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Abstract: With reference to the linear programming approach to controlled sam-

pling, this paper shows how from consideration of symmetry one can achieve a

drastic reduction in the dimensionality of the problem and hence reduce the com-

puting time to a great extent.
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1. Introduction

With reference to a finite population of size N , consider the problem of find-
ing a sampling design, with fixed size n (< N), so as to minimize the probability
of selecting certain undesirable samples while at the same time matching the
inclusion probabilities of the first two orders with those under simple random
sampling without replacement; see Rao and Nigam (1990) for a discussion on the
problem.

To avoid trivialities, suppose n ≥ 3. Rao and Nigam (1990) proposed an ele-
gant linear programming formulation for the above problem. While this strength-
ens and unifies some previous results based on block designs, a difficulty with
the linear programming approach, in its present form, is that both the number
of variables and the number of constraints increase very rapidly with increase
in N and n and, despite the computing facilities available nowadays, can be
prohibitively large even for moderately large N and n.

In an attempt to make the aforesaid linear programming formulation more
user-friendly, the present article shows how from consideration of symmetry it
is possible to achieve a drastic reduction in the dimensionality of the problem
and hence a substantial saving of computing time in many situations of practical
interest. In particular, as illustrated in last section, this can be of considerable
help in surveys spread over a geographical area which possibly represent the most
common field of application of controlled sampling.

The difficulty with the linear programming formulation for large N and n

was noted also by Rao and Nigam (1992) who remarked that the formulation
might become more manageable with a stratified population provided the set of
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undesirable samples is specified separately in each stratum. This implicitly calls
for matching the inclusion probabilities separately for each stratum and hence
amounts to treating each stratum as a population. Consequently, even when such
a stratification is possible, the present approach can entail a significant further
simplification when applied separately to each stratum. In this connection, see
Examples 1 and 4 which show that even with relatively small populations, that
could as well be interpreted as strata, the reduction in the dimensionality through
the present procedure can be substantial.

2. Main Result

Let p(s) be the selection probability for a sample s which is an n-subset of
U = {1, . . . , N} and S be the set of all the

(N
n

)
possible samples. If S1 (⊂ S)

denotes the set of undesirable samples then following Rao and Nigam (1990), the
linear programming formulation of the present controlled sampling problem is as
follows:
A. Find the sampling design {p(s) : s ∈ S} so as to minimize

φ =
∑
s∈S1

p(s) (1)

subject to ∑
s�i,j

p(s) = n(n− 1)/{N(N − 1)}, 1 ≤ i < j ≤ N (2)

and

p(s) ≥ 0, for all s ∈ S. (3)

The above formulation involves
(N

n

)
decision variables and

(N
2

)
equality con-

straints. We now show how, from consideration of symmetry, the dimensionality
of this formulation can be reduced. Two units i and j of the population are said
to be associates of each other, written i ∼ j, if the set S1 of undesirable samples
remains unaltered when the roles of i and j are interchanged. Obviously, i ∼ i

and the relation ∼ partitions U into equivalence classes such that the members
within each equivalence class are associates of one another. Let there be t equiv-
alence classes U1, . . . , Ut with respective cardinalities N1, . . . , Nt, where Ni ≥ 1
for all i and

∑t
i=1Ni = N . Let V be the set of ordered t-plets v = v1 · · · vt such

that v1, . . . , vt are integers satisfying

0 ≤ vi ≤ Ni (1 ≤ i ≤ t) and
t∑

i=1

vi = n. (4)
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For any v (= v1 · · · vt) ∈ V , let S(v) be a subset of S consisting of those samples
which contain exactly vi units from Ui, 1 ≤ i ≤ t. The cardinality of S(v) is then

hv =
t∏

i=1

(
Ni

vi

)
(5)

Clearly, the class of sets {S(v) : v ∈ V } represent a disjoint partition of S so that∑
v∈V hv =

(N
n

)
.

