ(sl)); (b) removing one element (i, c) from E(ŵ(sl)).

Note that different actions result in different A(ŵ(s)), J (ŵ(s)) and E(ŵ(s)), each

of which is associated with a system of equations M(s)d = r(s) that determines a
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possible derivative dc,j(s). Then, we examine all possible derivatives and choose
the one that leads to the steepest descent rate of the cost function l(ŵ(s)) with

respect to s. At the third step, the derivatives dc,j(s); c = 1, . . . , k, j = 0, . . . , p,
remain unchanged until one of A(ŵ(s)), J (ŵ(s)) and E(ŵ(s)) changes. This

implies that one of the following events occurs: (a) one or two elements (c, j)

leave A(ŵ(s)), i.e., ŵc,j(s) becomes zero for (c, j); (b) one element (i, c) enters
E(ŵ(s)), i.e., {∑p

j=0 wc,j(s)xij + 1} becomes zero for (i, c). The joint sl+1 is

obtained by identifying a value of s, at which such an event first occurs. This
whole progress is repeated until s reaches t∗.

Now we present the algorithm that computes the entire solution path.

Step 1. Initialize ŵ(s) at s = 0.

Set ŵc,j(0) = 0; j = 1, . . . , p. Obtain ŵc,0(0) by solving

min
∑

c wc,0=0

k
∑

c=1

(
∑

c6=yi

[xi0wc,0(0) + 1]+).

Then A(ŵ(0)) = {(c, 0) : c = 1, . . . , k}, J (ŵ(0)) = {0}, and E(ŵ(0)) can be

obtained after we obtain ŵc,0.

Step 2. Given ŵ(sl) at the lth joint sl, compute the right derivative dc,j(s) of
ŵc,j(s) for sl ≤ s < sl+1.

Because |A(ŵ(sl))| = |E(ŵ(sl))|+|J (ŵ(sl))|+2, and |A(ŵ(s))| = |E(ŵ(s))|+
|J (ŵ(s))| + 1 for sl < s < sl+1, one of the three events must occur as s in-

creases from sl+1: (1) |A(ŵ(s))| increases by 1; (2) |A(ŵ(sl))| increases by 2
and |J (ŵ(sl))| increases by 1; (3) |E(ŵ(sl))| decreases by 1. We examine these

cases.
(a) Add one element to A(ŵ(sl)).

For each (c′, j′) ∈ A(ŵ(sl))
c such that j ′ ∈ J (ŵ(sl)), update A(ŵ(s)) =

A(ŵ(sl))∪{(c′, j′)}, and solve the following system of equations with respect

to {dc,j : (c, j) ∈ A(ŵ(sl))},






















∑

j:(c,j)∈A(ŵ(s))

xijdc,j = 0, (i, c) ∈ E(ŵ(sl))

∑

c:(c,j)∈A(ŵ(s))

dc,j = 0, j ∈ J (ŵ(sl))

∑

(c,j)∈A(ŵ(sl)),j 6=0

sign(ŵc,j(sl))dc,j + |dc′j′| = 1.

Then, compute

∆l(ŵ(s))

∆s
=

∑

(i,c)∈E+(ŵ(sl))

(
∑

j:(c,j)∈A(ŵ(s))

xijdc,j),

where E+(ŵ(sl)) = {(i, c) :
∑p

j=0 ŵc,j(sl)xij + 1 > 0, c 6= yi}.
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(b) Add two elements to A(ŵ(sl)).

For each pair of (c′1, j
′), (c′2, j

′) ∈ A(ŵ(sl))
c such that j ′ ∈ J (ŵ(sl))

c, update

A(ŵ(s)) = A(ŵ(sl)) ∪ {(c′1, j′)} ∪ {(c′2, j′)}, J (ŵ(s)) = J (ŵ(sl)) ∪ {j′}, and

solve










































∑

j:(c,j)∈A(ŵ(s))

xijdc,j = 0,

(i, c) ∈ E(ŵ(sl)),
∑

c:(c,j)∈A(ŵ(s))

dc,j = 0,

j ∈ J (ŵ(s)),
∑

(c,j)∈A(ŵ(sl)),j 6=0

sign(ŵc,j(s))dc,j + |dc′
1
,j′ | + |dc′

2
,j′ | = 1

with respect to {dc,j : (c, j) ∈ A(ŵ(s))}. Then, compute

∆l(ŵ(s))

∆s
=

∑

(i,c)∈E+(ŵ(sl))

(
∑

j:(c,j)∈A(ŵ(s))

xijdc,j).

