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Abstract: Model combining (mixing) provides an alternative to model selection. An

algorithm ARM was recently proposed by the author to combine different regres-

sion models/methods. In this work, an improved risk bound for ARM is obtained.

In addition to some theoretical observations on the issue of selection versus com-

bining, simulations are conducted in the context of linear regression to compare

performance of ARM with the familiar model selection criteria AIC and BIC, and

also with some Bayesian model averaging (BMA) methods.

The simulation suggests the following. Selection can yield a smaller risk when

the random error is weak relative to the signal. However, when the random noise

level gets higher, ARM produces a better or even much better estimator. That

is, mixing appropriately is advantageous when there is a certain degree of uncer-

tainty in choosing the best model. In addition, it is demonstrated that when AIC

and BIC are combined, the mixed estimator automatically behaves like the better

one. A comparison with bagging (Breiman (1996)) suggests that ARM does better

than simply stabilizing model selection estimators. In our simulation, ARM also

performs better than BMA techniques based on BIC approximation.

Key words and phrases: ARM, combining procedures, model averaging, model se-

lection.

1. Introduction

In statistical applications, multiple models are often considered. Historically,
one of the models is selected based on hypothesis testing or the use of a statistical
criterion together with graphical inspections. Final estimation, interpretation
and prediction are then based on the selected model. Various model selection
criteria have been proposed from different perspectives including minimizing the
estimated prediction risk (such as AIC (Akaike (1973))), and asymptotically
maximizing the posterior probability of a model (such as BIC (Schwarz (1978)))
from a Bayesian’s point of view. Different theoretical properties have been shown
for these criteria. It is well-known that when one of the models being considered
is the true model, with probability tending to 1, BIC selects the true model; on
the other hand, if none of the models being compared is the true model, AIC
asymptotically outperforms BIC in terms of statistical risks. For the reality of a
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finite sample, however, for either case, the answer to the question which criterion
is better depends on how fast the approximation errors (bias) of the relevant
models (depending on the sample size and the error variance) decrease.

Breiman (1996b) pointed out that estimators based on model selection are
unstable. He proposed a method bagging to generate multiple bootstrap versions
of an estimator and then average them into a stabilized estimator. Empirical
evidence showed advantage of bagging in terms of estimation accuracy. Another
approach to reduce variability in model selection is model averaging. Bayesian
model averaging is a natural way to proceed from a Bayesian point of view (see,
e.g., Draper (1995) and George and McCulloch (1997)). Interesting results have
been obtained on choice of priors and computation algorithms (see, e.g., Kass
and Raftery (1995) and Berger and Pericchi (1996)). Some recent work has been
focused on the case when a large number of models are to be combined and
two methods were suggested to handle the computational difficulties that arise
when summing over all the models for obtaining the posterior distribution. One
approach is to restrict attention to models that are supported by the data (e.g.,
Madigan and Raftery (1994)) and the other uses Markov Chain Monte Carlo
approximation (e.g., Madigan and York (1995)). Raftery (1995) suggests the use
of BIC approximation for Bayesian model averaging. The readers are referred to
a review article on this topic by Hoeting, Madigan, Raftery and Volinsky (1999)
for more details. Buckland, Burnham and Augustin (1997) proposed a plausible
model weighting method according to values of a model selection criterion (e.g.,
AIC). Cross-validation and bootstrapping have also been used to linearly combine
different estimators with the intention to improve accuracy by finding the best
linear combination (Wolpert (1992), Breiman (1996a), LeBlanc and Tibshirani
(1996)). The objective is more aggressive than constructing an estimator to
achieve the best performance among the estimators. Juditsky and Nemirovski
(2000) proposed a stochastic approximation method to combine K estimators
and theoretically showed that under the squared L2 loss, the order (log K)n−1/2

is basically the price one needs to pay in general for searching for the best linear
combination.

In this paper, our interest is on the estimation of the regression function
under a global performance measure. The goal is two-fold. First, we derive
a performance bound on a model/procedure combining method, named ARM
(adaptive regression by mixing) and compare its performance with some Bayesian
model averaging techniques in some simulations; second, we study the relation-
ship between selection and combining. We give some theoretical observations
and compare performances of the combining method ARM with model selection
and related methods (e.g., bagging) in simulations.
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ARM was proposed in Yang (2001a) and was applied to combine nonpara-
metric regression methods. The risk bound derived in this paper significantly
improves over the earlier one there. Unlike Yang (2001a), parametric settings
are considered in this work for the purpose of studying the issue of combining
versus selection.

The paper is organized as follows. In Section 2, we set up the problem of
interest. In Section 3, we present the ARM algorithms and give a risk bound
to theoretically characterize its performance. Section 4 addresses the issue of
combining versus selection from a theoretical point of view. Intensive simulation
results are given in Section 5. Concluding remarks are in Section 6. The proofs
of the main theoretical results are given in an appendix.

2. Problem Setup

Assume we observe (Yi,Xi), i = 1, . . . , n, where Xi = (Xi1, . . . ,Xid) is the
explanatory variable of dimension d and Yi is the response variable. We assume
that (Yi,Xi)ni=1 are i.i.d. copies of a random pair (Y,X). Such a setting is com-
monly used in regression with a random design (see e.g., Efromovich (1999),
Section 4.1). The goal is to estimate the functional relationship between the
response and the explanatory variable. Assume

Y = f(X) + ε,

where f(x) is the true underlying regression function and the random error ε is
assumed to be independent of X and normally distributed with unknown variance
σ2 unless stated otherwise (e.g., in Section 3.2).

To estimate f , K plausible models are being considered:

Y = fk(X, θk) + ε,

where for each k ∈ {1, . . . ,K}, {fk(x, θk), θk ∈ Θk} is a family of regression
functions with θk being the parameter (a vector in general). For a given model,
different methods can be used to estimate θk. Let θ̂k,n be an appropriate estimator
based on Zn = (Yi,Xi)ni=1. Let σ̂2

k,n denote an estimator of σ2 using model k based
on Zn. For Gaussian and double-exponential errors considered later, maximum
likelihood estimators will be used.

In this paper, the comparison of estimators will be focused on the statistical
risk under squared L2 distance. For f̂n an estimator of f based on Zn, the risk
is

R(f, f̂n) = E
(
f(X) − f̂n(X)

)2
= E

∫ (
f(x) − f̂n(x)

)2
PX(dx),
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where PX denotes the distribution of X and the second expectation is taken with
respect to Zn under the true model. The risk of an estimator based on a linear
model fk(x, θk) can be decomposed into two parts:

R(f, f̂k,n) =
∫

(f(x) − fk(x, θ∗k))
2 PX(dx)+E

∫ (
fk(x, θ̂k)−fk(x, θ∗k)

)2
PX(dx),

where fk(x, θ∗k) is the best approximation of f in the family fk(x, θk), θk ∈ Θk,

i.e., θ∗k minimizes
∫

(f(x) − fk(x, θk))
2 PX(dx) over θk ∈ Θk. As the decompo-

sition suggests, to have a small total risk, one needs a good trade-off between
the approximation error (which tends to decrease as the model gets larger) and
the estimation error (which tends to increase as the number of parameters in-
creases). Of course, in applications, one does not know which models perform
the best at the given sample size. The purpose of adaptive estimation is to seek
an estimator whose risk is automatically close to the smallest one among the
models. Model selection based on a suitable criterion is a natural way to obtain
such adaptivity. Alternatively, computationally feasible adaptive estimators by
combining the models (rather than selection) will be presented.

