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Abstract: We study asymptotic properties of the nonparametric maximum like-

lihood estimator (NPMLE) of a distribution function based on partly interval-

censored data in which the exact values of some failure times are observed in ad-
dition to interval-censored observations. It is shown that the NPMLE converges

weakly to a mean zero Gaussian process whose covariance function is determined

by a Fredholm integral equation. Simulations are conducted to demonstrate that

the NPMLE based on all the observations substantially outperforms the empirical
distribution function, using only the fully observed observations, in terms of the

mean square error. It is also shown that the nonparametric bootstrap estimator of

the distribution function is first order consistent, which provides asymptotic jus-
tification for the use of bootstrap to construct confidence bands for the unknown

distribution function.
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1. Introduction and Description of the Data

Suppose time to event random variables, or failure times, T1, . . . , Tn are in-
dependent and identically distributed as F0. If all the random variables are
observable, then it is well known that the nonparametric maximum likelihood
estimator (NPMLE) of F0 is the empirical distribution function and it is asymp-
totically efficient. However, in many medical and reliability studies, observations
are subject to censoring. The goal of this paper is to study asymptotic properties
of the NPMLE of F0 based on partly interval-censored data in which some of the
failure times are observed, but some of the failure times are subject to interval
censoring. More specifically, we consider the following two cases.

(i) “Case 1” partly interval-censored data. For some subjects, the exact
failure times T1, . . . , Tn1 are observed. But for the remaining subjects, only the
information pertaining to their current status is available. That is, for the ith
subject in this group, we only know whether or not failure has occurred at the
examination time Ui; so the observed data is

(δi, Ui), i = n1 + 1, . . . , n,
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where δi = 1 if the unknown failure time Ti ≤ Ui and δi = 0 otherwise. Note
that this censorship model is different from the doubly-censored data studied by
Chang and Yang (1987), Chang (1990) and Gu and Zhang (1993).

(ii) General partly interval-censored data. Again, some of the exact failure
times are observed, but some of the failure times are interval-censored. Interval-
censored data arises when a failure time T is not observable, but is only known
to be bracketed between two examination times. We now describe the interval-
censored data we consider.

Suppose there are m potential examination times U1 < U2 < · · · < Um.
Let U0 = 0 and Um+1 = ∞, and let δk = 1[Uk−1<T≤Uk], k = 1, . . . ,m,m +
1. That is, δk is an indicator function specifying which interval determined by
(U1, U2, . . . , Um) contains the unobservable failure time T . Thus δk takes values
0 or 1 and

∑m+1
k=1 δk = 1. Let ∆ = (δ1, . . . , δm+1). If δk = 1, T is known to

be bracketed between Uk−1 and Uk and all the other δ’s are zero. However,
examination times may be censored. For example, if the ith failure time is
bracketed in (Umi−1,i, Umi,i) where Umi−1,i is the last examination time before
the failure and Umi,i is the first examination time after the failure has occurred,
then it may no longer be necessary to conduct further examinations. So the
effective observations are (∆i, Umi−1,i, Umi,i), i = n1 + 1, . . . , n. Notice that mi

may differ across subjects.
Partly interval-censored data arise frequently in practice. In estimating the

distribution of onset age of chronic diseases, age at onset is known for some
affected individuals in the study. However, for others, age at onset is unknown
and only current age is available. Then age at onset is less than current age. For
an unaffected and susceptible individual, age at onset is greater than current age.
This gives rise to the “case 1” partly interval-censored data. Examples of such
data can be found in Risch (1983) and Tang, Maestre, Tsai, Liu, Feng, Chung,
Chung, Schofield, Stern, Tycko, and Mayeux (1995).

General partly interval-censored data arise often in follow-up studies. An
example of such data is provided by the Framingham Heart Disease Study; see
Odell, Anderson and D’Agostino (1992) for a description. In this study, times
of the first occurrence of subcategory angina pectoris in coronary heart disease
patients are of interest. For some patients, time of the first occurrence of subcat-
egory angina pectoris is recorded exactly. But for others, time is recorded only
between two clinical examinations. Another example of such data is provided
by the study on incidence of proteinuria in insulin-dependent diabetic patients
in Denmark; see Enevoldsen, Johnsen, Kreiner, Nerup and Deckrt (1986) for a
detailed description.

Turnbull (1976) described a general scheme of incomplete failure time data
and derived self-consistency equations for computing the maximum likelihood
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estimator of the survival function. However, theoretical properties of Turnbull’s
estimator have not been studied under an unknown continuous survival function
except in some important special cases, such as right censoring. It does not seem
likely that one can establish properties of the NPMLE under Turnbull’s general
censoring scheme. Note that both right-censored data and interval-censored data
can be regarded as special cases of Turnbull’s general censored data. The Kaplan-
Meier estimator for right-censored data is asymptotically normal with n1/2 rate of
convergence (Breslow and Crowley (1974)). However, the NPMLE with interval-
censored data has only n1/3-rate of convergence and its limiting distribution is
the argmax of the standard two-sided Brownian motion minus parabola (Groene-
boom (1991) and Groeneboom and Wellner (1992)). Large sample properties of
the NPMLE based on partly interval-censored data appear to be unknown.

In this paper, we show that the NPMLE based on either the “case 1”
partly interval-censored data or the general partly interval-censored data con-
verges weakly to a Gaussian process. We also show that the nonparametric
bootstrap estimator of the distribution function is first order consistent, which
provides asymptotic justification for the use of the bootstrap to construct confi-
dence bands for the unknown distribution function.

