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Abstract: The distribution of Z1 + · · ·+ZN is called Poisson-Binomial if the Zi are

independent Bernoulli random variables with not-all-equal probabilities of success.

It is noted that such a distribution and its computation play an important role in a

number of seemingly unrelated research areas such as survey sampling, case-control

studies, and survival analysis. In this article, we provide a general theory about

the Poisson-Binomial distribution concerning its computation and applications, and

as by-products, we propose new weighted sampling schemes for finite population,

a new method for hypothesis testing in logistic regression, and a new algorithm

for finding the maximum conditional likelihood estimate (MCLE) in case-control

studies. Two of our weighted sampling schemes are direct generalizations of the

“sequential” and “reservoir” methods of Fan, Muller and Rezucha (1962) for simple

random sampling, which are of interest to computer scientists. Our new algorithm

for finding the MCLE in case-control studies is an iterative weighted least squares

method, which naturally bridges prospective and retrospective GLMs.
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1. Introduction

Suppose Z1, . . . , ZN are independently distributed Bernoulli random vari-
ables, each with probability of success pi. We write Z = (Z1, . . . , ZN ) and
p = (p1, . . . , pN ). Then SZ = Z1 + · · · + ZN is called a Poisson-Binomial ran-
dom variable with parameter p. When all the p’s are equal, this reduces to the
Binomial distribution, which played an important role in the early history of
probability theory. When N is large and all the pi are small but not necessarily
equal, the distribution of SZ is well approximated by a Poisson distribution due
to the well-known Law of Small Numbers. In this article, we are mainly con-
cerned with exact computation of the distribution of SZ . Closely related is the
so-called conditional Bernoulli model defined as the conditional distribution of Z
given that SZ = n. As will be shown later, this model is very useful in a number
of different areas.
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It is easy to show that the exact formula for calculating the Poisson-Binomial
distribution is

P (SZ = n) =

{
N∏

i=1

(1− pi)

} ∑
i1<···<in

wi1 · · ·win , (1)

where wi = pi/(1 − pi), for i = 1, . . . , N , and the summation is over all possible
combinations of distinct i1, . . . , in from {1, . . . , N}. A naive way of computing the
summation on the right hand side of the equation needs to sum N !/[n!(N − n)!]
terms, which is impractical even when n and N are of moderate sizes. Recursive
formulas that require only O(nN) operations for computing this sum are analyzed
in Section 2.

One of the main motivations for the investigation reported in this article
is the problem of weighted sampling in survey studies. In many surveys, the
individual units are not necessarily drawn with equal probabilities. A problem
often considered in the literature, sometimes called “probability-proportional-to-
size (PPS)” sampling, is to define a particular sampling scheme that achieves
prespecified marginal probabilities πi for the ith population unit to be included
in the survey sample, where

0 < πi < 1 for i = 1, . . . , N, and
N∑

i=1

πi = n. (2)

Chen, Dempster and Liu (1994) proposed a maximum entropy distribution for
the sampled units. Let D = (D1, . . . ,DN ) be a random vector on space Dn,
where Di takes the values 1 or 0 according to whether the ith unit is in or out
of the sample, and

Dn = {d = (d1, . . . , dN ) : di = 0 or 1, and d1 + · · ·+ dN = n}.
Then the maximum entropy model for D, on space Dn, has the form

P (D = d) =
N∏

i=1

wdi
i

/ ∑
z∈Dn

(
N∏

i=1

wzi
i

)
, (3)

where (w1, . . . , wN ) is chosen to satisfy the constraints

πi = E(Di) =
∑

d∈Dn

diP (D = d). (4)

It can be easily shown that the maximum entropy model in (3) is just a condi-
tional Bernoulli model with the wi proportional to pi/(1−pi). So from now on, we
always use D to denote a conditional Bernoulli random vector on the space Dn.
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Methods for deriving the pi or wi from the πi and for drawing samples from this
model are provided in Chen, Dempster and Liu (1994). We discuss extensions of
these methods in connection with a number of applications in GLM.

In analyzing survey data, it is often the case that only the marginal sample
inclusion probabilities πi, instead of the overall information about the sampling
design, are available to analysts. A strong support for the use of the conditional
Bernoulli model in PPS sampling comes from Sugden and Smith (1984), who
show that only such a model can warrant the appropriateness of the πi as a sum-
mary of the sampling design. Furthermore, the conditional Bernoulli model for
PPS sampling enables an easy calculation of high-order joint inclusion probabili-
ties and guarantees the nonnegativity of the Yates and Grundy (1953)’s variance
estimator (Chen, Dempster and Liu (1994)).