We now describe some terminology. In this paper, with the random error
distribution assumed to be known up to a scale parameter, a model refers to a
choice of a family of regression functions. A regression procedure (or simply a
procedure) refers to a method of estimating f at each sample size. Let δ be a
procedure. Given the sample size n and the observations Zn = (Yi,Xi)ni=1, the
procedure δ produces an estimator f̂δ,n(x) = f̂δ,n(x;Zn) of f(x). In general, a
procedure may or may not be derived based on a model.

3. Combining Models and/or Regression Procedures by ARM

3.1. Combining models under Gaussian errors

An algorithm ARM (adaptive regression by mixing) was proposed in Yang
(2001a) to combine multiple models. There are two main steps involved. For the
first one, half of the sample is used to estimate θk for 1 ≤ k ≤ K. At the second
step, the remaining half of the sample is predicted based on the fitted models and
predictions are assessed by comparing predicted values with observations. Then
the models are appropriately weighted according to the assessment of predictions
provided by a discrepancy measure. For simplicity, assume n is even.

Algorithm 1

• Step 1. Split the data into two parts Z(1) = (Xi, Yi)
n/2
i=1 and Z(2) =

(Xi, Yi)ni=n/2+1.
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• Step 2. Estimate θk by θ̂k = θ̂k,n/2 by a least squares method based on Z(1).
Find, e.g., the MLE of σ2, σ̂2

k = σ̂2
k,n/2 (again based only on Z(1)).

• Step 3. Assess the accuracies of the models using the remaining half of the
data Z(2). For each k, for n/2+1 ≤ i ≤ n, predict Yi by fk(Xi, θ̂k). Compute
the overall measure of discrepancy Dk =

∑n
i=n/2+1(Yi − fk(Xi, θ̂k))2.

• Step 4. Compute the weight

Wk =
(σ̂k)

−n/2 exp
(
−σ̂−2

k Dk/2
)

∑K
j=1 (σ̂j)

−n/2 exp
(
−σ̂−2

j Dj/2
)

for model k. Note that
∑K

k=1 Wk = 1.

• Step 5. Compute the convex combination of the estimators produced by
the models:

f̃n(x) =
K∑

k=1

Wkfk(x, θ̂k,n).

Remarks.
1. If we put the uniform prior on the models and pretend that the estimates of f

and σ based on the first half of the data are the true values of the models, then
Wk may be interpreted as the posterior probability of model k after observing
the second half of the data. Our motivation and justification, however, is not
Bayesian. Our interest in combining procedures is to automatically have a
small estimation/prediction risk without knowing which one works the best
at the given sample size. Note that ARM is not a formal Bayes procedure. In
particular, no averaging over parameters is performed. It may seem that this
corresponds (approximately) to a non-informative, often improper, prior on
parameters, but for comparing models improper priors are not suitable since
they do not give unique posterior model probabilities (see Berger and Pericchi
(1996) for an intrinsic Bayes factor approach as a solution from a Bayesian
point of view).

2. Note that f̃n depends on all the estimators from the candidate models. This
causes a difficulty in interpretation. Model selection, on the other hand, has a
potential dimension reduction feature for interpreting the relationship between
the response and the explanatory variables.

3. For computing Wk, models are given uniform initial weight. When there are a
large number of candidate models, uniform weighting may not be appropriate
and weighting based on more subjective but reasonable considerations (e.g.,
more complex models receive smaller initial weights) could be applied.
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Obviously f̃n depends on the order of observation due to the partitioning.
Since the observations are assumed to be independent, the order does not contain
useful information for estimating f. Thus one can improve the estimator f̃n by
taking the conditional expectation given the values of the observations ignoring
the order. That is, in theory, one needs to compute f̃n for each permutation of
the order of observations, and then average over all the permutations.

This, however, is computationally prohibitive due to the large number of
permutations. A practical solution to this difficulty is averaging over a reasonably
large number of random permutations. Our experience in simulations with linear
models, as will be discussed in detail later, suggests that a total of 250 random
permutation is more than sufficient to produce very stable final estimators. Based
on the above considerations, Step 5 above is replaced by the following Step 5

′
.

• Step 5
′
. Randomly permute the order of the data (M − 1) times. Repeat

the above four steps and let Wk,r, k = 1, . . . ,K denote the weight of model
k computed at the r-th time for 1 ≤ r ≤ M. Let Ŵk = 1/M

∑M
r=1 Wk,r and

let f̂n(x) =
∑K

k=1 Ŵkfk(x, θ̂k,n) be the final estimator of f. Note that it is
still a convex combination of the original estimators based on the models.

3.2. Combining general regression procedures

The same idea works for combining a collection of procedures whether they
are model-based or not. In addition, the Gaussian assumption on the errors can
be relaxed to some extent.

Assume that the random errors εi’s are i.i.d. with density g(t/σ)/σ, where
σ > 0 is unknown but g is a known probability density function with respect
to a measure µ with

∫
tg(t)dµ = 0 and 0 <

∫
t2g(t)dµ = σ2

0 < ∞. Thus the
random errors have mean zero and variance σ2σ2

0. Let δ1, . . . , δK be K estimation
procedures with δj producing estimators f̂j,i(x) = f̂j,i(x;Zi) based on observation
Zi for i ≥ 1. An estimator σ̂2

j,i is produced by the procedure based on Zi. Some
or all of the procedures could be model-based. For instance, δ1 may be obtained
based on a linear family f(x,θ). Then f̂j,i(x) = f(x, θ̂i) with θ̂i appropriately
estimated based on the new assumption on the errors. Another procedure, say
δ2, may be based on a nearest neighbor rule. Though the algorithm does not
require that the procedures to be combined be based on the assumption on the
errors, the final adaptive estimator cannot behave well unless there is at least
one procedure that works well for the true model. The procedures are allowed
to share variance estimators if desired. The computation of weights is modified
as follows.
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For each j, for n/2 + 1 ≤ i ≤ n, predict Yi by f̂j,n/2(Xi). Compute

Ej =
(
σ̂j,n/2

)−n/2
Πn

i=n/2+1g

(
(Yi − f̂j,n/2(Xi))

σ̂j,n/2

)
.

Then define weight Wj = Ej/
∑K

l=1 El. As before, one can average the weights
over a number of random permutations of the data to reduce the dependence of
the final estimator on the order of the data.