Example 1. Let N = 10, n = 3 and S1 = {124, 125, 134, 135} where, for nota-
tional simplicity, we write i1 · · · in to denote a sample {i1, . . . , in}. Clearly, S1

does not change if, say, the roles of the units 2 and 3 are interchanged. Hence
2 ∼ 3. From similar considerations, it is seen that here t = 4, U1 = {1}, U2 =
{2, 3}, U3 = {4, 5}, U4 = {6, 7, 8, 9, 10}, N1 = 1, N2 = N3 = 2, N4 = 5. Hence
by (4), V = {0003, 1002, 0102, 0012, 1020, 0120, 0021, 1200, 0210, 0201, 1110, 1101,
1011, 0111}. In particular, S(0210) = {234, 235}, S(1110) = {124, 125, 134, 135},
h0210 = 2, h1110 = 4, and so on. Note that S1 = S(1110).

Lemma 1. For each v ∈ V , either S(v) ⊂ S1 or S(v) and S1 are disjoint.

Proof. If possible suppose the result is not true. Then there exist samples s1
and s2 such that

s1 ∈ S1, s2 /∈ S1 (6)

and s1 ∈ S(v), s2 ∈ S(v), (7)

for some v = v1 · · · vt ∈ V . Then by (7), si = si1 ∪ · · · ∪ sit (i = 1, 2) where, for
1 ≤ j ≤ t, both s1j and s2j are vj-subsets of Uj. But then by the definition of
U1, . . . , Ut, one can obtain s2 from s1 in a finite number of steps where in each
step the roles of two units that are associates of each other are interchanged.
Since, by the definition of associates, any such interchange leaves S1 unaffected,
it follows that (6) is impossible.

In view of Lemma 1, we have

S1 = ∪v∈V0S(v), (8)

where V0 is a nonempty subset of V . Consider now the following linear program-
ming problem where {xv : v ∈ V } are real numbers and Q = {r : 1 ≤ r ≤ t,Nr ≥
2}.
B. Find {xv : v ∈ V } so as to minimize

ψ =
∑
v∈V0

xv (9)
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subject to

(NrNr′)−1
∑
v∈V

vrvr′xv = n(n− 1)/{N(N − 1)}, 1 ≤ r < r′ ≤ t (10)

{Nr(Nr − 1)}−1
∑
v∈V

vr(vr − 1)xv = n(n− 1)/{N(N − 1)}, r ∈ Q (11)

xv ≥ 0, for all v ∈ V. (12)

Lemma 2. The linear programming problem B has a feasible solution. Moreover,
if φ� and ψ� are the minimum possible values of φ and ψ under the problems A
and B respectively, then φ� ≥ ψ�.

Proof. First note that one feasible solution of the problem A is p(s) =
(N

n

)−1
for

all s ∈ S. Consider now any feasible solution, say, {p̂(s), s ∈ S} of the problem
A and define

x̂v =
∑

s∈S(v)

p̂(s), v ∈ V. (13)

We shall show that {x̂v : v ∈ V } is a feasible solution of the problem B. Since the
quantities p̂(s) satisfy (2), for any r, r′ (1 ≤ r < r′ ≤ t), summing these identities
over i ∈ Ur and j ∈ Ur′ ,∑

i∈Ur

∑
j∈Ur′

∑
s�i,j

p̂(s) = NrNr′n(n− 1)/{N(N − 1)}. (14)

But since the sets {S(v) : v ∈ V } represent a disjoint partition of S, the left hand
side of (14) equals∑

v∈V

∑
i∈Ur

∑
j∈Ur′

∑
s�i,j

s∈S(v)

p̂(s) =
∑
v∈V

∑
s∈S(v)

∑
i∈Ur

∑
j∈Ur′

i,j∈s

p̂(s)

=
∑
v∈V

∑
s∈S(v)

vrvr′ p̂(s) =
∑
v∈V

vrvr′x̂v, (15)

using (13). By (14) and (15), the quantities x̂v, v ∈ V, satisfy (10). Similarly, for
any r ∈ Q, summing the identities (2) over i, j ∈ Ur, i < j, it can be seen that
these quantities satisfy (11) as well. Also, by (3) and (13), trivially the x̂v, v ∈ V ,
satisfy (12). Thus, {x̂v : v ∈ V } is a feasible solution of the problem B.