The rest of the article is organized as follows. Section 2 illustrates and com-
pares two methods for computing the Poisson-Binomial distribution, identifying
circumstances under which one method is more efficient than the other. Section
3 displays two applications of the Poisson-Binomial distribution in generalized
linear models (GLMs), one dealing with hypothesis testing in logistic regression
model, and the other with case-control studies. Section 4 gives five efficient meth-
ods for sampling from the conditional Bernoulli model. Section 5 concludes with
a brief summary.

2. Computation of Poisson-Binomial Probabilities

The distribution function of the Poisson-Binomial variable SZ can be written
as

P (SZ = n) =
∑

d∈Dn

(
N∏

i=1

wdi
i

)
N∏

i=1

(1 + wi)−1, n = 0, 1, . . . , N, (5)

where wi = pi/(1− pi).
For operational purpose, we use the following notation: S = {1, . . . , N},

capital letters such as A, B, or C for subsets of S, Ac = S\A for the complement
of A in S, and |A| for the number of elements of A. Also

R(k,C)
def
=

∑
B⊂C,|B|=k

(∏
i∈B

wi

)
(6)

for any non-empty set C ⊂ S and 1 ≤ k ≤ |C|. R(0, C) = 1, and R(k,C) = 0 for
any k > |C|.

Using (6), we can rewrite (5) as

P (SZ = n) = R(n, S)
∏
i∈S

(1 + wi)−1, n = 0, 1, . . . , N. (7)
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We note from (7) that the function R(n, S) differs from P (SZ = n) only by a
normalizing constant, and thus completely characterizes the distribution of SZ .
Now we present two recursive methods for computing R economically.

Method 1. (Chen, Dempster and Liu (1994)) Define T (i, C) =
∑

j∈C wi
j for

any i ≥ 1 and C ⊂ S. Then for any 1 ≤ k ≤ |C|,

R(k,C) =
1
k

k∑
i=1

(−1)i+1T (i, C)R(k − i, C). (8)

Note that Method 1 is closely related to the Newton’s identities for polynomials
(Stein (1990)).

Method 2. (Gail, Lubin and Rubinstein (1981)) For any C ⊂ S and 1 ≤ k ≤ |C|,

R(k,C) = R(k,C\{k}) + wkR(k − 1, C\{k}). (9)

Method 2 was first proposed by Howard (1972) in her discussion of Cox
(1972) for analyzing proportional hazard models with discrete survival times.
Gail, Lubin and Rubinstein (1981) elaborate on the method and apply it further
to retrospective studies. A new iterative weighted least squares method for the
same application is proposed in Section 3.

By setting wi = 1 for all i, we see that Method 1 is a natural generalization
of (

c

k

)
=

c

k

[(
c

k − 1

)
−
(

c

k − 2

)
+ · · ·+ (−1)k+1

(
c

0

)]
.

Similarly, Method 2 is a natural generalization of the formula(
c

k

)
=

(
c− 1

k

)
+

(
c− 1
k − 1

)
. (10)

The use of (9) for the recursive generation of R(k,C) is illustrated in Table
1 for the case n = 2, N = 4. Starting from the upper-left corner of the table, i.e.
cell(0, 0), each cell in the table is generated recursively using (9) till cell(n,N) at
the lower-right corner is filled. Specifically, cell(i, j) (where 1 ≤ i ≤ min(n, j) ≤
N) is generated by cell(i, j − 1) + wj × cell(i − 1, j − 1). Note that the desired
quantity R(2, {1, 2, 3, 4}) is indeed given in cell(2, 4).

We can compare the costs for computing R(n, S) by the two methods above.
For simplicity and convenience, we only consider arithmetic operations, such as
additions and multiplications, used in each algorithm, but exclude non-arithmetic
operations, such as managing the data arrays and checking whether k > |C| for
R(k,C), from our discussion. This is because the efficiency of the non-arithmetic
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operations usually depend on the type of the computer, the programming lan-
guage and the details in the implementation of the algorithm.