A particular choice of g, namely the double-exponential density, is of special
interest. Consider g(t) = 0.5e−|t|, t ∈ R. For a parametric model fk(x, θk), based
on Zn, the maximum likelihood estimator of θk minimizes

∑n
i=1 |Yi − fk(x, θk)|

and σ is estimated by σ̂ = (1/n)
∑n

i=1 |Yi − fk(x, θ̂k,n)|. The computation of the
estimators can be carried out through linear programming. This is the familiar
L1 regression as widely considered for robust estimation.

3.3. A risk bound for ARM

Regarding the ARM algorithm, Yang (2001a) gave a risk bound. We improve
the result by weakening the assumptions and, more importantly, with explicit
constants in the risk bound.

Condition 1: There exists a constant τ > 0 such that for all i ≥ 1, with
probability one, supj≥1 ‖ f̂j,i − f ‖∞≤ √

τσ.

Condition 2: There exist constants 0 < ξ1 ≤ 1 ≤ ξ2 < ∞ such that ξ1 ≤
σ̂2

j,i/σ
2 ≤ ξ2 with probability one for all j ≥ 1 and i ≥ 1.

The above conditions are satisfied if the regression function and the error
variance are upper and lower bounded by known constants and the estimators
are restricted accordingly. The boundness assumptions on the regression function
and/or the error variance are commonly used in nonparametric regression (e.g.,
Juditsky and Nemirovski (2000)). Note that the constants τ, ξ1 and ξ2 are not
used in the combining algorithm.

As in Yang (2001a), for the theoretical result, we study a slightly different
estimator from those given earlier. For i = n/2 + 1, let Wj,i = 1/K and for
n/2 + 1 < i ≤ n, let

Wj,i =

(σ̂j)
−(i−n/2−1) exp

(
− 1

2σ̂2
j

i−1∑
l=n/2+1

(
Yl − f̂j,n/2(Xl)

)2)
K∑

k=1

(σ̂k)
−(i−n/2−1) exp

(
− 1

2σ̂2
k

i−1∑
l=n/2+1

(
Yl − f̂k,n/2(Xl)

)2) .
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Then define W̃j = 2
n

∑n
i=n/2+1 Wj,i, and let

f̃n(x) =
K∑

j=1

W̃j f̂j,n/2(x). (1)

For simplicity, we only give the result with Gaussian errors here.

Theorem 1. Assume that the errors are Gaussian and that Conditions 1 and 2
are satisfied. Then the risk of the combined regression estimator satisfies

E ‖ f̃n − f ‖2 ≤ (1 + ξ2 + 9τ/2) inf
j≥1

(4σ2 log K

n
+

1
ξ1

E ‖ f̂j,n/2 − f ‖2

+
C(ξ1, ξ2)

σ2
E(σ̂2

j,n/2 − σ2)2
)
,

where C(ξ1, ξ2) = (1/ξ2 − 1 + log ξ2)/ξ2
1(1/ξ2 − 1)2.

Remarks.

1. For ARM, in general, we do not require that at least one of the models is
correct. The models may be only approximations, as is more realistic in ap-
plications. The risk bound for ARM holds regardless of whether there is a
true model or not. The BMA methods, however, assume that the models are
correct (with a certain probability for each one). If one realistically regards
the models as approximations, it seems unclear what “posterior model prob-
abilities” really mean in the Bayesian framework. Hoeting, Madigan, Raftery
and Volinsky (1999) point out that investigation when the true model is not
in the candidate list is a future research direction for BMA.

2. Theorem 1 deals with the total squared L2 risk of the combined estimator.
Bias properties of the estimator are also of interest, but are not directly ad-
dressed in this work.

Regarding the constant C(ξ1, ξ2), for example, when ξ1 = 1/ξ2 = 1/2,
C(ξ1, ξ2) ≈ 3.1. From the result, up to a constant factor and an additive penalty
(log K) /n, the combined procedure achieves the best performance among f̂j,n/2

plus the risk of variance estimation. Note that when ξ1 and ξ2 are around 1 and
when τ is not large, the multiplicative factor is very reasonable. Roughly speak-
ing if, when the sample size n increases, the estimators chosen to be combined
are more and more accurate so that τ → 0 and ξ1 and ξ2 converge to 1, then
basically the multiplicative factor is 2.

Theorem 1 improves the result for ARM in Yang (2001a) in two directions.
First, with improved techniques, the constants in the performance bound are
now explicitly given and sensible; second, Condition 1 is weaker than before.
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Note that the estimator f̃n at (1) is not the same as the f̃n given in Section
3.1. The modified estimator is slightly more complicated and computationally
more costly (but with the theoretical bound). As in Yang (2001a), the simpler
one is recommended in practice.

3.4. Combining AIC and BIC as an illustration of ARM

As is well-known, neither AIC nor BIC performs better all the time. Roughly
speaking, in terms of estimation accuracy, AIC performs better when the approx-
imation errors of the good competing models (relative to the sampler size and
σ2) decrease slowly. An interesting question then is, can the strengths of AIC
and BIC be combined?

This question has been previously considered. Barron, Yang and Yu (1994)
showed that, in theory, a suitable minimum description length (MDL) criterion
for function estimation automatically behaves like AIC or BIC when AIC or
BIC works better. The resulting estimator then is optimal in rates both for
some parametric families and for some nonparametric classes. More recently, Yu
and Hansen (1999) proposes a different MDL criterion to bridge AIC and BIC.
They showed that the procedure is both consistent (as BIC) and asymptotically
optimal (as AIC).

The algorithm ARM can be directly used to combine AIC and BIC in the
hope that it will work well regardless of which one is better in terms of risks.
Assume, for example, Gaussian errors and consider parametric families fk(x, θk),
k = 1, . . . ,K. Let θ̂k,i and σ̂k,i be the MLE of θk and σ respectively based
on Zi, i ≥ 1. Let k̂AIC,i and k̂BIC,i be the model selected by AIC and BIC,
respectively, at the given sample size. Then the procedure AIC produces an
estimator fk̂AIC,i

(x, θ̂k̂AIC,i
) of f and σ̂k̂AIC,i,i

of σ based on Zi. Similarly define
the estimators based on BIC. Then the two procedures can be combined as
described in Section 3.2.

4. Selection Versus Combining

To our knowledge, there is little theoretical development in the literature on
the difference between model/procedure selection and combining (mixing). Gen-
eral statistical risk bounds or asymptotic properties have been derived for both
model selection (e.g., Shibata (1981), Li (1987), Barron and Cover (1991), Yang
and Barron (1998), Barron, Birgé and Massart (1999), Lugosi and Nobel (1999)
among many others) and model/procedure combining (Yang (2000ab, 2001a),
Catoni (1999)), though model selection theories usually require the models to be
finite-dimensional and is therefore more restrictive in some sense. These results
typically imply that when the list of models/procedures is chosen appropriately,
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both selection and combining result in function estimators that converge at op-
timal rates (or even with the right constant for some cases). For the purpose of
understanding the advantage/disadvantage of selection versus combining, how-
ever, these results provide little insight.