2. Definition and Uniqueness of the NPMLE

Assume that the failure time and examination times are independent and
that the distribution of the examination times is independent of the distribution
of the failure time. The likelihood function for general partly interval-censored
data is proportional to

Ln(F ) =
n1∏
i=1

dF (Ti)
n∏

i=n1+1

[F (Umi,i) − F (Umi−1,i)], (2.1)

where dF (t) = F (t) − F (t−) is the mass that F puts at t. The NPMLE F̂n is
then the maximizer of Ln(F ) in the class of distribution functions. In the special
case of “case 1” partly interval-censored data, the likelihood function simplifies
to

Ln(F ) =
n1∏
i=1

dF (Ti)
n∏

i=n1+1

F (Ui)δi(1 − F (Ui))1−δi .

For any finite sample size n, F̂n is determined only at the observed failure
times Ti, 1 ≤ i ≤ n1, and at the examination times (Umi−1,i, Umi,i), 1 ≤ i ≤ n2,
where n2 = n−n1 (only these values of F enter the likelihood function). Turnbull
(1976) showed that F̂n is a discrete distribution function which puts positive
mass only at the observed failure times and examination times. To see that F̂n is
uniquely determined at the observation times, we divide the censored data part
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into three types: (a) left censoring time denoted by Lj , so the corresponding
failure time Tj satisfies 0 < Tj ≤ Lj, 1 ≤ j ≤ n21; (b) interval censoring time
(Uj , Vj), so the corresponding failure time Tj satisfies Uj < Tj ≤ Vj, 1 ≤ j ≤
n22; and (c) right censoring time Rj, the corresponding failure time Tj satisfies
Tj > Rj, 1 ≤ j ≤ n23. The size of censored data n2 is n21 + n22 + n23. The
log-likelihood function given in (2.1) can be rewritten as

logLn(F ) =
n1∑
i=1

log(F (T(i)) − F (T(i−1)))+
n21∑
j=1

logF (Lj)+
n22∑
j=1

log(F (Vj) − F (Uj))

+
n23∑
j=1

log(1 − F (Rj)),

where T(i)’s are the ordered values of T1, . . . , Tn1 and T(0) = 0. Clearly, we can
let F (T(0)) = F (0) = 0. Let D = (Y(1), . . . , Y(m)) be the collection of the exact
failure times and the three types of censoring times with Y(1) ≤ · · · ≤ Y(m).
Without loss of generality, we can assume that Y(1) corresponds to a value in
the Ti’s, Lj ’s, or Vj’s. Otherwise, if Y(1) corresponds to a Uj or a Rj , for the
distribution function F to maximize logLn, we must have F (Y(1)) = 0. Thus
we can take Y(1) out of D. Similarly, we can assume that the largest value Y(m)

in D corresponds to a Uj or Rj , because if Y(m) corresponds to a Ti, Lj , or Vj,
we must have F (Y(m)) = 1 and can delete this Y(m) from D. Let sj = F (Y(j)).
Then the log-likelihood can be represented as a function of s ≡ (s1, . . . , sm). The
problem of finding F̂n becomes that of maximizing logLn(s) over the convex set
S = {(s1, . . . , sm) : 0 < s1 ≤ · · · ≤ sm < 1}. It can be verified that logL is
concave in S. By an argument analogous to Proposition 1.3 of Gronenboom and
Wellner (1992) for the uniqueness of the NPMLE with interval-censored data, the
solution to the present maximization problem is unique. Therefore, the NPMLE
F̂n is uniquely determined at the observation times.

In the above, we assumed that n2k ≥ 1, k = 1, 2, 3. For a fixed n2, any one
or two of n21, n22 and n23 might be zero. For example, if n12 = 0, then there is
no left-censored data, and the corresponding term in logLn does not exist. The
uniqueness of F̂n is this simpler case can be established similarly.

3. Asymptotic Distribution of the NPMLE

Suppose that the distribution function F0 of the failure time T is continuous.
Then it can be shown using the method of Van der Vaart and Wellner (1992)
that

sup |F̂n(t) − F0(t)| →a.s. 0 as n1 → ∞.

These authors considered the consistency of the NPMLE when part of the data
is observed and part is from a mixture density with the unknown distribution
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as the mixing distribution. Their proof can be adapted to the present situation.
If it is further assumed that the distribution function of the examination times
is continuous, then consistency holds as min{n1, n2} → ∞. When n1 = 0, the
uniform consistency of F̂n is proved in Groeneboom and Wellner (1992). We
omit the proof of consistency and concentrate on the asymptotic distribution of
F̂n.

The first key assumption is that the number of exact observations is not
negligible in the following sense.

Assumption (A1): n1/n→ α1, as n→ ∞ with 0 < α1.

This assumption is crucial for us to obtain the n1/2-rate of convergence for
F̂n. If n1/n → 0 as n → ∞, then the rate of convergence of F̂n would be
slower than n1/2. In particular if n1 = 0, the rate of convergence is n1/3, see
Groeneboom and Wellner (1992).

Let D[0,∞) be the class of bounded right continuous functions with left
limits on [0,∞), equipped with the supremum norm. Convergence in distribution
(denoted as ⇒D) below is according to the definition of Hoffmann-Jørgensen; see
for example, Van der Vaart and Wellner (1996) for a description.

We state the results on F̂n with “case 1” interval-censored data and with
general partly interval-censored data separately, since in the former case, the
conditions are weaker.