Table 1. Recursive generation of R(n, S) for n = 2, N = 4

N

0 1 2 3 4

n

0

1

2

1
�

���
×w1

�

0

0

1

w1

0

�
����

×w2

1

w1 + w2�+ �+
�����

×w3

w1w2

�����
×w2

�+

—

w1 + w2 + w3

����×w3

w1w2+w1w3+w2w3

������
×w4

�+

—

—

w1w2 + w1w3 + w1w4+

w2w3 + w2w4 + w3w4

For Method 1, it takes N − 1 additions to get T (1, S), and N − 1 additions
and N multiplications to get each T (i, S) for i = 2, . . . , n. Once all T (i, S)
(i = 1, . . . , n) are obtained, it takes k− 1 additions and 2k− 1 multiplications to
get R(k, S) from T (1, S), . . . , T (k, S) and R(1, S), . . . , R(k, S) using the recursive
formula (8), for each k = 2, . . . , n. Thus it requires a total of nN+(n2/2)−(3n/2)
additions and nN−N +n2 multiplications to compute R(n, S) from scratch. For
Method 2, it can be seen from Table 1 that going from the (k − 1)th row to
the kth row requires N − n additions and N − n + 1 multiplications, for each
k = 1, . . . , n. Thus going through n rows to get the cell(n,N) (i.e., R(n, S))
requires nN − n2 additions and nN − n2 + n multiplications. The two methods
have the same leading term, nN , in both the addition counts and multiplication
counts, and thus require the same order of operations, O(nN). There is virtually
little difference in the computational cost between the two methods, especially
when N and n are considerably large.

Nevertheless, note that the operations for Method 1 are spent mostly in com-
puting T (i, S) and the recursive formula (8) itself requires only O(n2) operations.
Thus in the case where a large number of R(k,C) with different k’s and C’s are
to be computed, Method 1 requires considerably fewer operations than Method
2. We give three examples to illustrate this point.

Example 1. Chen, Dempster and Liu (1994) provide an iterative procedure for
computing w = (w1, . . . , wN ) from the inclusion probabilities πi (i.e., solving (4)
for w) which uses the following updating scheme:

w
(t+1)
j =

πjR(n− 1, {N}c)
R(n− 1, {j}c)

∣∣∣∣
w=w(t)

, j = 1, . . . , N−1; w
(t+1)
N = w

(t)
N = πN . (11)
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At each iteration, we need to compute R(n−1, {j}c), j = 1, . . . , N , which requires
O(n2N) operations if T (i, {j}c), i = 1, . . . , n − 1, j = 1, . . . , N , are all available.
On the other hand, it takes only O(nN) operations to get all T (i, {j}c) using
the formula T (i, {j}c) = T (i, S) − wi

j. In total, each iteration needs O(n2N)
operations if Method 1 is used. However, no simplifications can be made on
Method 2 and hence O(nN2) operations are required.

Example 2. (Chen (1993)) It is often desirable to get all the values of a Poisson-
Binomial distribution. As shown in (7), this involves the computation of R(n, S)
for n = 1, . . . , N . For Method 1, this computation costs as much as the compu-
tation of R(N,S) alone, which requires 3.5N2 − 2.5N operations. For Method
2, each of R(n, S), n = 1, . . . , N , has to be computed separately, which requires
N3/3 + N2/2 + N/6 operations.

Example 3. (Grouping) In the case where there are less than N different weights
in the population (e.g. within each of the case and the control group in a retro-
spective study, the units with the same covariate have the same weight), we
can put the units with the same weight in the same group to form, say I,
groups. Then the computation of T (i, S) in Method 1 can be simplified by
using T (i, S) =

∑
j∈I njw

i
j, where nj is the number of units in the jth group

with weight wj and
∑

j∈I nj = N . In such cases, the number of operations for
computing T (i, S) reduces to (n − 1)(2I − 1). For instance, I = 2 in the exam-
ple of Section 3.2, thus Method 1 only requires O(n2) operations. However, the
grouping does not help Method 2.

