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Abstract: Formulae connecting the multiple Stratonovich integrals with single

Ogawa and Stratonovich integrals are derived. Multiple Riemann-Stieltjes integrals

with respect to certain smooth approximations of the Wiener process are considered

and it is shown that these integrals converge to multiple Stratonovich integrals as

the approximation converges to the Wiener process.
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1. Introduction

In an important work Hu and Meyer (1987) introduced a new multi-
ple stochastic integral with respect to a Wiener process, called the multiple
Startonovich integral (MSI), which is in general different from the usually studied
multiple Wiener-Itô integral. However, Hu and Meyer only offered some rather
informal definitions and proofs. Johnson and Kallianpur (1993) gave a rigor-
ous definition for the MSI (the term MSI was not used in their work), denoted
in this work by δp(·), and gave necessary and sufficient conditions for its exis-
tence. Recently, multiple Stratonovich integrals have been applied to problems in
asymptotic statistics and nonlinear filtering (cf. Budhiraja and Kallianpur (1995,
1996)). In this work we study some properties of multiple Stratonovich integrals
which also give some justification for the appearance of the name ‘Stratonovich’
in the integral.

We recall that one of the important properties of multiple Wiener-Itô inte-
grals of symmetric kernels is that they can be expressed as iterated (indefinite)
Itô-integrals, by which we mean that if fp ∈ L2

s[0, 1]p (the class of real val-
ued, square integrable, symmetric functions defined on [0, 1]p) then the multiple
Wiener integral of fp, Ip(fp) can be expressed as:

Ip(fp) = p!
∫ 1

0

( ∫ t1

0
· · · (

∫ tp−1

0
fp(t1, . . . , tp)dWtp) · · · dWt2

)
dWt1 . (1.1)

It is also well known that a multiple Wiener integral of a symmetric kernel can be
expressed in terms of iterated Skorohod integrals (see Nualart and Zakai (1986)
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for a detailed treatment of the Skorohod integral), i.e. if fp is as above, then:

Ip(fp) =
∫ 1

0

( ∫ 1

0
· · · (

∫ 1

0
fp(t1, . . . , tp)δWtp) · · · δWt2

)
δWt1 , (1.2)

where,
∫ 1
0 ·δWt denotes the Skorohod integral.

The first purpose of this work is to establish similar relationships of multiple
Stratonovich integrals with single stochastic integrals. It will be shown that if the
kernel possesses all the limiting traces and the first order traces are consistent
with the second order traces (see Section 2 for definitions) then the multiple
Stratonovich integral, which is known to exist, can be expressed as an iterated
integral as in (1.2) with the Skorohod integral replaced by the Ogawa integral.
This result, in fact, holds more generally for the case of random kernels. (We refer
the reader to Budhiraja and Kallianpur (1997) for details.) Our second result
shows that if the kernel is continuous and all its limiting trace exist, so that
the MSI exists, the MSI then can be expressed in terms of iterated (indefinite)
Fisk-Stratonovich integrals. We remark that δp need not exist for contiuous
kernels. It is well known that (cf. Johnson and Kallianpar (1993)) a necessary
and sufficient condition for the existence of δp is that all the limiting traces exist.
Examples can be given of continuous kernels for which the limiting trace do not
exist. In view of this it becomes important to incorporate in Theorem 3.3 the
condition for the existence of δp. Furthermore, to ensure the existence of the
Fisk-Stratonovich integral in Theorem 3.3 some smoothness assumption on the
integrand is required, which in our set up translates into a condition on the
continuity of the kernel. In the case of continuous kernels, it can be shown, in
fact, that the MSI is the same as the iterated Stratonovich integral.

The second purpose of this work is to study multiple Riemann-Stieltjes (R-
S) integral approximations to multiple stochastic integrals. From the works of
Wong and Zakai (1965) and Ikeda and Watanabe (1981) it is known that for cer-
tain smooth approximations of the Wiener process, the R-S integral of adapted
square integrable processes (with some additional restrictions) with respect to
the approximations, converges to the Fisk-Stratonovich integral as the approx-
imating process converges to the Wiener process. In this work we show that
the MSI possesses similar properties. For the Wong-Zakai approximation it is
straightforward, using Theorem 5.1 of Johnson and Kallianpur (1993), that the
corresponding R-S multiple integral converges in L2(Ω) to the MSI. We state
this fact in Section 4 without proof. We consider another approximation to the
Wiener process called the mollifier approximation in Ikeda and Watanabe (1981)
and show that the R-S integral with respect to this approximation converges to
the MSI.



TWO RESULTS ON MULTIPLE STRATONOVICH INTEGRALS 909

The paper is organized as follows. In Section 1 we give a brief overview
of single and multiple stochastic integrals. Section 2 is devoted to obtaining
representations for the MSI in terms of iterated stochastic integrals. Finally, in
Section 3 we consider multiple R-S integrals with respect to some approximation
of the Wiener process and obtain their convergence to multiple Stratonovich
integrals as the approximation converges to the Wiener process.