There are two different directions in combining models/procedures. One
is combining for adaptation (see Yang (2001a)), which intends to capture the
best performance among the candidate models/procedures. The other is com-
bining for improvement (see, Juditsky and Nemirovski (2000) and Yang (2002)),
which intends to have a better performance than any of the original candidate
model/procedures. For example, suppose that one regression procedure works
well when the regression function is monotone and another procedure works well
when the regression function is periodic. Then, if the true regression function
happens to be decomposable into monotone and periodic components, combining
the two procedures properly has a great potential to outperform the individual
ones.

Intuitively, combining for improvement works when each model/procedure
captures only part of the characteristics of the true model. It perhaps can be
argued then that a better model/procedure should be constructed that reflects
the characteristics in all the models/procedures (e.g., using mixture models). In-
deed, some researchers hold this view and challenge the legitimacy of combining
models (see, e.g., Clements and Hendry (1998, Chapter 10)). For the purpose of
understanding the difference between selection and combining, this scenario ad-
dresses only an easy part of the matter: combining gives an opportunity to share
different characteristics but selection does not. In other words, the advantage
of combining here comes from better approximation capability. The challenging
part of the matter is still unclear: assuming that one model/procedure performs
the best among all the linear combinations (i.e., there is no approximation advan-
tage in linear combining), how does (linear) combining compare to selection? For
example, consider subset models or nested models in linear regression. Clearly,
there is no gain in approximation capability when the models are to be combined.
Is there any advantage for combining over selection here?

The problem is technically challenging. In this work, in a simple setting,
we show that combining can be essentially better than selection. In fact, an
estimator based on optimal testing will be shown to be worse than a combined
estimator.

Obviously, selection is a special case of combining with combining weights
concentrating on a single model/procedure. In this sense, one cannot show ad-
vantage of selection over combining. Nonetheless, one could study the advantage
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of a selection method compared to a particular mixing strategy. Simulation study
results in that direction will be given in the next section.

4.1. Inferiority of every estimator based on selection in a simple setting

In this subsection, we show in a simple setting that estimation based on
selection performs worse compared to combining or mixing. In fact, estimation
based on mixing with weights determined as in ARM will be shown to perform
better.

For simplicity, consider a density estimation context. Let p1 and p2 be prob-
ability density functions on the real line. Let X1, . . . ,Xn be i.i.d. observations
with the population density p. Suppose that it is known that p is either p1 or p2.

We consider squared L2 loss for the estimation of p.

More specifically, for convenience, let p1(x) = (1/
√

2πσ2) exp(−(x−θ1)2/2σ2)
and p2(x) = (1/

√
2πσ2) exp(−(x−θ2)2/2σ2) where θ2 > θ1 and σ2 are all given

(known).
Note that, in this case, a selection rule between p1 and p2 corresponds

to a testing rule of the hypothesis H0 : p = p1 versus H1 : p = p2. Let
φ denote a simple testing rule and let Cφ and Aφ be its rejection and accep-
tance regions, respectively. Then the estimator based on testing (selection) is
p̂φ(x) = p1(x)IAφ

+ p2(x)ICφ
. The squared L2 risk of this estimator is

R(p, p̂φ, n) = Ep

∫
(p(x) − p̂φ(x))2 dx.

One particular testing rule is of interest. Let L = Πn
i=1p2(Xi)/Πn

i=1p1(Xi)
be the likelihood ratio statistic. Let φ∗ be the rule that rejects H0 when L ≥ 1,
or equivalently, when Xn ≥ (θ1 + θ2)/2. Clearly it is most powerful at its size.

Another approach to the estimation of p is by mixing p1 and p2 with a weight
to p1 of

W1 =

exp
(
− 1

2σ2

n∑
i=1

(Xi − θ1)2
)

exp
(
− 1

2σ2

n∑
i=1

(Xi − θ1)2
)

+ exp
(
− 1

2σ2

n∑
i=1

(Xi − θ2)2
) .

The estimator is then defined by p̃n(x) = W1p1(x) + (1 − W1)p2(x). Its risk is
R(p, p̃n, n) = Ep

∫
(p(x) − p̃n(x))2 dx.

We have the following proposition that compares the two estimators based
on selection and combining.

Proposition 1. For any testing rule φ, we have maxi=1,2 R(pi, p̂φ, n)/R(pi, p̃n, n)
> 1 for all n. In fact, maxi=1,2 R(pi, p̂φ, n)/R(pi, p̃n, n) is minimized when φ = φ∗
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and then
R(p1, p̂φ∗ , n)
R(p1, p̃n, n)

=
R(p2, p̂φ∗ , n)
R(p2, p̃n, n)

> 1.27 for all n.

The proposition suggests the potential advantage of combining (mixing) over
selection. For this simple case, combining with the weighting method as in ARM
is superior to that based on the most powerful testing φ∗. We should also point
out that there are additional issues that are worth consideration. If there are
unknown parameters, a disadvantage may arise toward combining. The rough
reasoning is that for selection, the whole data are used in the selection crite-
rion (with parameters estimated by all the observations), but for assigning the
weights for ARM, only half of the data are used in estimation (at the loss of some
estimation accuracy) while the rest are used for performance assessment.

When multiple models are present with unknown parameters, the comparison
between selection and combining becomes very difficult to analyze theoretically.
Simulations in the next section show advantages in various scenarios.

4.2. Identifying the true model is not necessarily the right thing to do

Identifying the true model that governs the data, if possible, is an important
task. When regression function estimation or prediction is the goal, the true
model, even if assumed reasonably simple and known, may not perform the best.
The well-known trade-off between bias and variance may prefer an incorrect but
simpler model (see, e.g., Chapter 1 of Miller (1990) for an illustration in the
context of prediction at a given site considering least squares estimators for the
models). Along this line, we consider the global squared L2 risk in a slightly
different setting.

Example 1. Suppose the data come from the linear model

Yi = θ0 + θ1φ1(Xi) + · · · + θkφk(Xi) + εi,

where φ0 = 1, φ1, . . . , φk are orthonormal with respect to the design distribution
of X. Due to orthonormality, it is natural to consider the projection estimators
of the linear coefficients:

θ̂j =
1
n

n∑
i=1

Yiφj(Xi) for 0 ≤ j ≤ k.

Since some of the true coefficients may be zero or small, there is potential ad-
vantage in considering subset models. Let Λ denote a subset of {0, . . . , k} and
let f̂Λ(x) =

∑
j∈Λ θ̂jφj(x). Then the risk is

R(f, f̂Λ, n) =
∑
j∈Λ

E
(
θ̂j − θj

)2
+
∑
j /∈Λ

θ2
j .
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Let Mj = E(φj(X)− 1)2. By a simple calculation, E
(
θ̂j − θj

)2
= 1/n

∑
l �=j θ2

l +
(θ2

j Mj)/n + σ2/n. Suppose the true regression function f satisfies f(x) =
∑m

j=0

θjφj(x) with non-zero θj ’s in the expression for some 0 < m ≤ k. Let Λ∗ =
{0, . . . ,m}. Consider a subset Λ = {0, . . . ,m − 1}. Then

R(f, f̂Λ, n) − R(f, f̂Λ∗ , n) = θ2
m − 1/n

∑
l �=m

θ2
l −

θ2
mMm

n
− σ2

n
.