Besides computational cost, roundoff error is another concern that users of
an algorithm generally have, especially when the algorithm is recursive and/or
involves alternating series. Method 1 is both recursive and alternating, while
Method 2 is recursive but not alternating. The recursive feature can cause prob-
lems for algorithms involving complex operations such as division and matrix
inversion. Both Methods 1 and 2 use only additions and multiplications. Thus
the recursive feature is not a problem for them. The alternating feature can
cause problems for algorithms in which pairs of leading consecutive terms (e.g.,
T (1, C)R(k − 1, C) and T (2, C)R(k − 2, C) in (8)) are the same for the first
several significant figures but have opposite signs. In such cases, special data
type with extra long significant figures (e.g., “real*8” in FORTRAN and “dou-
ble” in C) must be used to avoid roundoff error. To our best knowledge, no
roundoff error problem is found in all numerical examples in which (8) is ap-
plied (e.g., case-control studies in Section 3.2, Chen (1993), and Chen, Dempster
and Liu (1994)) and different sets of weights ranging from relatively homoge-
neous (i.e., max(wi)/min(wi) is close to one) to relatively heterogeneous (i.e.
max(wi)/min(wi) is very large, say 6000) are used.
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The following are some properties of the R function, which will be used to
derive the weighted sampling schemes for the conditional Bernoulli model. They
follow immediately from (6).

Proposition 1. For any C ⊂ S and 1 ≤ k ≤ |C|,
(a)

∑
j∈C wjR(k − 1, C\{j}) = kR(k,C);

(b)
∑

j∈C R(k,C\{j}) = (|C| − k)R(k,C);
(c)

∑k
i=0 R(i, C)R(k − i, Cc) = R(k, S).

3. Applications in Generalized Linear Models

3.1. Hypothesis testing in logistic regression models

For binary response data, the linear logistic model is most popular for de-
scribing dependency of the success rate on some explanatory variables. Following
the same notation as in Section 1, we let Z1, . . . , ZN denote the binary response
variables, i.e., each Zi is either zero or one; and let xi be the k × 1 covariate
associated with Zi. The logistic regression model for the Zi is

log
{

P (Zi = 1)
P (Zi = 0)

}
= γ + xT

i β. (12)

Hence

pi = P (Zi = 1) =
exp(γ + xT

i β)
1 + exp(γ + xT

i β)
. (13)

Suppose we are interested in testing H0 : β = β0. Since the complete
sufficient statistics for γ and β are

∑N
i=1 Zi and

∑N
i=1 Zixi, respectively, the

similar regions for the test are constructed from the conditional distribution of
T =

∑N
i=1 Zixi given

∑N
i=1 Zi = r (Cox and Hinkley (1974); pp 137), where r

is the observed number of responses of one. Some Markov chain Monte Carlo
methods (Kolassa and Tanner (1994); Diaconis and Sturmfels (1993)) can be
applied to simulate this conditional distribution of T approximately. An exact
method for computing the conditional distribution directly is provided by Hirji,
Mehta and Patel (1987). Here we provide an exact way to simulate the Zi, and
therefore T , conditional on

∑N
i=1 Zi = r.

If we let wi = exp(xT
i β0), it is easy to see that the conditional distribution

of (Z1, . . . , ZN ) given SZ = r can be written as

P (Z1 = z1, . . . , ZN = zN |SZ = r) =
N∏

i=1

wzi
i

/
R(r, S),

which is a conditional Bernoulli distribution. Therefore, we can easily apply
our schemes described in Section 4 to simulate the conditional distribution of Z
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given that the total number of ones is fixed at r. Thus the related conditional
distribution of T can be simulated exactly.

In the special case of β0 = 0, the above simulation is reduced to simple
random sampling. Another special case is when some of the coefficients of the
covariates are known. Without loss of generality, suppose βT = (β(1), β(2))T and
β(2) is known. Then the construction of similar regions for H0 : β(1) = β

(1)
0 still

requires weighted sampling, and our schemes can be applied.

3.2. Conditional inference in case-control studies

Let Zi=0 or 1 be the disease status indicating for cases or controls, and
let xi be the observed exposure variable. In a case-control study, what one can
observe is the information concerning the retrospective probability p(x | Z), i.e.,
the change of the distribution of exposure variable x caused by the change of
the disease status. However, we are more used to prospective modeling, i.e., to
thinking about p(Z | x), the effect of changing x on the disease status.

Suppose prospectively p(Z | x) can be modeled by a generalized linear model
(GLM),

log
{

p(Z = 1 | x)
p(Z = 0 | x)

}
= g(xT β)

in which g is a known link function, and β is a coefficient vector with the same
dimension as xi. For example, in the logistic regression case, g(x) = x. When
prospective data are available, techniques for fitting GLMs have been well docu-
mented (McCullagh and Nelder (1989)). In a retrospective study, however, such
techniques can not be directly applied.

From basic probability formulas, we have for a retrospective study that

p(x | Z) =
p(Z | x)p(x)∫
p(Z | x)p(x)dx

.