Let α2 = 1 − α1. The following are needed in Theorem 3.1. Define a linear
operator Ṡ0 : D[0,∞) → D[0,∞) by

Ṡ0 = α1I + α2K,

where I is the identity operator and where, for any h ∈ D[0,∞), K is defined by

Kh(t) = E

{
F0(U1 ∧ t) − F0(U1)F0(t)
F0(U1)(1 − F0(U1))

h(U1)
}
.

Let ξ1(x; t) as a function of t be the solution to the integral equation Ṡ0h(t) =
1[x≤t] − F0(t), and let ξ2(δ, u; t) as a function of t be the solution to the integral
equation

Ṡ0h(t) = δ
F0(u ∧ t)
F0(t)

+ (1 − δ)
F0(u) − F0(v ∧ t)

1 − F0(u)
.

Theorem 3.1. (“Case 1” partly interval-censored data.) Suppose that (A1) holds
and that F0 is continuous. Then

(i)
n1/2(F̂n − F0) ⇒D Z1,

where Z1 is a Gaussian process in D[0,∞) with mean zero and a variance that
achieves the information lower bound for the estimation of F0.
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(ii) The covariance function of Z1 is given by

Cov (Z1(s), Z1(t))=α1 Cov [ξ1(T1; s), ξ1(T1; t)]+α2 Cov [ξ2(δ1, U1; s), ξ2(δ1, U1; t)],

where the first covariance is calculated with respect to the distribution of T1, the
second is with respect to the distribution of (δ1, U1).

We now give sufficient conditions under which the NPMLE F̂n in the general
case converges in distribution to a Gaussian process.

Assumption (A2): The distribution function F0 is continuous and strictly
increasing.

Assumption (A3): The joint distribution function G(u1, . . . , um) of (U1, . . . ,

Um) is continuous. Furthermore, there exists a positive number η0 > 0 such that

P (Uk+1 − Uk ≥ η0) = 1, k = 1, . . . ,m− 1.

Assumption (A3)∗: (U1, . . . , Um) is a vector of discrete random variables with
finitely many support points.

Assumption (A3) assumes that there is a positive separation time between
any two adjacent examination times. We conjecture that Theorem 3.2 below
continues to hold without this assumption, but have not been able to prove this.
The point of difficulty is discussed in Remark 6.1 of section 4.

Before stating Theorem 3.2, we first define several expressions needed to
describe the covariance structure of the limiting Gaussian process of the NPMLE
for the case of m = 2. These expressions can be generalized to the case of general
m. Denote (U1, U2) by (U, V ). Define a linear operator Ṡ0 : D[0,∞) → D[0,∞)
by

Ṡ0 = α1I + α2K, (3.1)

where I is the identity operator and where for any h ∈ D[0,∞), K is defined by

Kh(t) = E

{
F0(U ∧ t)
F0(U)

h(U) +
F0(V ∧ t) − F0(U ∧ t)

F0(V ) − F0(U)
(h(V ) − h(U))

−F0(t) − F0(V ∧ t)
1 − F0(V )

h(V )
}
.

Let ψ1(x; t) as a function of t be the solution to the integral equation Ṡ0h(t) =
1[x≤t] − F0(t), and let ψ2(δ1, δ2, u, v; t) as a function of t be the solution to the
integral equation

Ṡ0h(t) = δ1
F0(u ∧ t)
F0(u)

+ δ2
F0(v ∧ t) − F0(u ∧ t)

F0(v) − F0(u)
+ (1 − δ1 − δ2)

F0(t) − F0(v ∧ t)
1 − F0(v)

.

Theorem 3.2. (General partly interval-censored data.) Suppose that: (a) Con-
ditions (A1) and (A2) hold; (b) either (A3) or (A3)∗ holds. Then
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(i)
n1/2(F̂n − F0) ⇒D Z2,

where Z2 is a Gaussian process in D[0,∞) with mean zero and a variance that
achieves the information lower bound for the estimation of F0.

(ii) When m = 2, the covariance function of Z2 is given by

Cov (Z2(s), Z2(t)) = α1 Cov [ψ1(T1; s), ψ1(T1; t)] + α2 Cov [ψ2(δ1, δ2, U, V ; s),

ψ2(δ1, δ2, U, V ; t)],

where the first covariance is calculated with respect to the distribution of T1, the
second is with respect to the distribution of (δ1, δ2, U, V ).

Notice that the conditions of Theorem 3.1 are weaker than those of Theorem
3.2. In particular, there is no restriction on the distribution of the examination
time.

The covariance functions of Z1 and Z2 in the above two theorems are not
expressible in closed forms. They are determined by two Fredholm integral equa-
tions which do not appear to have explicit solutions. Therefore, Theorems 3.1
and 3.2 can not be directly used to construct pointwise confidence limits or con-
fidence bands for F0.

One way to estimate the covariance of F̂n is to use the inverse of the observed
information matrix. The observed information matrix is computed as the nega-
tive second derivative of the log-likelihood with respect to the values of F̂n at its
jump points (note that some examination times may not be jump points of F̂n).
Following the discussion in Section 5 of Vardi and Zhang (1992), this method
provides a consistent estimator of the covariance of F̂n, which follows from the
continuity of the inverse of the score operator in a neighborhood of F0 proved in
Section 6. See also Murphy (1995) for a discussion of the use of this method to
estimate the covariance of the NPMLE in the frailty model. Thus pointwise con-
fidence limits for F0 can be obtained from this covariance estimator. However,
knowing the covariance of F̂n is not enough for constructing confidence bands
for F0. One approach for constructing confidence bands is to use the bootstrap.
Theorems 3.1 and 3.2 provide a starting point to verify that the nonparametric
bootstrap described below is first order consistent.