(c) Remove an element from E(ŵ(sl)).

For each (i′, c′) ∈ E(ŵ(sl)), update E(ŵ(s)) = E(ŵ(sl)) \ {(i′, c′)}. Solve























∑

j:(c,j)∈A(ŵ(sl))

xijdc,j = 0, (i, c) ∈ E(ŵ(s)),

∑

c:(c,j)∈A(ŵ(sl))

dc,j = 0, j ∈ J ,

∑

(c,j)∈A(ŵ(sl)),j 6=0

sign(ŵc,j(s))dc,j = 1

with respect to {dc,j : (c, j) ∈ A(ŵ(sl))}. Then, compute

∆l(ŵ(s))

∆s
=

∑

(i,c)∈E+(ŵ(sl))

(
∑

j:(c,j)∈A(ŵ(sl))

xijdc,j) + [
∑

j:(c′,j)∈A(ŵ(sl))

xi′jdc′,j]+.

If the minimum of ∆l(ŵ(s))/∆s in (a), (b) and (c) is less than 0, the cor-

responding solution dc,j is the right derivative of ŵc,j(s) for (c, j) ∈ A(ŵ(s)) at

current joint sl, and dc,j = 0 is the right derivative of ŵc,j(s) for (c, j) ∈ A(ŵ(s))c.

Otherwise, the algorithm terminates.

Step 3. Given the current right derivative dc,j(s), A(ŵ(s)), J (ŵ(s)) and E(ŵ(s)),

compute the next joint sl+1.

When s hits sl+1, either A(ŵ(s)) decreases by 1 or E(ŵ(s)) increases by 1.

(a) One (c, j) ∈ A(ŵ(s)) leaves A(ŵ(s)).

For each (c, j) ∈ A(ŵ(s)), j 6= 0, compute ∆s = −ŵc,j(sl)/dc,j.
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(b) One (i, c) ∈ E(ŵ(s))c enters E(ŵ(s)).

For each (i, c) ∈ E(ŵ(s))c, compute ∆s = −∑

j ŵc,j(sl)xij + 1/
∑

j dc,jxij .

Compare all ∆s’s in (a) and (b). Find the minimum of all positive ∆s’s. Then

the next joint is sl+1 = sl + ∆s, we update ŵc,j(sl+1) = ŵc,j(sl) + ∆s · dc,j, as

well as the corresponding A(ŵ(sl+1)), J (ŵ(sl+1)) and E(ŵ(sl+1)).

Step 4. Iterate Steps 2 and 3 until the algorithm terminates.

Remark A. The perturbation to xi0 is important. Without this perturbation,

one solution is obtained for the initial step s = 0 with ŵc,0(0) = k − 1 for

c = arg max
c

nc and ŵc,0(0) = −1 for c 6= arg max
c

nc, where nc is the number of

instances in class c. This results in |A(ŵ(0))| = k and |E(ŵ(0))| = n(k − 2) +

max
c

nc. Therefore the equations in Theorem 2 no longer hold, which implies that

multiple elements may enter A(ŵ(0)) simultaneously, as s increases. In this case,

the path seems intractable, and a linear program needs to be solved to determine

dc,j, and this is computationally intensive.

Remark B. As s increases, ŵc,j(s) becomes nonzero when (c, j) enters A(ŵ(s))

in a certain order. This permits stepwise feature selection, where the order of

features indicates their importance in terms of contributions to the classifier. A

feature xj with ŵc,j(s) = 0 for all c = 1, . . . , k, is considered to be redundant to

the classification.