Hence to estimate β directly, it is necessary to eliminate a possibly infinite dimen-
sional parameter, p(x). A convenient way of doing this is through a conditional
inference argument, i.e., the conditional probability of observing the x’s and the
Z’s given that SZ = n is

exp(L)def= p(Z1, . . . , ZN ,x1, . . . ,xN | SZ =n)=
∏N

i=1 p(Zi | xi)p(xi)∑
σ

∏N
i=1 p(Zσ(i) | xi)p(xi)

, (14)

where σ denotes a permutation of {1, . . . , N}, and the summation is over all such
permutations.
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The observed Z given SZ = n must be a point in Dn. Let d = (d1, . . . , dN )
denote this point. Since the p(xi)’s cancel, the conditional likelihood in (14)
becomes

exp(L)=
∏N

i=1[exp{g(xT
i β)}]di∑

i1,...,in

∏n
j=1 exp{g(xT

ij
β)}=exp

{ N∑
i=1

dig(xT
i β)−log R(n, S)

}
, (15)

where the right hand side is obtained by letting wi = exp{g(xT
i β)} for all

i = 1, . . . , N and R(n, S) =
∑

i1,...,in(
∏n

j=1 wij ), the same as in (6). (See Breslow
and Day (1980) and Cox (1972) for related materials.) Let D = (D1, . . . ,DN ) be
a conditional Bernoulli vector whose distribution is the same as that of Z condi-
tional on SZ = n. We see that the likelihood in (15) is actually the probability
of observing D = d.

Let ∂L/∂β and ∂2L/∂β2 denote the score function and the Hessian matrix
respectively. Then

∂L

∂β
=

N∑
i=1

g′(xT
i β)xidi −

N∑
i=1

g′(xT
i β)xiE(Di) = XTG′{d− E(D)},

∂2L

∂β2 = −XTG′Cov(D,DT )G′T X,

where G′ = diag{g′(xT
1 β), . . . , g′(xT

Nβ)} is an N ×N matrix. Therefore, finding
β to maximize L is equivalent to finding β so that

XTG′d = XTG′E(D). (16)

The Hessian matrix is just the covariance matrix Cov{XTG′D, (XT G′D)T }.
On the other hand, the MLE of β in the corresponding prospective model is given
as the solution of XTG′z = XTG′E(Z), with the Hessian matrix Cov{XTG′Z,

(XTG′Z)T }. Therefore, the only difference between a retrospective model and
its corresponding prospective model is that between D and Z. Based on this
observation, we provide an iterative weighted least squares method for finding
the MCLE similar to that for finding the MLE in a prospective GLM.

Gail, Lubin and Rubinstein (1981) describe a quasi Newton-Raphson method
to solve (16) for the case of a logistic regression model, i.e., g(x) = x, which
requires numerical approximation to ∂L/∂β and ∂2L/∂β2. Howard (1972), how-
ever, uses recursive formulas to directly compute ∂L/∂β and ∂2L/∂β2. Compared
with their methods, ours tends to be numerically more stable.

Let π = (π1, . . . , πN ) be the mean vector of D, and let W be its covariance
matrix, which is of rank N − 1 and is orthogonal to the constant vector. The
Newton-Raphson’s method in the form of iterative weighted least squares is

β̂
(1)

= β̂
(0)

+ {XT (G′(0)W (0)G′(0))X}−1XTG′(0)(d− π(0)), (17)
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where every unknown quantity on the right hand side is computed at β = β̂
(0).

Chen (1993) noted that the off-diagonal elements of W , i.e. E(DiDj)−πiπj,
are usually much smaller than the diagonal elements πi−π2

i , especially when the
number of cases n is small compared to the population size N or when the weights
wi have a narrow range. Thus, we can use the matrix V = diag{πi−π2

i } in place
of W to avoid the computation of off-diagonal elements. The new algorithm then
becomes

β̂
(1)

= β̂
(0)

+ {XT (G′(0)V (0)G′(0))X}−1XTG′(0)(d− π(0)). (18)

This substitution, as was pointed out by the Associate Editor, also helps make
the algorithm more stable. It is easy to see that if the procedure converges,
i.e. β̂

(1) = β̂
(0), we must have XTG′d = XT G′π. Hastie and Tibshirani (1990)

in Chapter 8 use a similar trick to deal with the Hessian matrix in fitting a
generalized additive model for matched case-control data. The method illustrated
here can be used to fit generalized additive models to more general retrospective
studies.