Next observe that by (1) and (8), the value of φ under {p̂(s) : s ∈ S} is given
by
∑

s∈S1
p̂(s) =

∑
v∈V0

∑
s∈S(v) p̂(s), which, by (9) and (13), equals the value of

ψ under {x̂v : v ∈ V }. Thus given any feasible solution of the problem A we
can find a feasible solution of the problem B such that the value of φ under the
former equals the value of ψ under the latter. Hence evidently φ� ≥ ψ�.
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Theorem 1. Let {x�
v : v ∈ V } be an optimal solution of the linear programming

problem B. Define

p�(s) = x�
v/hv , for every s ∈ S(v) and every v ∈ V. (16)

Then{p�(s) : s ∈ S} is an optimal solution of the linear programming problem A.
Furthermore, ∑

v∈V

x�
v = 1. (17)

Proof. We first show that {p�(s) : s ∈ S} is a feasible solution to the problem
A. Consider any i, j, where 1 ≤ i < j ≤ N. If i, j ∈ Ur for some r ∈ Q then by
(5), (11), and (16),∑

s�i,j

p�(s) =
∑
v∈V

∑
s∈S(v)

s�i,j

x�
v/hv

=
∑
v∈V

(x�
v/hv){

t∏
r′=1

r′ �=r

(
Nr′

vr′

)
}
(
Nr − 2
vr − 2

)

=
∑
v∈V

x�
vvr(vr − 1)/{Nr(Nr − 1)} = n(n− 1)/{N(N − 1)}

Similarly, by (5), (10) and (16), the above holds also when i ∈ Ur, j ∈ Ur′ for
some r �= r′. Hence the quantities p�(s), s ∈ S, satisfy (2). By (12) and (16),
these quantities satisfy (3) as well. Thus {p�(s) : s ∈ S} is a feasible solution of
the problem A.

Now for this solution, by (8), (9), (16) and Lemma 2,∑
s∈S1

p�(s) =
∑
v∈V0

∑
s∈S(v)

x�
v/hv =

∑
v∈V0

x�
v = ψ� ≤ φ�, (18)

where φ� and ψ� are as defined in Lemma 2. On the other hand, as {p�(s) : s ∈ S}
is a feasible solution of the problem A,

∑
s∈S1

p�(s) ≥ φ�. Hence the equality holds
in (18) and optimality of this solution follows.

Finally, we note that
∑

s∈S p
�(s) = 1 , since {p�(s) : s ∈ S} is a feasible

solution of the problem A. But by (16),
∑

s∈S p
�(s) =

∑
v∈V

∑
s∈S(v) x

�
v/hv =∑

v∈V x
�
v, whence (17) follows.

Thus {p�(s) : s ∈ S}, as defined in Theorem 1, gives an optimal sampling
design in the sense described in the Introduction. In view of (4), (5), (16) and
(17), this optimal design can be implemented as follows.
Step 1. Find an optimal solution, say {x�

v : v ∈ V }, of the linear programming
problem B.
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Step 2. Select a member of V such that any v ∈ V has a chance x�
v of being

selected.
Step 3. Let v� = v�

1 · · · v�
t (∈ V ) be selected in step 2. For 1 ≤ i ≤ t, draw a

simple random sample of size v�
i from Ui without replacement. Combine these t

samples to get a sample of size n.
While the implementation of steps 2 and 3 is straightforward, the linear

programming problem considered in step 1 can have a substantially lower dimen-
sionality than the original formulation A in most applications. Note that the
problem B involves f decision variables and

(t
2

)
+ q equality constraints where f

and q are the cardinalities of V and Q respectively. Thus in the setup of Example
1, the problem B involves 14 decision variables and 9 equality constraints while
for the problem A, these numbers are as large as 120 and 45 respectively. More
examples are given in the next section to demonstrate how the present approach
can entail substantial saving in computing time.

While a compact expression for f is hard to find for general n, before con-
cluding this section we indicate a simple upper bound on f . Note that V ⊂ Ṽ ,
where Ṽ is the set of ordered t-plets v1 · · · vt such that v1, . . . , vt are nonnegative
integers satisfying

∑t
i=1 vi = n. Hence

f ≤
(
t+ n− 1

n

)
, (19)

the upper bound being attainable when n ≤ Ni, 1 ≤ i ≤ t; compare Parzen
(1960, p.70).