Thus the wrong model corresponding to Λ can have a smaller risk compared to the
use of the true model if the missing coefficient θ2

m is smaller than 1/n
∑

l �=m θ2
l +

(θ2
mMm)/n + σ2/n. Note that this happens when |θm| is smaller than σ√

n
(n is

small or σ is large), or when the sum of squares of the other coefficients is larger
than θ2

m.

From the example, for the purpose of estimating f or prediction, uncertainty
in identifying the true model is not the issue per se. Even if the true model is
known, it is not necessarily best to use it for prediction. Generally speaking, the
best model (with the smallest risk) depends on the true coefficients, sample size,
and noise level in a complex way.

5. Simulations

We consider several simulation settings to compare model selection with
model combining, and to illustrate the advantage of ARM. The study was carried
out using Splus.

5.1. Two non-nested models

Consider two non-nested models with three unknown parameters each:

Yi = β1X1i + β2X2i + β3X3i + εi,

Yi = θ1X2i + θ2X3i + θ3X4i + εi.

The explanatory variables X1i, X2i, X3i are generated independently according
to the uniform distribution on [0, 1]. The other variable X4i is generated as
0.25X1i + 0.75X5i, where X5i is also uniformly distributed independent of X1i,
X2i and X3i. This way X1i and X4i are somewhat correlated, which may be
more realistic in some applications (in fact, a simulation under independence
between X1i and X4i gave very similar conclusions). The first model is used to
generate the responses with true parameters β1 = 1.0, β2 = 0.8, β3 = 0.9 and
with Gaussian errors. The sample size is fixed at n = 50 and M is taken to be 250
for ARM. Several noise levels are considered for the comparison of selection and
ARM. For this case, since the two models have the same number of parameters,
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AIC and BIC are equivalent and just select the model with smaller residual sum
of squares.

The squared L2 losses of the estimators (one based on selection and the other
based on ARM) are simulated as the average of the squared differences between
the true regression function and the estimates at 500 new design points indepen-
dently generated according to the same distribution. There are 200 replications
and the losses are averaged over the replications to approximate the true risks of
the estimators. The numbers of times (out of 200 replications) that the selection
criterion chose a wrong model are also given. The numbers in the parentheses in
the tables are the corresponding standard errors.

Table 1. Comparing selection and combining for non-nested models.

σ2 = 0.1 0.3 0.5 1.0 1.5 2.0 3.0

Risk of Sel.
0.00065

(4.1 × 10−5)
0.0056

(0.0003)
0.0167

(0.0011)
0.0770

(0.0051)
0.1781

(0.0093)
0.2906

(0.0164)
0.6728

(0.0359)
Mis-sel. Times 0 0 1 26 57 61 81

Risk of ARM
0.00065

(4.1 × 10−5)
0.0064

(0.0004)
0.0204

(0.0012)
0.0720

(0.0040)
0.1566

(0.0080)
0.2444

(0.0134)
0.5424

(0.0321)

From Table 1, when σ2 ≥ 1.0, ARM produces a smaller risk than that based
on model selection. The risk reductions are 6%, 12%, 16% and 20% respectively.
Note that when σ2 ≤ 0.5, the model selection criterion basically has no difficulty
finding the right model. For such a case, mixing with the wrong model can hurt
the performance. Indeed, for σ2 = 0.3 and 0.5, ARM increases the risk by 14%
and 22% respectively. When σ2 gets larger, the chance of selecting a bad model
is no longer negligible and it increases the variability of the estimator based on
selection. In contrast, ARM does a better job by reducing the variability in
estimation through appropriate mixing instead of selecting.

We mention that a plot (not included in this paper) of the risk ratio of
selection versus combining (by ARM) against σ confirms what we have seen in
Table 1: when σ is small, selection and combining perform very similarly; when
σ increases, selection begins to perform better than combining but the advantage
vanishes as σ increases further; then combining performs increasingly better than
selection when the noise level gets higher.

5.2. Nested models

Consider five nested models: for 1 ≤ i ≤ n,

Yi = β1X1i + εi,

· · ·
Yi = β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + εi.



REGRESSION: MODEL SELECTING OR MODEL MIXING? 797

The explanatory variables are generated independently with uniform distribution
on [0,1]. The errors are assumed to be independent and normally distributed with
unknown variance σ2.

This simulation addresses several issues: comparison among AIC, BIC and
ARM, and combining AIC and BIC as discussed in Section 3. As mentioned in
the introduction, bagging unstable estimators can improve accuracy dramatically
(Breiman (1996b)). It is thus of interest to compare the improvement of ARM
over AIC and BIC to that by the method of bagging.

For Table 2, the data is generated according to the fourth model above with
true parameters β1 = 1.0, β2 = 0.9, β3 = 0.8 and β4 = 0.6. For Table 3, the
true model is the second one above with true parameters β1 = 1.0, β2 = 0.9. At
the chosen sample size n = 50, AIC works better for the first case (except for
σ2 = 0.1) and BIC works better for the second. The numbers of wrong selections
(out of 200 replications) are also given. The number of permutations, M , for
ARM and the number of bootstrap samples for bagging are both taken to be
300.

The findings are summarized as follows.

1. For both cases, when σ2 ≥ 0.5, bagging reduces the risk of BIC significantly,
up to 33% and 21% respectively. For AIC, however, bagging actually in-
creases the risk (quite substantially when σ2 is small) for the second case.
Note that though AIC outperforms BIC for the first case (except when
σ2 = 0.1), bagging improves BIC more than AIC and makes BICbag better
than AICbag for larger σ2. We do not have a good explanation for these
phenomena.

2. ARM works better, or much better, than both AIC, BIC and their bagging
versions when σ2 > 0.1. In fact, the risk of ARM here is smaller than the
best among the four estimators. For the first case above, the corresponding
percentages of risk reduction over the best of AIC, BIC, AICbag and BICbag

are tabled as follows:

σ2 = 0.5 1.0 1.5 2.0 3.0
Risk Reduction 4% 5% 10% 11% 14%

For the second case, the reduction rates are

σ2 = 0.5 1.0 1.5 2.0 3.0
Risk Reduction 7% 17% 18% 16% 21%

3. When AIC and BIC are combined by ARM, the estimator automatically be-
haves like the better one of AIC and BIC as intended, again demonstrating
the usefulness of ARM for combining estimation procedures.
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Table 2. Selection vs mixing when the true model has 4 terms.