2. Stochastic Integration: Single and Multiple

Let (Ω,F , P ) be a probability space. Assume F to be P-complete. We will
denote by (Wt, 0 ≤ t < 1) a Wiener process on the probability space. Let
L2[a, b]p be the class of real valued square integrable functions defined on [a, b]p

and by L2
s[a, b]p its subclass consisting of symmetric functions. The norm and

inner product in L2[a, b]p will be denoted by ‖ · ‖ and 〈·, ·〉 respectively without
any reference to p.

We begin this section with the definition of the Fisk-Stratonovich integral
which is taken from Rosinski (1989).

Definition 2.1. Let {Xt, Yt; a ≤ t ≤ b} be stochastic processes. Let
∏

:= {a =
t1 < · · · < tm+1 = b} be a partition of [a, b]. The Fisk-Stratonovich integral of Y
with respect to X, denoted by

∫ b
a Y o dX, is defined as:

∫ b

a
Y o dX := lim

|
∏

|→0

m∑
i=1

Y (ti) + Y (ti+1)
2

(Xti+1 −Xti), (2.1)

where the above limit is taken in probability, provided it exists.

A definition of a smoothed Stratonovich integral has been considered by
Nualart and Zakai (1989). We remark on the connection of this integral with our
work, later on in this section.

Example 2.2. Let f : [0, 1]2 → R be symmetric and continuous over the unit
square. Then

∫ 1

0

( ∫ 1

0
f(t, s)dWs

)
o dWt = 2

∫ 1

0

( ∫ t

0
f(t, s)dWs

)
o dWt

= 2
∫ 1

0

( ∫ t

0
f(t, s)dWs

)
dWt +

∫ 1

0
f(t, t)dt. (2.2)

Proof. We will show that the second Stratonovich integral in (2.2) equals the
expression on the extreme right side in (2.2). The proof for the first Stratonovich
integral is similar. Let Yt :=

∫ t
0 f(t, s)dWs and

∏
be a partition as in Definition
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2.1. (with a = 0 and b = 1). Then a straightforward calculation shows:

m∑
i=1

Y (ti) + Y (ti+1)
2

(Wti+1 −Wti)

=
1
2

m∑
i=1

[I2(11(0,ti](·)f(ti, .)11(ti,ti+1](∗))] +
1
2

m∑
i=1

[I2(11(0,ti+1](·)f(ti+1, .)11(ti,ti+1](∗))]

+
1
2

m∑
i=1

∫ 1

0
[f(ti+1, t)11(ti,ti+1](t)]dt. (2.3)

In view of continuity of f we have that: 1
2

∑m
i=1 11(0,ti](·)f(ti, ·)11(ti,ti+1](∗)+ 1

2

∑m
i=1

11(0,ti+1](·)f(ti+1, ·)11(ti,ti+1](∗) converges in L2[0, 1]2 to f(∗, ·) and 1
2

∑m
i=1∫ 1

0 [f(ti+1, t)11(ti,ti+1](t)]dt converges to 1
2

∫ 1
0 f(t, t)dt as |∏ | → 0. The result now

follows on taking the limit as |∏ | → 0 in (2.3).

The second integral that will concern us in this work is the Ogawa integral
which we define below. The definition is again taken from Rosinski (1989).

Definition 2.3. Let {Xt; 0 ≤ t ≤ 1} be a measurable real valued stochastic pro-
cess, such that

∫ 1
0 E|Xt|2dt < ∞. Suppose that for every complete orthonormal

system (CONS){φi} of L2[0, 1] the series,

n∑
i=1

( ∫ 1

0
φi(t)Xtdt

)( ∫ 1

0
φi(t)dWt

)
(2.4)

converges in L2(Ω), as n→ ∞ and that the limit is independent of the choice of
the CONS. The limit is defined to be the Ogawa integral of Xt and is denoted
by:

∫ 1
0 Xt ∗ dWt.

We remark that the Stratonovich integral considered in Nualart and Zakai
(1989) is the same as the Ogawa integral if the latter exists. In Theorem 3.1 we
prove that the multiple Stratonovich integral (to be defined below) is the same
as an iterated Ogawa integral which will in turn imply that it is also the same
as an iterated smoothed Stratonovich integral of Nualart and Zakai (1989).