Let Pn1 be the empirical measure of the exact observations T1, . . . , Tn1 , let
Pn2 be the empirical measure of the interval-censored observations (Umi−1,i,

Umi,i), 1 ≤ i ≤ n2, let T ∗
i , 1 ≤ i ≤ n1, be a bootstrap sample from Pn1 , and

let (U∗
mi−1,i, U

∗
mi,i

), 1 ≤ i ≤ n2, be a bootstrap sample from Pn2, drawn inde-
pendently of T ∗

i , 1 ≤ i ≤ n1. Define the bootstrap NPMLE to be the F̂ ∗
n which

maximizes

L∗
n(F ) =

n1∏
i=1

dF (T ∗
i )

n∏
i=n1+1

[F (U∗
mi,i) − F (U∗

mi−1,i)]
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over the class of distribution functions.

Theorem 3.3. (i) Under the conditions of Theorem 3.1,

n1/2(F̂ ∗
n − F̂n) ⇒D Z1 in probability,

where Z1 is the limiting process given in Theorem 3.1.
(ii) Under the conditions of Theorem 3.2,

n1/2(F̂ ∗
n − F̂n) ⇒D Z2 in probability,

where Z2 is the limiting process given in Theorem 3.2.

Theorem 3.3 justifies the use of bootstrap to construct confidence bands for
F0.

In Theorems 3.1 and 3.2, it is assumed that F0 is continuous. It is some-
times of interest to treat the failure times as having a discrete distribution F0

with finitely many known support points, say (τ1, . . . , τd). Then the derivation
of the asymptotic distribution of the maximum likelihood estimator becomes a
standard finite dimensional parametric problem. Classical distributional theory
on maximum likelihood estimators applies. Specifically, let pj = P (T ≤ τj) and
let p̂j be the corresponding maximum likelihood estimator, j = 1, . . . , d. Let
p = (p1, . . . , pd)′ and p̂ = (p̂1, . . . , p̂d)′. Suppose (A1) holds. Then with either
the “case 1” or the general partly interval censored data, and with no restriction
on the nature of the distribution function G,

n1/2(p̂− p) →d N(0,Σ),

where Σ is the Cramér-Rao lower bound, consistently estimated by the inverse
of the observed Fisher information matrix.

4. Self-consistency Equations

Turnbull (1976) showed that the nonparametric maximum likelihood estima-
tor satisfies the self-consistency equations which are exactly the score equations
defined appropriately. In this section, we give a different derivation of the self-
consistency equations. The main purpose is to write the self-consistency equa-
tions in terms of the present notation. This will be useful in Section 6 where the
proofs of Theorems 3.1, 3.2 and 3.3 are based on the equations given below.

If all the failure times could be observed, the self-consistency estimator F̂n

is simply the empirical distribution function

Fn(t) =
n1

n
Fn1(t) +

n2

n
Fn2(t),
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where Fn1 is the empirical distribution function of the observable T1, . . . , Tn1 ,
and Fn2 is the empirical distribution function of the unobservable Tn1+1, . . . , Tn.
When the data is subject to censoring, F̂n can be obtained by taking the condi-
tional expectation of Fn given the observed data under the probability measure
induced by F̂n itself (Efron (1967)). That is,

F̂n(t) = E
F̂n

[Fn(t) | Ti, Umj−1,j, Umj ,j, i = 1, . . . , n1, j = n1 + 1, . . . , n] (4.1)

=
n1

n
Fn1(t) +

n2

n
E

F̂n
[Fn2(t) | Umj−1,j, Umj ,j, j = n1 + 1, . . . , n]

=
n1

n
Fn1(t) +

1
n

n2∑
j=1

{
F̂n(Umj ,j ∧ t) − F̂n(Umj−1,j ∧ t)

F̂n(Umj ,j) − F̂n(Umj−1,j)

}
.

For “case 1” partly interval-censored data, the self-consistency equation sim-
plifies to

F̂n(t) =
n1

n
Fn1(t) +

1
n

n2∑
j=1

{
δj
F̂n(Uj ∧ t)
F̂n(Uj)

+ (1 − δj)
F̂n(t) − F̂n(Uj ∧ t)

1 − F̂n(Uj)

}
. (4.2)

Equation (4.1) or (4.2) immediately give an iterative algorithm to compute
F̂n, which can also be viewed as an EM algorithm (Dempster, Laird and Rubin
(1977)). This algorithm is easy to implement. A faster algorithm is the hybrid
algorithm proposed by Wellner and Zhan (1997) which combines the EM algo-
rithm and the iterative convex minorant algorithm. For a detailed description of
the iterative convex minorant algorithm, see Groeneboom and Wellner (1992).

5. Efficiency Gain by Using Censored Observations

A referee raises the question of how much efficiency is gained by the NPMLE
using all the observations over the empirical distribution function using only the
fully observed observations, and how the gain in efficiency depends on α1, the
proportion of the fully observed observations. It appears difficult to analytically
quantify the improvement in the efficiency of the NPMLE and how it depends on
α1, because the covariance function of the NPMLE is highly implicit. Therefore,
I carried out two sets of simulations with “case 1” and “case 2” partly-interval
censored data.