3.2. Computational complexity

At joint sl, a system of equations M(sl)u = r(sl) of size ml = |A(ŵ(sl))|
need to be solved, which has a complexity of order O(m3

l ). In our algorithm,

however, this complexity reduces to O(m2
l ) because M(sl) changes only slightly

with respect to iteration, and the Woodbury formula is applied to update the

inverse matrix M(sl)
−1 at each joint. Consequently, the computational cost

at each iteration is of order O(pkm2
l ). Experience suggests that the number

of joints on the path is roughly O(min(n, p)k), which yields a complexity of

O(min(n, p)pk2m2) for our algorithm, where m is the average size of M(sl) and

no larger than min(n, p)k.

4. Numerical Studies

4.1. Simulations

In this section, we illustrate our algorithm with a three-class 70-dimensional

classification problem. In this example, 60 training samples are generated as

follows. First, sample (u1, . . . , u70) from the 70-dimensional standard normal

distribution. Second, randomly assign 60 instances to the three classes, with 20

in each one. Third, perform linear transformation: xj = uj + aj ; j = 1, 2 and
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xj = uj ; j = 3, . . . , 70, with (a1, a2) = (
√

2,
√

2), (−
√

2,−
√

2) and (
√

2,−
√

2) for

classes 1-3, respectively. Evidently, the Bayes decision function only depends on

x1 and x2, while the other features are irrelevant. For the purpose of comparison,

we compute the optimal Bayes risk of approximately 0.104.

In this numerical example, we select the optimal tuning parameter by five-

fold cross-validation. First, we randomly assign 60 training samples into five

groups of equal size. Next, we use four groups for training and the other one

for testing, and apply our algorithm to construct the whole solution path. This

procedure is repeated five times, and the averaged cross-validation error is then

obtained as a function of s. Then, the solution path is constructed for the

whole training data set and the test error is obtained over 15,000 testing samples

generated with the same scheme for all s. Note that feature xj is excluded from

the decision functions if and only if ŵc,j(s), c = 1, 2, 3, are all zero. To illustrate

the effect of s on feature selection, we use functions vj(s) =
∑3

c=1 |ŵc,j(s)|,
j = 1, . . . , k, where a nonzero vj(s) implies feature xj is selected. The results are

displayed in Figure 2. As shown in Figure 2, the cross validation error achieves

its minimum of 0.117 at s = 2.516, which is used for the final prediction model.

At s = 2.516, L1MSVM achieves a test error of 0.137, which is fairly close to

the Bayes risk, given a relatively low sample size n = 60 and a high dimension

p = 70. Furthermore, at s = 2.516, only x1 and x2 are included in the final

prediction model, which coincides with the truth.

4.2. Application to genome classification

An important application of L1MSVM is to cancer genome classification via

microarrays. Consider a benchmark example concerning the small round blue cell

tumors (SRBCTs) of childhood. This example consists of 63 training samples

in 4 classes (EMS, BL, NB and RMS), and 20 test samples with each sample

a vector of 2,308 genes. We apply our algorithm, in addition to five-fold cross-

validation, for selecting the tuning parameter. As shown in Figure 3, the five-fold

cross-validation error decreases as s increases, and is 0 at s = 11.373. Therefore,

s = 11.373 is selected as the optimal tuning parameter. This yields a perfect

classification (no test error) and a sparse representation, with only 83 relevant

genes selected in the final prediction model.

This example was previously analyzed in Khan et al. (2001) using an artificial

neural network (ANN) and in Lee, Lin and Wahba (2004) using the standard

MSVM. Although these two methods achieve zero test error, they depend heavily

on preprocessing to select important genes. For instance, without pre-screening

genes, MSVM may have three errors as reported in Lee, Lin and Wahba (2004).

In contrast, our method has the advantage of automatic gene selection without

a requirement of preprocessing.
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Figure 2. Top Left Panel: Five-fold cross-validation error as a function of

s. Top Right Panel: Test error (over 10,000 test samples) as a function of

s. Lower Left Panel: vj(s); j = 1, . . . , 70, as functions of s, where vj(s) =
∑3

c=1 |ŵc,j(s)|. The upper two paths are v1(s) and v2(s), corresponding to

features x1 and x2. Lower Right Panel: The true decision boundaries (solid

lines) and L1MSVM decision boundaries (dashed lines) in the example with

s = 2.516, each depending only on x1 and x2.
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5. Conclusions

This article is devoted to the computational development of L1MSVM. To

meet the computational challenge of L1MSVM in high-dimensional settings, an

efficient algorithm is proposed, that yields an entire solution path. This algorithm

reduces the computational cost and storage involved in adaptive selection of the

tuning parameter based on a piecewise linearity property.