We now turn our attention to multiple stochastic integrals. The following
treatment of multiple Stratonovich integrals has been adapted from Johnson and
Kallianpur (1993). The key idea for defining the integral comes from the theory
of lifting. A detailed discussion on lifting and its applications to prediction,
filtering and smoothing can be found in Kallianpur and Karandikar (1988). Let
F : L2[a, b] → R be a Borel cylinder function. Then ∃ k ≥ 1, h1, . . . , hk ∈ L2[a, b]
and a measurable function g : R

k → R such that for h ∈ L2[a, b],

F (h) = g(〈h, h1〉, . . . , 〈h, hk〉). (2.5)
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Associate with F a random variable R[F ] called the lifting of F , defined as:

R[F ](ω) := g(I1(h1)(ω), . . . , I1(hk)(ω)). (2.6)

The lifting for an arbitrary measurable function, F : L2[0, 1] → R is defined
starting from Borel cylinder functions, as follows. Suppose that for every finite
dimensional projection π on L2[a, b], F ◦ π is measurable with respect to the
σ-field: {π−1(B) : B ∈ B(π(H)), the Borel class of the range of π} and suppose
that for every sequence {πn} of finite dimensional projections converging to the
identity operater strongly, the sequence {R[F ◦πn]} is a Cauchy sequence. Define
the lifting of F denoted as R[F ] as the limit of this Cauchy sequence. It can be
shown that the limit of R[F ◦ πn] is independent of the choice of the sequence
{πn}. The multiple Stratonovich integral is defined as follows.

Definition 2.4. Let fp ∈ L2
s[a, b]

p. Associate with fp a map ψp(fp): L2[a, b] → R

as follows.
ψp(fp)(h) :=< fp, h

⊗p >;h ∈ L2[a, b]. (2.7)

Define the multiple Stratonovich integral of fp to be R[ψp(fp)], provided it exists.
Denote it by δp(fp).

We now give the definition of the traces introduced by Johnson and Kallian-
pur (1993) that relate the multiple Stratonovich integral to multiple Wiener
integrals through the Hu-Meyer formula (1987).

Definition 2.5. Let fp ∈ L2
s[a, b]p. Fix k; 1 ≤ k ≤ [ p/2]. Suppose that for every

CONS {φi} of L2[a, b], the series,

N∑
i1,...ik=1

N∑
i2k+1,...ip=1

< fp, φi1 ⊗ φi1 . . . φik ⊗ φik ⊗ φi2k+1
· · ·φip > φi2k+1

⊗ · · ·φip

(2.8)
converges in L2[a, b]p−2k to a limit which is independent of the choice of the CONS
{φi}. Then we say that the kth-limiting trace for fp exists, which by definition

is the limit of the series in (2.8) and is denoted as −→
Tr

k
fp.

−→
Tr

0
fp is defined to be

fp.
The following theorem is the central result of Johnson and Kallianpur (1993).

Theorem 2.6. Let fp ∈ L2
s[0, 1]

p. Then δp(fp) exists iff −→
Tr

k
fp exists ∀ k =

0, 1, 2, . . . [ p/2]. Moreover,

δp(fp) =
[ p/2]∑
k=0

Cp,kIp−2k(
−→
Tr

k
fp), (2.9)

where Cp,k := p!
(p−2k)!2kk!

.
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Remark 2.7. We remark here that other definitions of MSI have been considered
(see for example Solé-Utzet (1990), Zakai (1990)). These definitions are tied to a
choice of a CONS in L2[0, 1]. In our work we are motivated to work with a MSI
(and corresponding traces) which is invariant under the choice of a CONS.

3. Multiple Stratonovich Integral as an Iterated Stochastic Integral

Though the original motivation for the name, multiple Stratonovich integral,
for the integral introduced by Hu-Meyer came from the single Fisk-Stratonovich
integral, its connection with the single Fisk-Stratonovich integral has not been
brought out explicitely. In particular, it seems plausible that just as a multiple
Itô-Wiener integral can be expressed as an iterated indefinite Itô integral, a mul-
tiple Stratonovich integral also should be expressible as some sort of an iterated
stochastic integral. In this section we give some results regrading the representa-
tion of multiple Stratonovich integrals in terms of iterated Ogawa integrals and
iterated Stratonovich integrals.

Our first result shows that under the assumption of existence and consistency
of first and second order limiting traces the multiple Stratonovich integral can
be expressed as an iterated Ogawa integral. This result should be seen as the
counterpart of the representation of multiple Wiener integrals in terms of iterated
Skorohod integrals. For fp ∈ L2

s[0, 1]
p, we say that it has all the second order

traces if −→Trv
(−→Trk

fp) exists ∀ 0 ≤ v ≤ [(p − 2k)/2], ∀ k ≤ [ p/2]. These second

order traces are said to be consistent with the first order traces if −→Trk
(−→Trv

fp) =
−→
Tr

(k+v)
fp.

Theorem 3.1. Let fp ∈ L2
s[0, 1]p; p > 1 be such that all of its first and second

order limiting traces exist and the second order traces are consistent with the first
order traces. Then:

∫ 1

0

( ∫ 1

o
(. . . (

∫ 1

0
fp(t1, . . . , tp) ∗ dWt1) · · · ∗ dWtp−1) ∗ dWtp

)
(3.1)

exists and equals δp(fp).