3. Examples

In surveys spread over a geographical area, often there are natural clusters
of units based on geographical contiguity and, from consideration of cost or con-
venience, these clusters determine the desirability or otherwise of any sample. In
such a situation, units within each cluster are associates and the clusters corre-
spond to equivalence classes U1, . . . , Ut. To take a concrete example, consider a
population of 10 villages in a partially hilly area where village 1 is located on a
hill, villages 2 and 3 are located on another hill, villages 4 and 5 are located on
yet another hill while villages 6, . . . , 10 are in a plateau surrounded by these hills.
The sample size is 3 and, from practical consideration, suppose it is inconvenient
to have a sample which contains units from two hills. Then the set of unde-
sirable samples is {124, 125, 134, 135} which is dictated by the natural clusters
{1}, {23}, {4, 5}, and {6, . . . , 10} arising from geographical contiguity. Observe
that Example 1 deals precisely with this setup. Some more examples follow. In-
cidentally the clusters considered here or, for that matter, the equivalence classes
of Section 2 are different from strata in the usual sense; for example, the number
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of units from any particular cluster may vary from one possible sample to another
and is randomly determined via Steps 1 and 2 of Section 2.

Example 2. Consider a population of N = 18 villages clustered on a stretch of
road as follows:

1 2 3 ∗ ∗ ∗ 4 5 6 7 8 9 ∗ ∗ ∗ 10 11 12 13 ∗ ∗ ∗ 14 15 16 17 18

Let n = 4 and suppose samples other than those which contain units only from
two neighboring clusters are considered undesirable. Here t = 4, N1 = 3, N2 =
6, N3 = 4, N4 = 5 and by (4), the cardinality of V equals f = 34. Thus the
linear programming problem B involves 34 decision variables and 10 equality
constraints, significantly lower than the corresponding numbers 3060 and 153
arising for the problem A.

Example 3. The setup is as in the last example with the change that now
N = 29 t = 5, N1 = N2 = N3 = N4 = 6, N5 = 5 and n = 5. Then the
equality holds in (19) so that the problem B involves 126 decision variables and
15 equality constraints. On the other hand, these numbers are as high as 118755
and 406 for problem A.

Even when the undesirable samples are not dictated by a natural clustering
of the population, our results can be useful. This happens, for example, when
the population contains a fair number of units that are normal in the sense of
not being included in any undesirable sample. Then these normal units obviously
constitute an equivalence class and, as illustrated below, facilitate a reduction of
the linear programming problem A.

Example 4. Let N = 12, n = 3 and S1 = {123, 234, 135}. Then the units
6, . . . , 12 are normal in the above sense and we get t = 6, Ui = {i} (1 ≤ i ≤
5), U6 = {6, . . . , 12}. Hence it can be seen that the problem B involves 26 decision
variables and 16 equality constraints whereas the corresponding numbers equal
220 and 66, respectively, for the problem A.

We now comment on the amount of effort needed in the identification of
the equivalence classes. As noted above, the identification is straightforward
when the equivalence classes correspond to natural clusters of units or when an
appreciable number of units do not belong to any undesirable sample. Even
otherwise, the following considerations help. Among the undesirable samples, let
there be ai which contain unit i, and λij which contain units i and j. Then, for
units i and j to belong to the same equivalence class, it is necessary that

ai = aj (20)
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and
λir = λjr, for every r �= i, j. (21)

One can easily partition the population into subsets such that units i and
j are in the same subset if and only if ai = aj . By (20), each equivalence
class is contained in one of these subsets. This greatly facilitates the task of
finding the equivalence classes since, instead of considering the entire population
at a time, one needs to consider only the subsets. In the same spirit, further
reduction is possible by checking (21) only for pairs of units (i, j) belonging to the
same subset. Based on these considerations, our experience suggests that quite
commonly the equivalence classes can be identified even by hand computation or
just by inspection for moderately large populations, say for N not exceeding 100,
a range that covers many practical situations under appropriate stratification.

Before concluding, we remark that the present simplification can be suitably
adapted to situations where the right hand side of (2) is replaced by more general
expressions. Equivalence classes are then based on interchangeability of units
with reference to such modification of (2) as well as the set of undesirable samples.
The resulting algebra will be similar to what has been presented here. However,
because of possible diversity in the right hand side of (2), the symmetry may
hold to a lesser extent and simplification, to the scale observed here, may not be
possible. More work is needed in this direction.
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