Although our algorithm performs well in simulations and some applications,

further investigation is needed to make it applicable to more challenging prob-

lems, such as the multi-class cancer diagnosis problem with 14 classes and 16,063

genes discussed in Ramaswamy et al. (2001).
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Appendix

Proof of Theorem 1. We need some notations. Let A(w) = {(c, j) : wc,j

6= 0; c = 1, . . . , k; j = 0, 1, . . . , p}, E(w) = {(i, c) :
∑p

j=0 wc,jxij + 1 = 0, c 6= yi},
E+(w) = {(i, c) :

∑p
j=0 wc,jxij + 1 > 0, c 6= yi}, E−(w) = {(i, c) :

∑p
j=0 wc,jxij +

1 < 0, c 6= yi} and J (w) = {j : wc,j 6= 0 for some c}.
Uniqueness. Suppose that s < t∗. Then a minimizer w∗ of (2.1)−(2.2) must

be located on the boundary
∑

(c,j):j 6=0 |wc,j| = s. Otherwise,
∑

(c,j):j 6=0 |wc,j| <

s, implying that w∗ is a global minimizer of l(w) by convexity of l(w). This

contradicts the definition of t∗.

Before proving uniqueness, we first prove that the nonzero components of

w∗, w∗
c,j; (c, j) ∈ A(w∗), are uniquely determined by the following system of

equations involving {uc,j : (c, j) ∈ A(w∗)}.


























∑

j:(c,j)∈A(w∗)

xijuc,j = −1, (i, c) ∈ E(w∗),

∑

c:(c,j)∈A(w∗)

uc,j = 0, j ∈ J (w∗),

∑

(c,j)∈A(w∗),j 6=0

sign(w∗
c,j)uc,j = s.

(A.1)

For simplicity, write (A.1) as M(w∗)u = r(w∗), where u is a vector of unknown

variables, M(w∗) and r(w∗) are the coefficient matrix and vector, respectively,

determined by A(w∗), J (w∗) and s.

By construction of E(w∗) and J (w∗), {w∗
c,j : (c, j) ∈ A(w∗)} is a solution of

(A.1). To prove {w∗
c,j : (c, j) ∈ A(w∗)} is a unique solution of M(w∗)u = r(w∗),

it suffices to show M(w∗)u = 0 has a unique solution ~0.
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Let u∗ be any solution of M(w∗)u = 0. Define d as a k × (p + 1) matrix

with dc,j = u∗
c,j for (c, j) ∈ A(w∗), and dc,j = 0 otherwise. Note that, for suffi-

ciently small ε > 0, l(w∗+εd)−l(w∗) = ε
∑

(i,c)∈E+(w∗)

[
∑

j:(c,j)∈A(w∗)

xijdc,j] and l(w∗−

εd)−l(w∗) = −ε
∑

(i,c)∈E+(w∗)

[
∑

j:(c,j)∈A(w∗)

xijdc,j], which implies l(w∗+εd)−l(w∗) =

−(l(w∗−εd)− l(w∗)). Since w∗ is a minimizer of (2.1)−(2.2), l(w∗+εd)− l(w∗) =

−(l(w∗ − εd) − l(w∗)) = 0, i.e.,
∑

(i,c)∈E+(w∗)

[
∑

j:(c,j)∈A(w∗)

xijdc,j] = 0. This implies

that any solution of M(w∗)u = 0 satisfies
∑

(i,c)∈E+(w∗)

[
∑

j:(c,j)∈A(w∗)

xijuc,j] = 0.

Note that the coefficients of uc,j in
∑

(i,c)∈E+(w∗)

[
∑

j:(c,j)∈A(w∗)

xijuc,j] = 0 are contin-

uous random variables. This implies that u = ~0 with probability 1. Therefore,

M(w∗)u = 0 has a unique solution u = ~0, implying that M(w∗)u = r(w∗) has a

unique solution.