In the first set of simulations with “case 1” partly interval-censored obser-
vations, four different distributions for F0 are used. These distributions are:
uniform[0, 1]; exponential with mean 0.5; Weibull distribution with shape pa-
rameter 1.4 and scale parameter 0.55 (with hazard function 1.4 × 0.55−1.4t0.4 =
3.23 t0.4); and Weibull distribution with shape parameter 0.7 and scale parame-
ter 0.40 ( with hazard function 0.7× 0.4−0.7t−0.3 = 1.33 t−0.3). The first Weibull
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distribution has an increasing hazard function, while the second Weibull distri-
bution has a decreasing hazard function. The parameters are set so that all four
distributions have mean 0.5. The distribution of the examination time is uniform
[0, 1] in all four cases.

In the second set of simulations with “case 2” partly interval-censored data,
the four generating distributions are: uniform[0, 4]; exponential with mean 2;
Weibull distribution with shape parameter 1.5 and scale parameter 2.25 (with
hazard function 1.5×2.25−1.5t0.5 = 0.44 t0.5); and Weibull distribution with shape
parameter 0.7 and scale parameter 1.65 (with hazard function 0.7×1.65−0.7t−0.3 =
0.49 t−0.3). Again, the two Weibull distributions have increasing and decreasing
hazards, respectively. The parameters are specified so that all the distributions
have mean 2. The distribution of the first examination time U1 is uniform [0, 1];
and after the realization of U1 is generated, the second examination time U2

is obtained by adding a random number generated from uniform [10−6, 1] to
this realization of U1. The number 10−6 (instead of 0) is used here so that the
conditions of Theorem 3.2 are satisfied. However, simulations (not shown here)
suggest that the numerical difference in the NPMLE and the mean square error
between using uniform [10−6, 1] and uniform [0, 1] is negligible.

The total sample size n = n1 + n2 is 100, and the number of replications
is 500 for every simulation model. Five different combinations of the values of
(n1, n2) are used in the simulations with the ratio α1 (defined to be n1/n) equal
to 0.1, 0.3, 0.5, 0.7 and 0.9. The mean square errors (MSE) multiplied by 104 of
the empirical distribution function Fn using only the fully observed data and the
NPMLE F̂n along with their ratios are presented in Tables 1 and 2. The mean
square error is defined to be the average of the squared differences between the
estimator and the true distribution at the observations.

Table 1. MSE×104: Case 1 partly interval censoring

(n1, n2) (10,90) (30,70) (50,50) (70,30) (90,10)
Uniform Fn 116.27 30.95 19.48 12.58 9.12

[0, 1] NPMLE 14.16 14.07 12.08 10.44 8.60
Ratio 8.21 2.20 1.61 1.20 1.06

Exponential Fn 98.16 31.73 19.33 11.73 8.19
mean= 0.5 NPMLE 16.24 14.12 13.07 10.80 1.04

Ration 6.04 2.25 1.48 1.09 1.04
Weibull Fn 120.19 31.28 17.14 11.81 10.10

shape= 1.4 NPMLE 15.89 12.47 11.65 9.51 9.8
scale= 0.55 Ratio 7.56 2.51 1.47 1.24 1.03

Weibull Fn 108.7 30.67 18.01 12.73 8.97
shape= 0.7 NPMLE 18.50 15.24 13.32 10.83 8.77
scale= 0.40 Ratio 5.88 2.01 1.35 1.18 1.02
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It is seen from Tables 1 and 2 that the reduction in mean square error of
the NPMLE F̂n using all the observations is substantial for α1 = 0.1 to 0.7.
For these α1 values, the relative efficiency of F̂n with respect to the empirical
distribution function Fn (measured by the ratio of the mean square error) ranges
from approximately 1.2 to about 8.2. Even in the case when α1 = 0.9, there
is a small but appreciable reduction in the mean square error in the NPMLE.
Therefore, the results presented in Tables 1 and 2 demonstrate the advantage of
using the censored observations in addition to the fully observed observations,
at least for the models and sample sizes used in simulations. The efficiency gain
increases as α1 decreases, as expected. It is also seen from Tables 1 and 2 that the
increase in the mean square error of the NPMLE is small to moderate when n1

gets smaller for the fixed total sample size n. This suggests that the performance
of the NPMLE is stable for a wide range of the values of α1 and a fixed n.

Table 2. MSE×104: “Case 2” partly interval censoring

(n1, n2) (10,90) (30,70) (50,50) (70,30) (90,10)
Uniform Fn 109.51 31.20 18.87 11.77 10.21

[0, 4] NPMLE 14.10 11.53 10.97 9.47 9.41
Ratio 7.77 2.71 1.72 1.24 1.09

Exponential Fn 105.47 29.63 17.55 14.35 9.90
mean= 2 NPMLE 15.94 14.49 12.09 11.46 9.59

Ration 6.61 2.04 1.45 1.25 1.03
Weibull Fn 94.09 31.71 19.25 11.62 9.98

shape= 1.5 NPMLE 12.56 11.82 11.07 9.35 9.16
scale= 2.25 Ratio 7.49 2.68 1.74 1.24 1.09

Weibull Fn 109.98 30.34 19.51 14.86 10.27
shape= 0.7 NPMLE 18.95 15.62 14.08 12.08 9.85
scale= 1.65 Ratio 5.70 1.94 1.38 1.23 1.04

6. Proofs

In this section, we prove Theorems 3.2 and 3.3 for the case m = 2. It can
be verified that the argument works for general m; the only complication is no-
tational. In proving Theorem 3.2, we use the infinite-dimensional M-estimator
theorem of Van der Vaart (1995) which is briefly described below. The structures
of the two proofs are similar, the main difference is in showing continuous invert-
ibility of Ṡ0 defined in Theorem 3.1 or 3.2. The proof of Theorem 3.3 resembles
the proof of Wellner and Zhan (1996), Theorem 3.1, on the asymptotic distribu-
tion of the bootstrap infinite-dimensional M-estimators (Wellner and Zhan call
them Z-estimators). Since Theorem 3.1 of Wellner and Zhan (1996) is stated for
a single random sample and there are two independent samples in the present
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situation, we provide a sketch of the proof of Theorem 3.3, including consis-
tency of the bootstrap estimator. It should be noted that the consistency of the
bootstrap estimator is the first step towards asymptotic normality. For exam-
ple, consistency is an important condition in Theorem 3.1 of Wellner and Zhan
(1996).