Proof. We will show that if
∫ 1

0

( ∫ 1

0
(. . . (

∫ 1

0
fp(t1, . . . , tm, tm+1, . . . tp) ∗ dWt1) · · · ∗ dWtm−1) ∗ dWtm

)

=
[m/2]∑
k=0

Cm,kIm−2k(−→Trk
(fp(., tm+1, . . . tp))) (3.2)

holds for m = j, then it holds for m = j + 1, ∀ j < [ p/2]. The result will then
follow from Theorem 2.6 and the observation that (3.2) holds for m = 1. Fix
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1 ≤ j < [ p/2] and suppose that (3.2) holds for m = j. Assume that j is odd. The
case when j is even can be treated similarly and is omitted. Since by assumption
−→
Tr

1
(−→Trk

fp) exists ∀ k ≤ [j/2], we have on using the consistency of traces (see
Theorem 4.2.3 of Budhiraja (1994)) that:

∫ 1

0
(Ij−2k(

−→
Tr

k
fp(., tj+1, . . . , tp)) ∗ dWtj+1 exists and equals

Ij−2k+1(
−→
Tr

k
fp(., tj+2, . . . , tp)) + (j − 2k)Ij−2k−1((

−→
Tr

k+1
fp)(., tj+2, . . . , tp)).

Substituting the above equality in (3.2), we have from straightforward computa-
tions using the equality Cj,k + (j − 2k + 2)Cj,k−1 = Cj+1,k that:

∫ 1

0
(
∫ 1

0
(. . . (

∫ 1

0
fp(t1, . . . , tj+1, tj+2, . . . , tp) ∗ dWt1) . . . ∗ dWtj ) ∗ dWtj+1

=
[j+1/2]∑

k=0

Cj+1,k Ij+1−2k(Tr→k(fp(., tj+2, . . . , tp))).

This proves the theorem.

Next we show that if the kernel is continuous and its multiple Stratonovich
integral exists then this integral equals the iterated Stratonovich integral. To
prove this result we need an auxiliary result given below.

Lemma 3.2. Let gp : [0, 1]p → R be a continuous symmetric function possessing
all the limiting traces; then both

∫ 1
0 Ip−1(gp(., t))∗dWt and

∫ 1
0 Ip−1(gp(., t)) o dWt

exist and are equal.

The proof is omitted.

Theorem 3.3. Let fp : [0, 1]p → R be a continuous symmetric function. Suppose
that all the limiting traces of fp exist and the first order traces are consistent with
the second order traces. Then the following equality holds:

δp(fp) =
∫ 1

0

( ∫ 1

0
(. . . (

∫ 1

0
fp(t1, . . . , tp) ∗ dWt1) . . . ∗ dWtp−1) ∗ dWtp

)

=
∫ 1

0

( ∫ 1

0
(. . . (

∫ 1

0
fp(t1, . . . , tp) o dWt1) . . . o dWtp−1) o dWtp

)
.

Proof. Note initially that from Theorem 3.1 we have the validity of the first
equality. For the second equality observe that

∫ 1

0
fp(t1, . . . , tp) o dWt1 =

∫ 1

0
fp(t1, . . . , tp) ∗ dWt1 .
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Now by iterating and observing that for j = 1, . . . , p:
∫ 1

0

( ∫ 1

0
(. . . (

∫ 1

0
fp(t1, . . . , tj , tj+1, . . . , tp) o dWt1) . . . o dWtj−1) o dWtj

)

is a linear combination of multiple Wiener integrals with continuous kernels we
have the result on applying Lemma 3.2.

Our main result in this section is the following theorem which gives a repre-
sentation for multiple Stratonovich integrals in terms of iterated indefinite single
Stratonovich integrals. This result is the counterpart of a similar representation
result for multiple Itô-Wiener integrals in terms of iterated Itô integrals.

Theorem 3.4. Let fp : [0, 1]p → R be a continuous symmetric function. Suppose
that all the limiting traces of fp exist and the first order traces are consistent with
the second order traces. Then the following equality holds:

δp(fp) = p!
∫ 1

0

( ∫ tp

0
(. . . (

∫ t2

0
fp(t1, . . . , tp) o dWt1) . . . o dWtp−1) o dWtp

)
. (3.3)

The proof of the theorem requires the following lemma.

Lemma 3.6. Let fp : [0, 1]p → R be a continuous symmetric function. Then,
∀ 0≤m≤p−2, t, t1, . . . tp−m−2 ∈ [0, 1], the integrals:

∫ t
0 (

∫ t
0 Im(fp(., t1, . . . , tp−m−2,

u, v)) o dWu) o dWv and 2!
∫ t
0 (

∫ v
0 Im(fp(., t1, . . . , tp−m−2, u, v)) o dWu) o dWv

exist and are equal, where the multiple Wiener integral Im is computed over
[0, 1]m.