Now we are ready to prove uniqueness of the minimizer of (2.1). Suppose

that there exist two minimizers w(j), j = 1, 2. Let d = w(1) − w(2). Consider

w̃ = (w(1) + w(2))/2 and w̃ + εd with ε > 0 sufficiently small. Note that both w̃

and w̃+εd are convex combinations of w(1) and w(2). By convexity of l(w), w̃ and

w̃ + εd are also minimizer of (2.1), which implies that they are on the boundary,

i.e.,
∑

(c,j):j 6=0 |w̃c,j| = s and
∑

(c,j):j 6=0 |w̃c,j + εdc,j| = s. It can be verified that,

for sufficiently small ε, A(w̃) = A(w̃ + εd) and E(w̃) ⊃ E(w̃ + εd). Thus, the

equations M(w̃ + εd)u = r(w̃ + εd) also appear in M(w̃)u = r(w̃), implying that

the solution of M(w̃)u = r(w̃) is a solution of M(w̃ + εd)u = r(w̃ + εd). This

contradicts the fact that M(w̃ + εd)u = r(w̃ + εd) has a unique solution.

Continuity. Denote by ŵ(s) the unique minimizer of (2.1)−(2.2). It suffices to

show ŵ(s) is both right continuous and left continuous at any point s0.

If ŵ(s) is not right continuous, there exists a sequence sn ↓ s0 such that

limn→∞ ŵ(sn) = w∗ 6= ŵ(s0). Note that l(ŵ(sn)) ≤ l(ŵ(s0)) and
∑k

c=1 ‖w∗
c‖1 =

s0. It follows that l(w∗) ≤ l(ŵ(s0)), implying that w∗ minimizes (2.1)−(2.2).

This contradicts uniqueness of ŵ(s0).

If ŵ(s) is not left continuous, there exists a sequence sn ↑ s0 such that

limn→∞ ŵ(sn) = w∗ 6= ŵ(s0). Note that l(ŵ(sn)) ≤ l((sn/s0)ŵ(s0)), implying

limn→∞ l(ŵ(sn)) ≤ limn→∞ l((sn/s0)ŵ(s0)), i.e., l(w∗) ≤ l(ŵ(s0)). This contra-

dicts uniqueness of ŵ(s0). Continuity follows.

Piecewise Linearity. It suffices to prove that d = [ŵ(s+ε)−ŵ(s)]/ε is constant

for sufficiently small ε > 0. We use the fact that d is the solution of a linear

program that is independent of ε.

First, because ŵ(s) is continuous in s, we can take ε sufficiently small such

that
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1. for
∑p

j=0 ŵc,j(s)xij + 1 6= 0,
∑p

j=0 ŵc,j(s + ε)xij + 1 has the same sign as
∑p

j=0 ŵc,j(s)xij + 1 , which implies E+(ŵ(s)) ⊂ E+(ŵ(s + ε)) and E−(ŵ(s)) ⊂
E−(ŵ(s + ε));

2. for ŵc,j(s) 6= 0 and j 6= 0, ŵc,j(s + ε) has the same sign as ŵc,j(s).

Consequently,

l(ŵ(s + ε)) − l(ŵ(s))

ε
=

∑

(i,c)∈E+(ŵ(s+ε))

(
∑

j

xij

ŵc,j(s + ε) − ŵc,j(s)

ε
)

+
∑

(i,c)∈E(ŵ(s+ε))

[
∑

j

xij

ŵc,j(s + ε) − ŵc,j(s)

ε
]+

=
∑

(i,c)∈E+(ŵ(s+ε))

(
∑

j

xijdc,j) +
∑

(i,c)∈E(ŵ(s+ε))

[
∑

j

xijdc,j]+

def
= g(d).

Because ŵ(s + ε) is the minimizer of l(w) with respect to w, subject to
∑

c,j 6=0 |wc,j| ≤ s + ε and
∑

c wc = ~0, it also minimizes [l(w) − l(ŵ(s))]/ε =

g((w − ŵ(s))/ε) with respect to w, subject to

∑

(c,j)∈A(ŵ(s)),j 6=0

sign(ŵ(s))wc,j +
∑

(c,j)∈A(ŵ(s))c,j 6=0

|wc,j| ≤ s + ε,

equivalently,

∑

(c,j)∈A(ŵ(s)),j 6=0

sign(ŵ(s))
wc,j − ŵ(s)

ε
+

∑

(c,j)∈A(ŵ(s))c,j 6=0

|wc,j − ŵ(s)

ε
| ≤ 1.