To illustrate the use of our procedure, we consider a study of the effect of
the drug sulphinpyrazone on cardiac death after myocardial infarction (Anturane
Reinfarction Trial Research Group, 1978, 1980), which is cited in the first edition
of McCullagh and Nelder (1989). The data are given in Table 2.

Table 2. A study of the effect of the drug suplhinpyrazone

X cases (deaths from all causes) control (survivors) Total
1 (sulphinpyrazone) 41 692 733

0 (placebo) 60 682 742

Total 101 1374 1475

In this example, the population size N = 1, 475 and the sample size n = 101.
There is only one covariate, so the dimension of β is 1. As we mentioned earlier,
g(x) equals x in a logistic regression model, and therefore the corresponding G′ is
just the identity matrix. Our Newton-Raphson algorithm for this model reduces
to β̂(1) = β̂(0) + (XT V (0)X)−1XT (d− π(0)).

We set a precision bound of six significant figures. Starting from β̂(0) = 0, the
procedure converges to β̂ = −0.395063 with a standard error of 0.160734 after 17
iterations, which took 1.5 seconds on a Sun SparcStation 2 with a 40Mhz Weitek
CPU chip.

A good choice for the starting point is the estimate of β based on the cor-
responding prospective linear model. Using GLIM to fit a prospective logistic
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regression model on the data, we obtain an estimate -0.395329 for β with a stan-
dard error of 0.209686. Starting from β̂(0) = −0.395329, the procedure converges
to -0.395063 after 8 iterations, which took 0.8 second on the same machine.

In summary, three special “treatments” to the usual Newton-Raphson
method (17) make the computation fast and more stable: (1) only the diagonal
elements of W are used (note that in this example W is a 1, 475 × 1, 475 matrix
and has in total 2,174,150 off-diagonal elements); (2) a reversed version of (11)
in Section 2 is used for the computation of the πi; (3) the trick for grouped
populations as described in Example 3 of Section 2 is used to compute all R
functions. Note that there are only two different weights in this example. It
is easy to show that the grouping method requires about 15,000 operations for
computing each R, whereas Method 2 in Section 2 (Gail, Lubin and Rubinstein
(1981)) requires about 275,000 operations for the same calculation.

In the corresponding prospective GLM, the MLE for β imposes the same form
of estimation equation as (16) except that D is substituted by the unconditional
Bernoulli vector Z. Thus the usual iterative least squares method using (17) has
W = diag{pi−p2

i }, the covariance matrix for the unconditional Bernoulli random
vector Z instead of the conditional one. Because of this similarity, we expect that
numerical stability of our algorithm is comparable to that of a standard GLIM
algorithm. In fact, in all the examples we have tested, our algorithm seems to be
little affected by the starting point in terms of both numerical stability and the
number of iterations. For example, when the starting point β̂(0) = 4 (a number
with a different sign and magnitude from the true value), the procedure converges
with the same precision in just 24 iterations within 2 seconds.

It is well-known that in logistic regression, treating retrospective data pro-
spectively can produce valid inference for the regression coefficients, except for
the interception term (McCullagh and Nelder (1989), pp 111-113). However, the
estimate based on the conditional likelihood (14) often has smaller standard error
than that based on the unconditional likelihood, as we have seen in the above
example and in Lubin (1981). Moreover, GLMs other than the logistic model
can be affected to a great extent by the choice between the prospective model
and the retrospective model. Treating retrospective data as if they were drawn
by prospective sampling would in general produce inferior estimates. Hence it
is usually desirable to deal with the conditional likelihood (15) directly. In such
cases, the iterative method in (17) is applicable.

4. Five Sample Selection Procedures

Now we discuss procedures for drawing a sample from the conditional
Bernoulli model. Before we present the five sampling procedures, let us first con-
sider a case study in order to understand the idea and the different use of each
sampling procedure in response to various actual situations.
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Case Study. Company XYZ is recruiting for a Research Associate position.
By the time the company starts processing the applications, 1000 people have
applied. The company wishes to interview as many candidates as possible but its
budget is only enough for 10 interviews. To measure the qualification of the can-
didates, the company gives each candidate a rating based on his/her application
materials (e.g. GPA, work experience, recommendation letters, etc.). Since there
is a concern that application materials may not fully reflect the true “quality”
of candidates, the company decides to select candidates randomly according to
their ratings instead of taking the candidates with highest ratings. Suppose the
candidates are “unconditionally independent” (i.e. they are independent without
the constraint on the number of interviewees). Then a natural choice for the dis-
tribution of random sampling is a conditional Bernoulli model with the weights
being ratings of the candidates.