The proof of Theorem 3.1 is omitted, because it is similar to that of of
Theorem 3.2. A referee points out that the proofs in Gu and Zhang (1992) for
the asymptotic normality of the NPMLE of F0 based on double censored data
can be applied to Theorem 3.1 because of its close connection with the “case 1”
partly interval-censored data.

6.1. Proof of theorem 3.2.

We only prove the theorem when m = 2. To simplify the notation, let
U = U1 (the first examination time) and let V = U2 (the second examination
time). Recall that δ1 = 1[T≤U ], δ2 = 1[U<T≤V ] and δ3 = 1 − δ1 − δ2. Set

φF (δ1, δ2, u, v; t) = δ1
F (u ∧ t)
F (u)

+ δ2
F (v ∧ t) − F (u ∧ t)

F (v) − F (u)
+ δ3

F (t) − F (v ∧ t)
1 − F (v)

,

(6.1)
Sn(F )(t) = F (t) − n1

n
Fn1(t) −

n2

n
Pn2φF (δ1, δ2, u, v; t). (6.2)

Recall that Pn2 is the empirical measure of (δ1i, δ2i, Ui, Vi), i = n1 +1, . . . , n. The
self-consistency equation (4.1) for F̂n can be rewritten as

Sn(F̂n) = 0.

The limiting version of Sn(F ) is:

S(F )(t) = F (t) − α1F0(t) − α2PφF (δ1, δ2, U, V ; t), (6.3)

where P is the probability distribution of (δ1, δ2, U1, V1) and α1 = 1−α2. Notice
that S(F0) ≡ 0.

For any f ∈ D[0,∞), denote the supremum norm by ||f || = sup0≤t<∞ |f(t)|.
Following the general theorem of Van der Vaart (1992) on asymptotics of infinite-
dimensional M-estimators, suppose we can prove that:

(i) n1/2(Sn − S)(F0) ⇒D Z0, where Z0 is a tight random map in D[0,∞);
(ii) ||n1/2(Sn − S)(F̂n) − n1/2(Sn − S)(F0)|| = op(1 + ‖F̂n − F0‖);
(iii) There exists a continuously invertible linear map Ṡ0 such that

||S(F ) − S(F0) − Ṡ0(F − F0)|| = o(‖F − F0‖) as ||F − F0|| → 0.

Then
n1/2(F̂n − F0) = Ṡ−1

0 n1/2(Sn − S)(F0) + op(1) ⇒D −Ṡ−1
0 Z0.
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We first prove (ii) and (iii), and then explain that (i) follows analogous
arguments to those in proving (ii).

Proof of (ii). We have

(Sn − S)(F̂n) − (Sn − S)(F0)

= −n2

n
(Pn2 − P ){φ

F̂n
(δ1, δ2, u, v; t) − φF0(δ1, δ2, u, v; t)}

= −n2

n
(II1n(t) + II2n(t) + II3n(t)),

where

II1n(t) = (Pn2 − P )δ1
{ F̂n(u ∧ t)

F̂n(u)
− F0(u ∧ t)

F0(u)

}
,

II2n(t) = (Pn2 − P )δ2
{ F̂n(v ∧ t) − F̂n(u ∧ t)

F̂n(v) − F̂n(u)
− F0(v ∧ t) − F0(u ∧ t)

F0(v) − F0(u)

}
,

and

II3n(t) = (Pn2 − P )δ3
{ F̂n(t) − F̂n(v ∧ t)

1 − F̂n(v)
− F0(t) − F0(v ∧ t)

1 − F0(v)

}
.

That the terms II1n and II3n are op(n−1/2) uniformly in t follows from Pollard
(1989), Theorem 4.4, based on the following facts: (a) F (t)/F (u) has total vari-
ation bounded by 2 on u > t for any t and any F ; (b) the class of uniformly
bounded variation functions is Donsker; see for example, Van der Vaart and
Wellner (1996), Theorem 2.7.5, page 159.

For II2n(t), the assumptions (A2) and (A3) and the uniform convergence of
F̂n ensure that F̂n(v) − F̂n(u) ≥ λ0 for some λ0 > 0 with probability one for all
n sufficiently large. Thus it is clear that for any t and F , the functions

F̂n(v ∧ t) − F̂n(u ∧ t)
F (v) − F (u)

= 1[v≤t] +
F̂n(t) − F̂n(u)
F̂n(v) − F̂n(u)

1[u<t<v]

are of bounded uniform sectional variation and hence are in a Donsker class. (A
bivariate function f(x, y) on [0,∞) × [0,∞) is said to be of bounded uniform
sectional variation if the variations of all sections and of the function itself, are
uniformly bounded.) See, for example, Van der Laan (1996), Example 1.2. So
again, it can be shown similar to II1n(t) that

sup
0≤t<∞

|II2n(t)| = op(n−1/2).