It follows that d = (ŵ(s + ε) − ŵ(s))/ε solves

min
d

g(d), (A.2)

s.t.
∑

(c,j)∈A(ŵ(s)),j 6=0

sign(ŵ(s))dc,j +
∑

(c,j)∈A(ŵ(s))c,j 6=0

|dc,j| ≤ 1, (A.3)

and
∑

c

dc = ~0. (A.4)

Because (A.2)−(A.4) are independent of ε, the solution d = [ŵ(s + ε) − ŵ(s)]/ε

is constant for sufficient small ε. This completes the proof.

Proof of Theorem 2. Our proof uses the fact from the proof of Theorem 1

that for any ŵ(s), M(ŵ(s))u = r(ŵ(s)) has a unique solution.

Note that ŵ(s) is piecewisely linear. It follows from (A.2)−(A.4) that, as ε

increases, the right derivative of ŵ(s+ε) remains constant until ŵc,j(s+ε) becomes
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zero for some (c, j), or (
∑p

j=0 wc,j(s+ ε)xij +1) becomes zero for some (i, c). Let

ŵ(s + ε) = ŵ(s) + dε, for sufficiently small ε > 0. Now consider ŵ(s + ε1) and

ŵ(s+ε2), with 0 < ε1, ε2 < ε. It can be verified that A(ŵ(s+ε1)) = A(ŵ(s+ε2))

and E(ŵ(s + ε1)) = E(ŵ(s + ε2)). It follows from the proof of Theorem 1 that

uc,j = ŵc,j(s + ε1), (c, j) ∈ A(ŵ(s + ε1)), is the unique solution of the system of

equations























∑

j:(c,j)∈A(ŵ(s+ε1))

xijuc,j = −1, (i, c) ∈ E(ŵ(s + ε1)),

∑

c:(c,j)∈A(ŵ(s+ε1))

uc,j = 0, j ∈ J (ŵ(s + ε1)),

∑

(c,j)∈A(ŵ(s+ε1));j 6=0

sign(ŵc,j(s + ε1))uc,j = s + ε1,

and uc,j = ŵc,j(s+ ε2), (c, j) ∈ A(ŵ(s+ ε1)), is the unique solution to the system

of equations























∑

j:(c,j)∈A(ŵ(s+ε1))

xijuc,j = −1, (i, c) ∈ E(ŵ(s + ε1)),

∑

c:(c,j)∈A(ŵ(s+ε1))

uc,j = 0, j ∈ J (ŵ(s + ε1)),

∑

(c,j)∈A(ŵ(s+ε1));j 6=0

sign(ŵc,j(s + ε1))uc,j = s + ε2.

This yields that dc,j = (ŵ(s + ε2) − ŵ(s + ε2))/(ε2 − ε1), (c, j) ∈ A(ŵ(s+ ε1)), is

the unique solution of























∑

j:(c,j)∈A(ŵ(s+ε1))

xijdc,j = 0, (i, c) ∈ E(ŵ(s + ε1)),

∑

c:(c,j)∈A(ŵ(s+ε1))

dc,j = 0, j ∈ J (ŵ(s + ε1)),

∑

(c,j)∈A(ŵ(s+ε1));j 6=0

sign(ŵc,j(s + ε1))dc,j = 1.

Because the number of unknown variables is |A(ŵ(s + ε1))|, while the number

of equations is |E(ŵ(s + ε1))| + |J (ŵ(s + ε1))| + 1, |A(ŵ(s))| = |E(ŵ(s))| +

|J (ŵ(s))| + 1 if ŵ(s) is not at a joint. Note that, as s increases and ŵ(s)

hits a joint, either |A(ŵ(s))| decreases by 1 or |E(ŵ(s))| increases by 1. Thus

|A(ŵ(s))| = |E(ŵ(s))| + |J (ŵ(s))| + 2 if ŵ(s) is at a joint. This completes the

proof.
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