σ2 = 0.1 0.5 1.0 1.5 2.0 3.0

Risk of AIC
0.0101

(0.0006)
0.0590

(0.0026)
0.1174

(0.0051)
0.1734

(0.0083)
0.2243

(0.0102)
0.3262

(0.0152)
Mis-selection by AIC 36 84 139 145 157 169

Risk of AICbag
0.0104

(0.0005)
0.0546

(0.0024)
0.1007

(0.0044)
0.1548

(0.0078)
0.1869

(0.0089)
0.2835

(0.0143)

Risk of BIC
0.0099

(0.0006)
0.0675

(0.0032)
0.1407

(0.0052)
0.2079

(0.0095)
0.2651

(0.0105)
0.3680

(0.0134)
Mis-selection by BIC 14 102 168 169 182 190

Risk of BICbag
0.0100

(0.0005)
0.0547

(0.0025)
0.1021

(0.0041)
0.1504

(0.0075)
0.1770

(0.0079)
0.2638

(0.0117)

Risk of ARM
0.0118

(0.0006)
0.0524

(0.0026)
0.0970

(0.0040)
0.1351

(0.0064)
0.1574

(0.0071)
0.2275

(0.0099)

AIC-BIC Combined
0.0097

(0.0006)
0.05960
(0.0027)

0.1184
(0.0049)

0.1749
(0.0083)

0.2171
(0.0094)

0.3161
(0.0135)

Table 3. Selection vs mixing when the true model has 2 terms.

σ2 = 0.1 0.5 1.0 1.5 2.0 3.0

Risk of AIC
0.0069

(0.0005)
0.0376

(0.0028)
0.0747

(0.0048)
0.1303

(0.0087)
0.1477

(0.0091)
0.2322

(0.0144)
Mis-selection by AIC 49 59 69 97 105 129

Risk of AICbag
0.0082

(0.0005)
0.0430

(0.0024)
0.0815

(0.0042)
0.1343

(0.0079)
0.1554

(0.0086)
0.2441

(0.0137)

Risk of BIC
0.0051

(0.0004)
0.0361

(0.0031)
0.0771

(0.0044)
0.1271

(0.0072)
0.1428

(0.0066)
0.2079

(0.0115)
Mis-selection by BIC 18 35 74 113 134 142

Risk of BICbag
0.0058

(0.0004)
0.0344

(0.0021)
0.0625

(0.0035)
0.1001

(0.0058)
0.1157

(0.0069)
0.1713

(0.0107)

Risk of ARM
0.0057

(0.0003)
0.0321

(0.0019)
0.0520

(0.0030)
0.0825

(0.0045)
0.0967

(0.0058)
0.1353

(0.0079)

AIC-BIC Combined
0.0058

(0.0005)
0.0345

(0.0025)
0.0686

(0.0040)
0.1193

(0.0075)
0.1343

(0.0075)
0.2099

(0.0125)

To show that the above cases are not atypical, we randomly generate the
true model. Each of the five models receives 1/5 probability and the coefficients
are independently generated with uniform distribution on [−1, 1]. Figure 1 gives
the box-plot of the squared L2 loss of the procedures (AIC, AICbag, BIC, BICbag,
AIC-BIC combined and ARM) from 100 runs at each of six values of σ2. The
graph agrees with the tables well. Figure 2 compares the risks (based on 100
replications) of AIC, BIC and ARM with the true model randomly generated as
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described above from 100 runs at four values of σ2. The advantage of ARM is
clearly seen when σ2 is not small.
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5.3. L1-regression

Given in Table 4 is the result of a simulation to compare the performance
of model selections and ARM under double-exponential errors. The first four
models of the previous subsection are considered here. The correct model is
chosen to be the second one with true parameters β1 = 1.0 and β2 = 0.9. The
four explanatory variables are chosen to be i.i.d. with uniform distribution on
[0, 1]. We fix the sample size to be n = 50 and M = 200.

Table 4. Selection vs mixing with double-exponential errors.

σ = 0.2 0.4 0.6 0.8 1.0 1.5 3.0

Risk of AIC
0.0037

(0.0003)

0.0176

(0.0014)

0.0362

(0.0033)

0.0619

(0.0047)

0.1084

(0.0087)

0.2404

(0.0181)

0.7962

(0.0688)

Mis-selection by AIC 50 58 60 76 88 120 157

Risk of BIC
0.0029

(0.0003)

0.0141

(0.0014)

0.0300

(0.0030)

0.0582

(0.0045)

0.1029

(0.0083)

0.1807

(0.0120)

0.5212

(0.0485)

Mis-selection by BIC 16 21 27 53 78 132 176

Risk of ARM
0.0028

(0.0002)

0.0141

(0.0011)

0.0252

(0.0017)

0.0447

(0.0031)

0.0648

(0.0051)

0.1208

(0.0080)

0.4637

(0.0336)

The advantage of ARM is again clearly seen from the simulation. Even when
σ is as small as 0.2 and 0.4, ARM performs as well as BIC (AIC is significantly
worse). The risk reduction rates for σ ≥ 0.6 are tabled as

σ = 0.6 0.8 1.0 1.5 3.0
Risk Reduction 16% 23% 38% 33% 11%

When σ2 is small (other values such as 0.05 and 0.01 not given in the above
table were also considered), no significant differences were found between ARM
and BIC (for this scenario, BIC should perform better than AIC).

5.4. Combining subset models when the number of predictors is small

Suppose there are four independent predictors uniformly distributed in [0,1].
Consider all subset models and use ARM and some BMA techniques to combine
them. The true model is one of the following:

Case 1 : Y = 1 + X1 + ε,

Case 2 : Y = 1 + X1 + X2 + ε,

Case 3 : Y = 1 + X1 + X2 + X3 + ε,

Case 4 : Y = 1 + X1 + X2 + X3 + X4 + ε,

where the error ε has a standard normal distribution (the variance of ε is unknown
to the estimators). The sample size is 50. The number of permutations for
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ARM is 50. The chosen BMA program for comparison, bicreg in Splus based
on BIC approximation, was written by Adrian Raftery and revised by Chris
Volinsky (available at http://www.research.att.com/∼volinsky/bma.html). In
addition to computing the posterior probabilities of all the models, one option is
provided in bicreg to remove some unlikely models based on Occam’s Window and
return a more parsimonious list of models (see Raftery (1995)) (the corresponding
estimator is denoted BMAow).

The squared L2 risk of the regression estimators based on ARM and BMA
are summarized in Table 5, based on 100 runs.

Table 5. Comparing ARM with BMA.

Case 1 Case 2 Case 3 Case 4

BMAow
0.0853

(0.0060)
0.1182

(0.0058)
0.1781

(0.0079)
0.2326

(0.0087)

BMA
0.0738

(0.0054)
0.1015

(0.0054)
0.1443

(0.0065)
0.1837

(0.0074)

ARM
0.0706

(0.0052)
0.0789

(0.0046)
0.1093

(0.0062)
0.1312

(0.0060)

In this simulation, ARM does substantially better than BMA for all four
cases. The risk improvement is 4%, 22%, 24% and 29%, respectively.

In addition, we compare ARM with BMA in a random setting. We randomly
choose one of the four models considered above with equal probability and then
generate the coefficients (including the intercept) independently, all with the uni-
form distribution on [−1, 1]. Figure 3 gives the box-plots of the risks of BMAow,
BMA and ARM based on 100 runs at three different noise levels.

From Figure 3, overall speaking, when σ equals 0.5 and 1, ARM performs
substantially better than the BMA methods. When σ equals 1.5, the means
of the risks of BMA and ARM are not significantly different. However, clearly,
ARM continues to give more consistent risks than the BMA methods.