This completes the proof of (ii).
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Remark 6.1. For the proof of Theorem 3.2, assumption (A3) is needed only to
show that the class of functions{F (t) − F (u)

F (v) − F (u)
1[u<t<v] : t ∈ [0,∞), F is a distribution function

}
is a Donsker class. At present, we are not able to verify that this class is Donsker
without assumption (A3).

Proof of (iii). Note that in proving (iii), we only need to consider F satisfying
||F − F0|| = o(1). For such a distribution function F , let QF be the product of
probability measures induced by F and G. (Recall that G is the joint distribution
of (U, V )). Define a linear operator AF

AFh(t′, u, v) = EF (h|δ1, δ2, u, v), h ∈ L2(F ),

where the conditional expectation is taken under QF . Observe that AFh is a
function of (t′, u, v) since δ1 = 1[t′≤u] and δ2 = 1[u<t′≤v]. (t′ will be a dummy
variable in the integrals below and it can also be thought of as the unobservable
failure time.) Let ht(x) = 1[0,t](x). By the definition of φF given in (6.1), we
have

AFht(t′, u, v) = φF (δ1, δ2, u, v; t).

This also follows directly from the fact that the score for the observed data is
equal to the conditional expectation of the score for the complete data given the
observed data. The operator AF maps L2(F ) functions of t′ to L2(QF ) functions
of (x, u, v). Its adjoint A∗

F maps L2(QF ) functions to L2(F ) functions and can
be expressed as

A∗
F b(t

′) = EF (b|T = t′) =
∫
b(t′, u, v)dG(u, v)

for any b ∈ L2(QF ) (Bickel, Klaassen, Ritov and Wellner (1993), pages 271-272,
or Groeneboom and Wellner (1992), pages 8 and 9). In particular, we have

A∗
FAFh(t′) =

∫
AFh(t′, u, v)dG(u, v).

Furthermore, by Fubini’s theorem, we have∫
φF (δ1, δ2, u, v; t)dQF =

∫
AFht(t′, u, v)dG(u, v)dF (t′) = F (t)

and ∫
(AFht −AF0ht)(t′, u, v)dG(u, v)d(F − F0)(t′) = o(‖F − F0‖).
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These two equations can be verified straightforwardly based on the identity∫
φF (δ1, δ2, u, v; t)dF (t′) = F (t)

for any (u, v). Therefore,

S(F )(t) − S(F0)(t)

= F (t) − α1F0(t) − α2

∫
φF (δ1, δ2, u, v; t)dG(u, v)dF0(t′)

= α1(F (t) − F0(t)) + α2

∫
AFht(t′, u, v)dG(u, v)d(F − F0)(t′)

= α1(F (t) − F0(t)) + α2

∫
AF0ht(t′, u, v)dG(u, v)d(F − F0)(t′) + o(‖F − F0‖)

= α1(F (t) − F0(t)) + α2

∫
A∗

F0
AF0ht(t′)d(F − F0)(t′) + o(‖F − F0‖)

= α1

∫
(I +

α2

α1
A∗

F0
AF0)ht(t′)d(F − F0)(t′) + o(‖F − F0‖)

= Ṡ0(F − F0)(t) + o(‖F − F0‖),
where Ṡ0 is defined by (3.1).

We need to show that Ṡ0 is continuously invertible. Let H be the class of
functions of uniformly bounded variation. Then I + (α1/α2)A∗

F0
AF0 : H → H

and Ṡ0 : H → H and clearly ht(t′) = 1[0,t](t′) ∈ H. From the proof of Theorem
3.3 of Van der Vaart (1994), to show that Ṡ0 is continuously invertible it suffices
to show that I+(α1/α2)A∗

F0
AF0 is one to one and that A∗

F0
AF0 is compact (hence

I + (α1/α2)A∗
F0
AF0 is continuously invertible, see Kress (1989)). Consider two

cases corresponding to assumption (b) of Theorem 3.2.

Case 1. G is continuous. Then the operator I + (α1/α2)A∗
F0
AF0 is one to one

follows from Lemma 3.2 of Van der Vaart (1994), by the fact that A∗
F0
AF0 is

a self-adjoint, positive definite operator on L2(F0) and hence the eigenvalues of
A∗

F0
AF0 are not less than 1. To see that A∗

F0
AF0 is compact, let hm be a sequence

in H. We have

A∗
F0
AF0hm(t′) =

∫ {
1[t′≤u]

∫ u
0 hmdF0

F0(u)
+ 1[u<t′≤v]

∫ v
0 hmdF0 −

∫ u
0 hmdF0

F0(v) − F0(u)

+1[t′>v]

∫
hmdF0 −

∫ v
0 hmdF0

1 − F0(v)

}
dG(u, v).

By Helly’s selection theorem, we can find a subsequence hm′ of hm that converges
at every continuity point (since hm has uniformly bounded variation). By the
dominated convergence theorem and the continuity of F0 and G, A∗

F0
AF0hm′(t′)

converges for every t′.
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Case 2. G is discrete with finitely many mass points. Then it is clear that
A∗

F0
AF0 reduces to a finite dimensional self-adjoint operator. Thus it follows

that it is compact and that I+(α1/α2)A∗
F0
AF0 is one to one. This completes the

proof of (iii).