Proof. For the sake of notational simplicity we will denoted p−m− 2 by p : m.
Along the lines of example (2.2), it can be shown that

∫ t

0

( ∫ t

0
Im(fp(., t1, . . . , tp:m, u, v)) o dWu

)
o dWu

exists and equals
∫ t

0

(
Im+1(fp(., t1, . . . , tp:m, ∗, v)11(0,t](∗))

)
o dWv

+m
∫ t

0

(
Im−1(

∫ t

0
fp(., s, s, tt, . . . , tp:m, v)ds)

)
o dWv

= Im+2(fp(., t1, . . . , tp:m, ∗, •)11[0,t]2(∗, •))

+2mIm
(
(
∫ t

0
fp(., s, s, t1, . . . , tp:m, ∗)ds)11(0,t](∗)

)

+Im
( ∫ t

0
fp(., s, s, t1, . . . , tp:m)ds

)

+m(m− 1)Im−2

( ∫
[0,t]2

fp(., s, s, u, u, t1, . . . , tp:m)ds du
)
. (3.4)
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Again,
∫ t

0

( ∫ v

0
Im(fp(., t1, . . . , tp:m, u, v)) o dWu

)
o dWv

=
∫ t

0
Im+1(fp(., t1 . . . , tp:m, ∗, v)11(0,v](∗)) o dWv

+m

∫ t

0
Im−1

( ∫ v

0
fp(., s, s, t1, . . . , tp:m, v)ds

)
o dWv. (3.5)

Next let Π := {0 ≤ τ1 ≤ τ2 . . . ≤ τm+1 = t} be a partition of [0, t]. Consider:

m∑
i=1

Im+1(fp(.,t1,...,tp:m,∗,τi)11(0,τi]
(∗))+Im+1(fp(.,t1,...,tp:m,∗,τi+1)11(0,τi+1](∗))

2 (Wτi+1−Wτi)

=
1
2

m∑
i=1

Im+2(fp(., t1, . . . , tp:m, ∗, τi)11(0,τi](∗)11(τi,τi+1](•))

+
1
2

m∑
i=1

mIm
( ∫ τi+1

τi

fp(., s, t1, . . . , tp:m, ∗, τi)11(0,τi](∗)ds
)

+
1
2

m∑
i=1

Im+2(fp(., t1, . . . , tp:m, ∗, τi+1)11(0,τi+1](∗)11(τi,τi+1](•))

+
1
2

m∑
i=1

mIm
( ∫ τi+1

τi

fp(., s, t1, . . . , tp:m, ∗, τi+1)11(0,τi+1](∗)ds
)

+
1
2

m∑
i=1

Im
( ∫ τi+1

τi

fp(., t1, . . . , tp:m, s, τi+1)ds
)
. (3.6)

Utilizing the continuity of fp and taking limit as |Π| → 0, we have:
∫ t

0
Im+1(fp(., t1 . . . , tp:m, ∗, v)11(0,v](∗)) o dWv

=
1
2
Im+2(fp(., t1, . . . , tp:m, •, ∗)) +mIm

( ∫ t

∗
fp(., s, s, t1, . . . , tp:m, ∗)ds

)

+
1
2
Im

( ∫ t

0
fp(., t1, . . . , tp:m, s, s)ds

)
. (3.7)

In a similar fashion it is shown that:

m

∫ t

0
Im−1

( ∫ v

0
fp(., s, s, t1, . . . , tp:m, v)ds

)
o dWv

=mIm
( ∫ ∗

0
fp(., s, s, t1, . . . , tp:m, ∗)ds

)

+
1
2
m(m− 1)Im−2

( ∫
[0,t]2

fp(., s, s, u, u, t1, . . . , tp:m)ds du
)
. (3.8)
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Using (3.7) and (3.8) in (3.5), we have the result.

Proof of Theorem 3.4. To prove the theorem, we will show that ∀ t ∈ [0, 1] and
j = 2, . . . , p, the two integrals: j!

∫ t
0 (

∫ tj
0 (. . . (

∫ t2
0 fp(t1, . . . , tj , tj+1, . . . , tp) o dWt1)

. . .)o dWtj−1) o dWtj and
∫ t
0 (

∫ t
0 (. . . (

∫ t
0 fp(t1, . . . , tj, tj+1, . . . , tp) o dWt1) . . .)

o dWtj−1)o dWtj exist and are equal.
The proof will be by an inductive argument on j. Note that by example

(2.2), the assertion is clearly true when j = 1, 2. Now assume that the assertion
holds for j = 1, 2, . . . , p− 1. Therefore

∫ t

0

( ∫ t

0
(
∫ t

0
(. . . (

∫ t

0
fp(t1, . . . , tp) o dWt1) . . .) o dWtp−3) o dWtp−2

)
o dWtp−1

= (p− 1)!
∫ t

0

( ∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp) o dWt1) . . .) o dWtp−2