5.5. Crime data

Consider a crime data set studied via Bayesian model averaging for illustra-
tion by, e.g., Raftery, Madigan and Hoeting (1999), Fernández, Ley and Steel
(1999) and originally by Ehrlich (1973). The data contain information from 47
states in the US. The response variable is the crime rate and there are 15 can-
didate predictors. As in those works, log-transformation of Y and the predictors
was applied and linear models were considered.
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Figure 3. Comparing risks of BMA and ARM.

Raftery, Madigan and Hoeting (1999) showed that BMA gives better pre-
dictive performance compared to model selection based on Efroymson’s stepwise
method (Miller (1990)) and other criteria. Predictive coverage was computed
based on randomly splitting the data into training and test sets. Their analysis
showed that the predictive coverage intended at 90% were about 80% for the
BMA methods and were between 58% and 67% for model selection methods.
While performing not as well as intended, BMA did significantly better.

We here compare predictive performance of ARM with BMA and Efroym-
son’s method in terms of predictive mean squared error (PMSE). We randomly
select 37 states as the training set and the remaining 10 states form the test set
for computing PMSE. For ARM, differently from combining all subset models
(which would be too time-consuming for ARM in Splus), here we combine some
plausible models to reduce computational cost. The stepwise (forward) selection
method is used to order the predictors according to their order of appearance.
Then the corresponding nested model is combined with ARM. Table 6 summa-
rizes the PMSE’s of the different methods based on 200 independent runs.

From the table, the BMA method without using the Occam’s Window does
significantly better than model selection by Efroymson’s method, but ARM fur-
ther improves the prediction accuracy by about 6%.
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Table 6. Comparing BMA, Efroymson’s method and ARM on a crime data.

BMAow BMA Efroymson ARM

PMSE
0.0736

(0.0020)
0.0702

(0.0019)
0.0746

(0.0020)
0.0659

(0.0019)

6. Concluding Remarks

For estimating the regression function, approaches based on model/procedure
selection and combining have better performance in different scenarios. Similarly
to model selection theories (but less restrictive in some aspects), the risk bound
for ARM shows that the estimators based on combining converges automatically
at the best rate offered by the individual procedures.

Simulation results clearly suggest the advantage of ARM in terms of squared
L2 risk over the popular model selection criteria AIC and BIC when the random
noise reaches a certain level. The reduction of the risk over the better one of
AIC and BIC can be nearly 40%. Comparison with bagging suggests the ad-
vantage of ARM goes beyond simply stabilizing the estimators based on model
selection. When the error variance is smaller, so that there is not much difficulty
comparing models, AIC and BIC can outperform ARM (for this case, bagging
can also increase the risk significantly). In our experiments in this work, when
the error variance is small, ARM and BIC behave equally well. The simulation
also suggests that when AIC and BIC are combined by ARM, the new estimator
automatically behaves like the better criterion of AIC and BIC in terms of the
statistical risks.

Model selection can be viewed as a model averaging with a degenerate weight
distribution. Intuitively, it seems clear that when two models are hard to be
distinguished at a given sample size, compared to averaging the models, selection
can bring in much larger variability in the estimator. On the other hand, when
one model is clearly inferior based on the data, averaging with it can damage the
performance unless its assigned weight is small enough (which seems to happen
with ARM when σ2 is really small). This roughly explains the difference between
selection and mixing. Simulations in this paper support this view.

For applications, one does not know beforehand if selection or mixing is
better. It is tempting to construct an estimation procedure that automatically
switches between selection and mixing to enjoy the advantages of both schemes.
So far, our several attempts did not give us the desired simulation results.

The method of bagging has been suggested to reduce the variability in model
selection. Our experiments showed that bagging can have quite different effects
on AIC and BIC: it consistently reduced risk for BIC when σ2 is not too small
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but it hurt AIC for one case at all levels of σ2 being considered. Further un-
derstanding of when bagging works would be helpful. Simulations showed that
ARM consistently performed better than bagging AIC and BIC.

Bayesian model averaging techniques have been proposed mainly under nor-
mal errors, some of which intend to handle a large number of candidate models.
In general, posterior model probabilities are very sensitive to the specification
of the priors (cf. Fernández, Ley and Steel (1999)). For the ARM procedure
in this paper, we focused on the situation with a small or moderate number of
competing models. Simulation results showed the advantage of ARM over BMA
methods based on BIC approximation in terms of estimation/prediction accu-
racy under squared error loss. To deal with a lot of candidate models, perhaps
non-uniform initial weights on models could be incorporated in ARM to regulate
the comparison.

We should also point out some disadvantages of ARM: it is difficult to in-
terpret the estimate; the estimation is computer-intensive and more complex to
program than AIC and BIC; and when the sample size is small, splitting the
data may cause problems in estimation (e.g., having more parameters than the
number of observations).

7. Proof of Theorem 1

Proof of Theorem 1. Let n1 and n2 be the sizes of the estimation and evalua-
tion portions of the data, here n1 = n2 = n/2. Let f̂j denote f̂j,n1 and σ̂2

j denote
σ̂2

j,n1
for j ≥ 1. For simplicity in notation, in this proof, we drop the bold face

format for a vector. Let

pn2 = Πn
i=n1+1

1√
2πσ2

exp
(
− 1

2σ2
(yi − f(xi))2

)
,

qn2 =
1
K

K∑
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1√
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j

exp

(
− 1
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j
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1(
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 .

Consider log (pn2/qn2) . By monotonicity of the log function, for each fixed j∗ ≥ 1,
we have

log (pn2/qn2) ≤ log


(
2πσ2
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(yi − f(xi))2
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= log K +
1
2

n∑
i=n1+1

(
log

σ̂2
j∗

σ2
+

(yi−f̂j(xi))2

σ̂2
j∗

− (yi−f(xi))2

σ2

)
. (2)

Taking expectation conditioned on the first part of the data, denoted En1, we
have

En1

(
log

σ̂2
j∗

σ2
+

(yi − f̂j(xi))2

σ̂2
j∗

− (yi − f(xi))2

σ2

)
=
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σ̂2
j∗

+
σ2

σ̂2
j∗

−1− log
σ2

σ̂2
j∗

.

(3)
On the other hand, observe that qn2 is equal to

1
K

K∑
j=1

1√
2πσ̂2

j

exp

(
− 1

2σ̂2
j

(yn1+1 − f̂j(xn1+1))2
)

×

K∑
j=1

1√
4π2σ̂4

j

exp

(
− 1

2σ̂2
j

(yn1+1 − f̂j(xn1+1))2 − 1
2σ̂2

j

(yn1+2 − f̂j(xn1+2))2
)

K∑
j=1

1√
2πσ̂2

j

exp

(
− 1

2σ̂2
j

(yn1+1 − f̂j(xn1+1))2
)

× · · · ×

K∑
j=1

1

Πn
i=1

√
2πσ̂2

j

exp

− n∑
i=n1+1

1
2σ̂2

j

(yi − f̂j(xi))2


K∑
j=1

1

Πn−1
i=1

√
2πσ̂2

j

exp

− n−1∑
i=n1+1

1
2σ̂2

j

(yi − f̂j(xi))2
 .