With properly defined probabilities, the sampling procedure for the above
situation can be carried out in any of the following ways:
(1) repeatedly select one candidate at a time from the unselected candidates until
10 people are obtained (Procedure 1, Drafting Sampling).
(2) check the candidates one at a time in any arbitrary order (e.g. by arrival
time of the application) and decide for each individual whether or not he/she is
selected with certain probability (Procedure 3, ID-Checking Sampling).
(3) line up all possible combinations of 10 people out of a pool of 1000 and decide
which combination to be selected using only one random drawing (Procedure 5,
Direct Sampling).

Case Study. (continued) After the company has selected 10 interviewees using
any of the three procedures above, one or both of the following situations can
occur:
Situation 1. Budget is increased to allow for more interviews.

In this case, it is not worthwhile to put the 10 already selected people back
into the pool and select 11 (suppose one more interview is the case) out of 1000
— mainly because it will take a long time to get a sample of 11 which contains
the 10 people previously selected. An easier way is to select one candidate out of
the unselected 990 people with certain probability so that the joint probability of
these 11 people still follows a conditional Bernoulli model (Procedure 2, Open-
Market Sampling).
Situation 2. Some new applications come in.

Again, it is not worthwhile to put the 10 people already selected back into
the pool of 1001 (suppose one new application is the case) and do it all over
again. An easier way is to replace one of the 10 already selected people by the
new candidate with certain probability, or otherwise keep the current sample
(Procedure 4, Open-Pool Sampling).
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We refer to the two situations above as having non-fixed n and non-fixed N ,
respectively. The two procedures above can also be used in the usual fixed n

and N situations. For Situation 1, one can start off the procedure by pretending
that there is only one interview allowed in the beginning and subsequently add
one interview at a time until 10 interviews are filled. For Situation 2, one can
pretend that in the beginning there are only 10 candidates in the pool and all
of them are taken for interview. Then subsequently, other candidates are added
one at a time and decision is made for each individual candidate as whether or
not he/she should replace someone that is already in the sample.

Procedures 1 and 2 are given by Chen, Dempster and Liu (1994). Procedures
3 and 4 are natural generalizations of the “sequential selection sampling” and the
“reservoir sampling” of Fan, Muller and Rezucha (1962), respectively. All five
procedures are natural generalizations of the simple random sampling case as
documented in Knuth (1968), Section 3.4.

We now present all five sampling procedures, of which Procedures 1 and 2
are given without any proof. Details about these two procedures can be found
in Chen, Dempster and Liu (1994). As for the notation used in the procedures,
we let Ak represent the set of indices of the selected units after step k and
Sk = {1, . . . , k} for k = 0, . . . , N with S0 = ∅. For example, the sizes of Ak in
the first four procedures are k, k, r ≤ k, and n, respectively.

Procedure 1. (Drafting Sampling) Start with A0 = ∅. At step k (k = 1, . . . , n),
a unit j ∈ Ac

k−1 is selected into the sample (i.e. Ak ← Ak−1∪{j}) with probability

P1(j,Ac
k−1) :=

wjR(n− k,Ac
k−1\{j})

(n− k + 1)R(n− k + 1, Ac
k−1)

.

Procedure 2. (Open-Market Sampling) Start with A0 = ∅. At step k (k =
1, . . . , n), a unit j ∈ Ac

k−1 is selected into the sample (i.e. Ak ← Ak−1∪{j}) with
probability

P2(j,Ac
k−1) :=

k−1∑
i=0

wjR(k − i− 1, Ac
k−1\{j})R(i, Ak−1)

(k − i)R(k, S)
.