Proof of (i). Since

Sn(F0)(t) − S(F0)(t) =
n1

n
(F0(t) − Fn1(t)) −

n2

n
(Pn2 − P )φF0(δ1, δ2, u, v; t),

we only need to show

n1/2(Pn2 − P )φF0(δ1, δ2, u, v; t)

converges in distribution in D[0,∞). This follows since the class of functions
φF0(δ1, δ2, u, v; t), 0 ≤ t <∞, is a Donsker class using arguments similar to those
in the proof of (ii).

Furthermore, it follows from the general result of Van der Vaart (1995) that
the NPMLE F̂n is regular and asymptotically efficient.

We now identify the covariance function of Z1. The proofs of (i), (ii) and
(iii) imply that

Ṡ0(F̂n − F0)(t) = −Sn(F0)(t) + op(n−1/2).

Since Ṡ0 is continuously invertible, we have

(F̂n − F0)(t) = −Ṡ−1
0 Sn(F0)(t) + op(n−1/2).

Let a(x; t) = 1[x≤t] − F0(t). By Fubini’s theorem we have

Ṡ−1
0 Sn(F0)(t) =

n1

n
(Pn1 − P1)[Ṡ−1

0 a(·; t)] +
n2

n
(Pn2 − P2)[Ṡ−1

0 φF0(·; t)].

Therefore, the covariance function of Z1 is given as in Theorem 3.2. This com-
pletes the proof of Theorem 3.2.

6.2. Proof of Theorem 3.3.

We only prove part (ii) of this theorem. The proof of (i) is similar and is
omitted. As in (4.1),

F̂ ∗
n(t) =

n1

n
F ∗

n1
(t) +

n2

n
P ∗

n2
φ

F̂ ∗
n
(t), (6.4)

where φF is defined by equation (6.1). We first show that

sup
0≤t<∞

|F̂ ∗
n(t) − F0(t)| → 0, as n→ ∞ (6.5)
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almost surely with respect to the underlying probability measure and the boot-
strap measure. By the bootstrapping Law of Large Numbers (Giné and Zinn
(1990), Theorem 2.6), we can find a subsequence n′ of n such that F ∗

n′
1

converges
uniformly to F0 almost surely and P ∗

n′
2

converges uniformly to P2 almost surely.
On the other hand, by Helly’s selection theorem, there exists a subsequence of
F̂ ∗

n that converges vaguely to a subdistribution function F ∗. Take a common
subsequence, and take limit on both sides of equation (6.4) to get

F ∗(t) = α1F0(t) + α2P2φF ∗(t).

As in the proof of Theorem 3.2, this equation can be written as∫
(I +

α2

α1
A∗

F ∗AF ∗)ht(t′)d(F ∗ − F0)(t′) = 0.

Therefore, using the same argument as in the proof of Theorem 3.2, this implies
F ∗(t) = F0(t) for almost all t. By continuity of F0, F ∗(t) = F0(t) for all t. This
finishes the proof of (6.5).

Now we are ready to prove Theorem 3.3. Combining (4.1) and (6.4), we
obtain

F̂ ∗
n(t) − F̂n(t) =

n1

n
[F ∗

n1
(t) − Fn1(t)] +

n2

n
[P ∗

n2
φ

F̂ ∗
n
(t) − Pn2φF̂n

(t)]. (6.6)

First consider

P ∗
n2
φ

F̂ ∗
n
(t) − Pn2φF̂n

(t)]

= (P ∗
n2

− Pn2)φF0(t) + P [φ
F̂ ∗

n
(t) − φ

F̂n
(t)]

+(P ∗
n2

− Pn2)[φF̂ ∗
n
(t) − φF0(t)] + (Pn2 − P )[φ

F̂ ∗
n
(t) − φ

F̂n
(t)]. (6.7)

For the second term on the right side of (6.7), after some straightforward calcu-
lation, it can be verified that

P [φ
F̂ ∗

n
(t)] = −K(F̂ ∗

n − F0)(t) + F̂ ∗
n(t) + o(‖F̂ ∗

n − F0‖),

and
P [φ

F̂n
(t)] = −K(F̂n − F0)(t) + F̂n(t) + o(‖F̂n − F0‖),

where K is the integral operator defined in Theorem 3.2. These two equations
combined with ‖F̂n − F0‖ = Op(n−1/2) give

P [φ
F̂ ∗

n
− φ

F̂n
](t) = −K(F̂ ∗

n − F̂n)(t) + F̂ ∗
n(t)− F̂n(t) + o(‖F̂ ∗

n − F̂n‖) + op(n−1/2).
(6.8)
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Furthermore, by (6.5) and the asymptotic equicontinuity of bootstrapping em-
pirical measures (Giné and Zinn (1990), Theorem 2.4), we have, for the third and
fourth term on the right side of (6.7),

(P ∗
n2

− Pn2)[φF̂ ∗
n
(t) − φF0(t)] = op(n−1/2)

and
(Pn2 − P )[φ

F̂ ∗
n
(t) − φ

F̂n
(t)] = op(n−1/2)

uniformly in t. Thus by (6.6), (6.7) and (6.8), and noting that Ṡ0 = α1I + α2K,
we have

Ṡ0(F̂ ∗
n−F̂n)(t)=α1(F ∗

n1
−Fn1)(t)+α2(P ∗

n2
−Pn2)φF0(t)+o(‖F̂ ∗

n−F̂n‖)+op(n−1/2).

So the theorem follows from the continuous invertibility of Ṡ0 proved in the proof
of Theorem 3.2 and the result on weak convergence of bootstrapping empirical
measures of Giné and Zinn (1990).
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