)
o dWtp−1 ,

which implies:
∫ t

0
(
∫ t

0
(
∫ t

0
(
∫ t

0
(. . . (

∫ t

0
fp(t1, . . . , tp)odWt1) . . .)o dWtp−3) o dWtp−2)odWtp−1)odWtp

= (p−1)!
∫ t

0
(
∫ t

0
(
∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp)odWt1) . . .)odWtp−2)odWtp−1)odWtp . (3.9)

Note that the above integral does exist, in view of Theorem 3.3, 2.6 and Lemma
3.5. Observing that in view of the induction hypothesis and Theorems 3.3 and
2.6:

∫ tp−1

0 (. . . (
∫ t2
0 fp(t1, . . . , tp) o dWt1) . . .)dWtp−2 is a linear combination of mul-

tiple Wiener integrals with continuous kernels, we have from Equation (3.9), on
another application of Lemma 3.5 that:

∫ t

0
(
∫ t

0
(
∫ t

0
(
∫ t

0
(. . . (

∫ t

0
fp(t1, . . . , tp)odWt1) . . .)odWtp−3)odWtp−2)odWtp−1)odWtp

= (p−1)!
∫ t

0
(
∫ tp

0
(
∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp)odWt1) . . .)odWtp−2)odWtp−1)odWtp

+(p− 1)!
∫ t

0
(
∫ tp−1

0
(
∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp)odWt1) . . .)odWtp)odWtp−1

= (p − 1)!
∫ t

0
(
∫ tp

0
(
∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp)odWt1) . . .)odWtp−2)odWtp−1)odWtp

+(p−1)!
∫ t

0
(
∫ tp−1

0
((p−2)!

∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp)

odWt1) . . .)odWtp−2)odWtp)odWtp−1

= (p − 1)!
∫ t

0
(
∫ tp

0
(
∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp) o dWt1) . . .) o dWtp−1) o dWtp

+(p−1)
∫ t

0
(
∫ tp−1

0
(
∫ tp−1

0
(. . . (

∫ tp−1

0
fp(t1, . . . , tp)odWt1) . . .)odWtp−2)odWtp)odWtp−1



TWO RESULTS ON MULTIPLE STRATONOVICH INTEGRALS 917

= (p − 1)!
∫ t

0
(
∫ tp

0
(
∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp) o dWt1) . . .)o dWtp−1) o dWtp

+(p−1)
∫ t

0
(p−1)!(

∫ tp

0
(
∫ tp−2

0
(. . . (

∫ t2

0
fp(t1, . . . , tp)odWt1) . . .)odWtp−2)odWtp)odWtp−1

= p!
∫ t

0
(
∫ tp

0
(
∫ tp−1

0
(. . . (

∫ t2

0
fp(t1, . . . , tp) o dWt1) . . .)o dWtp−1)o dWtp .

4. Multiple Stratonovich Integral as a Limit of Multiple Riemann-
Stieltjes Integrals

One question that naturally arises in defining stochastic integrals is the fol-
lowing. Suppose that the Wiener process is approximated by a certain smooth
process so that it is meaningful to consider Riemann-Stieltjes integrals with re-
spect to the approximation. Then what can be said about the limit of these
Riemann-Stieltjes integrals as the approximation converges to the Wiener pro-
cess? Questions of this nature were addressed by Wong and Zakai (1965) and
Ikeda and Watanabe (1981) for single stochastic integrals and solutions of cer-
tain stochastic differential equations. It can be shown (cf. Ikeda and Watanabe
(1981)) that for a certain class of adapted kernels and for some specialized class
of approximations to the Wiener process the Riemann-Stieltjes integral converges
to the Fisk-Stratonovich integral. The two most commonly studied approxima-
tions for which such a result is known are the mollifier approximations and the
Wong-Zakai approximations (see description below). In this section we consider
a similar problem for multiple stochastic integrals. Questions of this nature have
also been studied by Hu and Meyer (1993) though the precise definition of the
MSI and the type of the approximations studied, differ from our work. We first
consider the Wong-Zakai approximation. It will be seen in this case that the ap-
pearance of multiple Stratonovich integrals in the limit is a simple consequence
of the definition of multiple Stratonovich integrals.

Next we consider the mollifier approximation. For this approximation we
restrict our attention to continuous kernels. It will be again seen that multi-
ple Stratonovich integrals appear in the limit. We begin the section with an
introduction to the Wong-Zakai and the mollifier approximation to the Wiener
process.

Wong-Zakai approximation. Let {φi} be a CONS in L2[0, 1]. Define a se-
quence of stochastic processes: Wn(t, ω); 0 ≤ t ≤ 1 as follows:

Wn(t) :=
n∑

i=1

(
∫ t

0
φi(s)ds)(

∫ 1

0
φi(s)dWs).

It can easily be seen that Wn(t) converges to W (t), in L2(Ω), as n→ ∞.
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Mollifier approximation. Let ρ : R → R be a nonnegative C∞ function whose
support is contained in [0, 1]. Also let,

∫ 1
0 ρ(s)ds = 1. Define for ε > 0:

ρε(s) :=
1
ε
ρ(
s

ε
).