Let pi = (1/
√

2πσ2)× exp(−(yi − f(xi))2/2σ2) and gi =
∑K

j=1 Wj,i(1/
√

2πσ̂2
j )×

exp(−(yi − f̂j(xi))2/2σ̂2
j ) for n1 + 1 ≤ i ≤ n. It follows by the definition of Wj,i

that log (pn2/qn2) =
∑n

i=n1+1 log
(

pi
gi

)
. Together with (2) and (3), under the

i.i.d. assumption on the data, we have

n∑
i=n1+1

E log
(

pi

gi

)
≤ log K +

n2

2
E

(
‖ f̂j − f ‖2

σ̂2
j∗

+
σ2

σ̂2
j∗

− 1 − log
σ2

σ̂2
j∗

)
. (4)

Now observe that, conditioned on the first part of the data and xi as denoted by
E

′
n1

below, we have

E
′
n1

log
(

pi

gi

)
=
∫

pi log
pi

gi
dyi ≥

∫
(
√

pi −√
gi)2 dyi,

where the inequality is the familiar relationship between the Kullback-Leibler
divergence and the squared Hellinger distance. The Hellinger distance is lower
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bounded in terms of the difference of their means as follows (see Lemma 1 of Yang
2001a). Let p and g be two probability densities on the real line with respect to
a measure ν, with means µp and µg, variances 0 < σ2

p < ∞ and 0 < σ2
g < ∞

respectively. Then∫
(
√

p −√
g)2 dν ≥ (µp − µg)

2

2
(
σ2

p + σ2
g

)
+ (µp − µg)

2
.

Under Conditions 1 and 2, it is straightforward to verify that the variance of gi

is upper bounded by ξ2σ
2 + 4τσ2. Since the mean of gi (as a density function in

yi) is ŝi(xi) =
∑K

j=1 Wj,if̂j(xi), we have

E
′
n1

log
(

pi

gi

)
≥ (ŝi(xi) − f(xi))2

σ2 (2(1 + ξ2) + 9τ)
.

Together with (4),

n∑
i=n1+1

E
( (ŝi(Xi) − f(Xi))

2

σ2 (2(1 + ξ2) + 9τ)

)

≤ log K +
n2

2
E
(‖ f̂j − f ‖2

σ̂2
j∗

+
σ2

σ̂2
j∗

− 1 − log
σ2

σ̂2
j∗

)
.

By convexity, we have

E
(( 1

n2

n∑
i=n1+1

ŝi(Xi)
)
− f(Xi)

)2 ≤ 1
n2

n∑
i=n1+1

E (ŝi(Xi) − f(Xi))
2 .

Note that 1
n2

∑n
i=n1+1 ŝi(x) = f̃n(x). Thus

E ‖ f̃n − f ‖2

≤ σ2 (2(1 + ξ2) + 9τ)
( log K

n2
+

1
2
E
(‖ f̂j − f ‖2

σ̂2
j∗

+
σ2

σ̂2
j∗

− 1 − log
σ2

σ̂2
j∗

))
.

It is straightforward to verify that if x ≥ x0 > 0, x − 1 − log x ≤ cx0(x − 1)2 for
a constant cx0 = (x0 − 1 − log x0)/ (x0 − 1)2. Together with the fact that the
above inequality holds for every j∗, under Condition 2, it follows that

E ‖ f̃n − f ‖2

≤ (1 + ξ2 + 9τ/2) inf
j≥1

(
4σ2 log K

n
+

1
ξ1

E ‖ f̂j − f ‖2 +
C(ξ1, ξ2)

σ2
E(σ̂2

j∗ − σ2)2
)

,

where C(ξ1, ξ2) = (1/ξ2 − 1 + log ξ2)/ξ2
1 (1/ξ2 − 1)2. The conclusion follows.
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Proof of Proposition 1. By symmetry, R(p1, p̃n, n) = R(p2, p̃n, n), and given
by

Eθ1

∫
(p1(x) − p̃n(x))2 dx = Eθ1 (1 − W1)

2 ·
∫

(p1(x) − p2(x))2 dx.

For the estimator based on selection, the risks are closely related to the proba-
bilities of the two types of errors. Indeed, we have

R(p1, p̂φ, n) = Eθ1

∫
(p1(x) − p̂φ(x))2 dx = Pθ1 (Cφ)

∫
(p1(x) − p2(x))2 dx,

R(p2, p̂φ, n) = Eθ2

∫
(p2(x) − p̂φ(x))2 dx = Pθ2 (Aφ)

∫
(p1(x) − p2(x))2 dx.

Let Cφ∗ denote the rejection region {Xn ≥ (θ1 + θ2)/2} of φ∗. The probability
of type I error is αn = Pθ1(Xn ≥ (θ1 + θ2)/2) = 1 − Φ(

√
n(θ2 − θ1)/2σ). By

the Neyman-Pearson Lemma, this is the most powerful test of size αn. Due to
symmetry of φ∗, the probability of type II error is also αn. It follows that for any
test φ of size less than αn, the probability of type II error is necessarily larger
than αn. As a consequence, the maximum of probabilities of Type I and II error
is minimized when φ is φ∗. Then the first statement in Proposition 1 follows from
the second statement.

It remains to show R(p1, p̂φ, n)/R(p1, p̃n, n) > 1.27 for all n. Note that

Eθ1 (1 − W1)
2 = Eθ1


exp

(
− 1

2σ2

n∑
i=1

(Xi−θ2)2
)

exp

(
− 1

2σ2

n∑
i=1

(Xi−θ1)2
)

+ exp

(
− 1

2σ2

n∑
i=1

(Xi−θ2)2
)


2

= Eθ1

 1

exp

(
− 1

2σ2

n∑
i=1

(Xi − θ1)2 +
1

2σ2

n∑
i=1

(Xi − θ2)2
)

+ 1


2

= Eθ1

(
exp

(
(θ1 − θ2)nXn

σ2
+

n
(
θ2
2 − θ2

1)
)

2σ2

)
+ 1

)−2

= E

(
exp

(√
n (θ2 − θ1)

σ

(√
n (θ2 − θ1)

2σ
− Z

))
+ 1

)−2

,

where Z in the last equality denotes a random variable with a standard normal
distribution. Let β =

√
n(θ2 − θ1)/σ. Then the risk ratio of selection versus

combining is

R(p1, p̂φ, n)
R(p1, p̃n, n)

=
1 − Φ

(
β
2

)
E
(
exp

(
β
(

β
2 − Z

))
+ 1

)−2 .
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The expression seems very complicated to evaluate analytically. Numerical cal-
culations show that the ratio is decreasing in β > 0 (with derivative approaching
zero) and is lower bounded by 1.27 and upper bounded by 2 (asymptotically
achieved when β → 0, i.e., when σ is large relative to the sample size and the
difference of the means). This completes the proof of Proposition 1.
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