Define the stochastic process Bε(t, ω); 0 ≤ t ≤ 1 as follows:

Bε(t, ω) :=
∫ ∞

0
W (s, ω)ρε(s− t)ds =

∫ ε

0
W (s+ t, ω)ρε(s)ds.

It can be seen (cf. Johnson and Kallianpur (1993)) that as ε→ 0,

E
{

max
0≤t≤1

|W (t) −Bε(t)|2
}
→ 0.

The following theorem for the Wong-Zakai approximation is a direct consequence
of Theorem 5.1 of Johnson and Kallianpur (1993). The proof is omitted.

Theorem 4.1. Let fp ∈ L2
s[0, 1]

p be such that all its limiting traces exist; then
as n→ ∞, the multiple Riemann-Stieltjes integral:

∫ 1

0
. . .

∫ 1

0
fp(t1, . . . , tp)dWn(t1) . . . dWn(tp)

converges to δp(fp) in L2(Ω).

The following theorem is the main result of the section.

Theorem 4.2. Let fp : [0, 1]p → R be a continuous, symmetric function. Suppose
that fp has all its limiting traces existing; then as ε→ 0 the following Riemann-
Stieltjes integral:

∫ 1

0
. . .

∫ 1

0
fp(t1, . . . , tp)dBε(t1) . . . dBε(tp)

converges to δp(fp) in L2(Ω).

The proof of the theorem requires a few lemmas which we give below. We
remark at this stage that until now we have defined δp(·) only for functions
that are symmetric and the integral is computed over the set [0, 1]p. Multiple
Stratonovich integrals over the set [a, b]p can be defined in a similar manner
and for the sake of notational simplicity we denote for a symmetric function
fp : [a, b]p → R, the MSI over [a, b]p again by δp(fp). Finally, we define the
integral δp(fp) for an element fp ∈ L2[a, b]p to be the integral δp(f̃p), provided it
exists, where f̃p is the symmetrization of fp. In the rest of the section we need to
utilize the connection between δp and the MSI studied by Solé and Utzet (1990)
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(denoted in this work by δs
p). It is well known that if the kernel is continuous and

has all the limiting traces satisfying the usual consistency conditions then the
two MSI’s exist and agree. We begin with the following lemma, for the proof of
which we refer the reader to Budhiraja (1994).

Lemma 4.3. Let fp : [a, b]p → R be a function which is continuous everywhere
excepting finitely many points. Then δs

p(fp) exists and if Π is a partition of [a, b]
given as: Π := {a = t1 < t2 · · · < tm < tm+1 = b}, we have that

δs
p(fp) = L2(Ω) lim

|Π|→0

m∑
i1=1

. . .
m∑

ip=1

fp(ti1,...,tip )∆i1(W ) · · ·∆ip(W ),

where ∆i(W ) := W (ti+1) −W (ti).
Moreover,

E[δs
p(fp)]2 =

[p/2]∑
k=0

C2
p,k(p− 2k)!

∫
[a,b]p−2k

( ∫
[a,b]k

gp(t1, t1, . . . , tk, tk, t2k+1, . . . , tp)dt1 . . . dtk
)2
dt2k+1 . . . dtp,

where gp := f̃p.

Lemma 4.4. Let fp : [0, 1]p → R be a function which is continuous everywhere
except finitely many points. Then for ε ≤ 1:

∫ 1

0
. . .

∫ 1

0
fp(u1, . . . , up)dBε(u1) . . . dBε(up)

=
∫ ε

0
. . .

∫ ε

o
ρε(v1) . . . ρε(vp)δs

p(f
v1,...,vp
p (·)11(v1,1+v1]⊗. . .⊗11(vp,1+vp](·))dv1 . . . dvp, (4.1)

where, f v1,...vp
p (u1, . . . , up) = fp(u1−v1, . . . , up −vp) and the MSI, δs

p is computed
over [0, 2]p.

Proof. We note initially that with gp = f
v1,...vp
p (·)11(v1,1+v1] ⊗ . . . ⊗11(vp,1+vp] (·)

and partitions Π as in Lemma 4.3,

m∑
i1=1

. . .
m∑

ip=1

gp(ti1 , . . . , tip)∆i1(W ) . . .∆ip(W )

converges in L2(Ω), uniformly in (v1, . . . , vp) which yields the joint measuribility
in (v1, . . . , vp, ω) of δs

p(f
v1,...,vp
p (·)11(v1,1+v1] ⊗ . . . ⊗ 11(vp,1+vp](·)). Therefore the

second integral in (4.1) is meaningful.
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Next, let Πn := {0 < 1/n < · · · < (2n − 1)/n < 2} be a partition of [0, 2].
Observe that

∫ 1

0
. . .

∫ 1

0
fp(u1, . . . , up)dBε(u1) . . . dBε(up)

= L2− lim
n→∞

∫ ε

0
. . .

∫ ε

0
ρε(v1) . . . ρε(vp)

(n−1∑
i1=1

. . .
n−1∑
ip=1

fp(
i1
n
, . . . ,

ip
n

)(W (v1+
(i1+1)
n

)

−W (v1+
i1
n

)) . . . (W (vp+
(ip+1)
n

)−W (vp+
ip
n

))
)
dv1 . . . dvp

= L2 − lim
n→∞

∫ ε

0
. . .

∫ ε

0
ρε(v1) . . . ρε(vp)

( 2n−1∑
i1=1

. . .
2n−1∑
ip=1

fp(
i1
n

− v1, . . . ,
ip
n

− vp)

11(v1,v1+1](
i1
n

) · · · 11(vp,vp+1](
ip
n

)(W (
i1 + 1
n

) −W (
i1
n

)) · · ·

(W (
ip + 1
n

) −W (
ip
n

))
)
dv1 · · · dvp

=
∫ ε

0
. . .

∫ ε

0
ρε(v1) . . . ρε(vp)δs

p

(
f v1,...vp

p (·)11(v1,1+v1] ⊗ . . . ⊗ 11(vp,1+vp](·)
)

dv1 . . . dvp.

Proof of Theorem 4.2. Define for n ≥ 1, fn : [0, 1]p → R as follows.

fn,p(t1, . . . , tp)

=
n−1∑
i1=1

. . .
n−1∑
ip=1

fp(
i1
n
, . . . ,

ip
n

)11(i1/n,(i1+1)/n](t1) . . . 11(ip/n,(ip+1)/n](tp).

Consider
∫ 1

0
. . .

∫ 1

0
fn,p(t1 . . . , tp)dBε(t1) . . . dBε(tp)

=
n−1∑
i1=1

. . .
n−1∑
ip=1

fp(
i1
n
,. . . ,

ip
n

)(Bε(
i1+1
n

)−Bε(
i1
n

)). . .(Bε(
ip+1
n

)−Bε(
ip
n

)). (4.2)

Note that for m ≥ 1, as ε→ 0,

E|Bε(t) −W (t)|2m = E|
∫ ε

0
ρε(s)[W (t+ s) −W (t)]ds|2m

≤ ε2m−1E

∫ ε

0
ρ2m

ε (s)[W (t+ s) −W (t)]2mds ≤ C

ε

∫ ε

0
sm = C

εm

m+ 1
→ 0.

Therefore, as ε→ 0,
∫ 1

0
. . .

∫ 1

0
fn,p(t1, . . . , tp)dBε(t1) . . . dBε(tp)

L2(Ω)→ δs
p(fn,p) = δp(fn,p). (4.3)
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Also observe that from Lemma 4.3 and the condition on limiting traces, as n→
∞,

δp(fn,p) → δp(fp). (4.4)

Finally, we now show that for ε < 1, as n→ ∞,

∫ 1

0
. . .

∫ 1

0
fn,p(t1, . . . , tp)dBε(t1) . . . dBε(tp)

L2(Ω)→
∫ 1

0
. . .

∫ 1

0
fp(t1, . . . , tp)dBε(t1) . . . dBε(tp),

uniformly in ε.
Let δ > 0 be arbitrary and let N ≥ 1 be such that for n ≥ N :

|fn,p(t1, . . . , tp) − fp(t1, . . . , tp)| < δ,∀(t1, . . . , tp) ∈ [0, 1]p. (4.5)

Define gn,p := fp − fn,p. Then from Lemma 4.4,
∫ 1

0
. . .

∫ 1

0
gn,p(t1, . . . , tp)dBε(t1) . . . dBε(tp)

=
∫ ε

0
. . .

∫ ε

0
ρε(v1) . . . ρε(vp)δs

p

(
gv1,...vp
n,p (·)11(v1,1+v1] ⊗ · · · ⊗ 11(vp,1+vp](·)

)
dv1 . . . dvp,

where, gv1,...vp
n,p (u1, . . . , up) = gn,p(u1−v1, . . . , up−vp) and the MSI, δs

p is computed
over [0, 2]p.
Therefore,

E
[ ∫ 1

0
. . .

∫ 1

0
gn,p(t1, . . . , tp)dBε(t1) . . . dBε(tp)

]2

≤ C

εp

∫ ε

0
. . .

∫ ε

0
E

[
δs
p

(
gv1,...vp
n,p (·)11(v1,1+v1] ⊗ . . .⊗11(vp,1+vp] (·)

)]2
dv1 . . . dvp. (4.6)

Using Lemma 4.3 and Eqution (4.5), we have,

E[δs
p(g

v1,...vp
n,p (·)11(v1,1+v1] ⊗ . . .⊗ 11(vp,1+vp](·))]2

≤ δ2
[p/2]∑
k=0

C2
p,k(p− 2k)!2p−2k. (4.7)

The theorem now follows on substituting (4.7) in (4.6).
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