Procedure 3. (ID-Checking Sampling) Start with A0 = ∅ and the first unit. By
step k (k = 1, . . . , N), suppose r out of the first k−1 units have been selected (i.e.
|Ak−1| = r). Then the kth unit is selected into the sample (i.e. Ak ← Ak−1∪{k})
with probability

P3(k, r) :=
wkR(n− r − 1, Sc

k)
R(n− r, Sc

k−1)
,

and is excluded from the sample (i.e. Ak ← Ak−1) with probability 1− P3(k, r).
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Using the relation between Poisson-Binomial probability and R functions as
in (7), P3 can be interpreted as P3(k, r) = P (Zk = 1|∑N

i=k Zi = n − r). It is
easy to see that Procedure 3 produces a sample from the conditional Bernoulli
distribution by noting that for any d ∈ Dn,

P (D = d) =
N∏

k=1

[P3(k, σk)]dk [1− P3(k, σk)]1−dk

=
N∏

k=1

wdk
k R(n− σk, S

c
k)

R(n− σk−1, S
c
k−1)

=
N∏

k=1

wdk
k

/
R(n, S),

where σk =
∑k

j=1 yj for k = 1, . . . , N and σ0 = 0.
Another way to understand procedure 3 is through the “telescope law”

in elementary probability theory. That is, the joint probability distribution
of the conditional Bernoulli vector D = (D1, . . . ,DN ) can be decomposed as,
P (D1, . . . ,DN ) = P (D1)P (D2|D1) · · ·P (DN |D1, . . . ,DN−1), which provides us
the above sampling scheme. This idea can also be applied to sequentially classify
N objects into k groups at random with sizes n1, . . . , nk.

Procedure 4. (Open-Pool Sampling) Start with An = {1, . . . , n}. Then at step
k (k = n + 1, . . . , N), a random number U is drawn uniformly from [0, 1). If

U ≥ wkR(n− 1, Sk−1)
R(n, Sk)

= πk,k,

then the old sample is kept (i.e. Ak ← Ak−1); Otherwise a unit j ∈ Ak−1 is
chosen with probability

P4(j,Ak−1) :=
n−1∑
i=0

R(n− i− 1, Ac
k−1\{j})R(i, Ak−1)

(n− i)R(n− 1, Sk−1)

and is replaced by unit k (i.e. Ak ← Ak−1 ∪ {k}\{j}).
The function P4(·, Ak−1) is in fact the selection probability used in the “back-

ward” version of Procedure 2 and is shown in Chen, Dempster and Liu (1994)
to be a probability density on Ak−1. The function πk,k is in fact the inclusion
probability of the kth unit in a sample of size n when the population consists of
only the first k units, i.e. P (Zk = 1|∑k

i=1 Zi = n).
Now we show by induction that a random sample selected by Procedure

4 is a sample from the conditional Bernoulli model. Let γk be the index of
the unit chosen from Ak−1 and Sk = {1, . . . , k}. Assume P (Ak−1 = A) =
R(n,A)/R(n, Sk−1) for any A ⊂ Sk−1 with |A| = n (which is true for k = n + 1),
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we show that P (Ak = B) = R(n,B)/R(n, Sk) for any B ⊂ Sk with |B| = n. We
first consider the case k ∈ B. By a) and c) of Proposition 1,

P (Ak = B) =
∑

j∈Bc

P [Ak−1 = B ∪ {j}\{k}] P [γk = j | Ak−1 = B ∪ {j}\{k}]πk,k

=
∑

j∈Bc

R(n,B ∪ {j}\{k})
R(n, Sk−1)

[ n−1∑
i=0

R(n− i− 1, Bc\{j})R(i, B\{k})
(n− i)R(n− 1, Sk−1)

]

wkR(n− 1, Sk−1)
R(n, Sk)

=
R(n,B)
R(n, Sk)

n−1∑
i=0

R(i, B\{k})
(n− i)R(n, Sk−1)

[ ∑
j∈Bc

wjR(n− i− 1, Bc\{j})
]

=
R(n,B)
R(n, Sk)

n−1∑
i=0

R(i, B\{k})
(n− i)R(n, Sk−1)

(n− i)R(n− i, Bc) =
R(n,B)
R(n, Sk)

.

For the case k �∈ B, we have Ak = Ak−1. Thus

P (Ak = B) =
∑
j∈B

P [Ak−1 = B] P [γk = j | Ak−1 = B](1− πk,k)

=
R(n,B)

R(n, Sk−1)

[∑
j∈B

P4(j,B)
]R(n, Sk−1)

R(n, Sk)
=

R(n,B)
R(n, Sk)

.

Procedure 5. (Direct Sampling) Draw a random number U uniformly from
[0, R(n, S)). Suppose by step k (k = 1, . . . , N), r out of the last k− 1 units have
been selected. Then if U ≥ R(n− r, SN−k), the N − k + 1st unit is selected and
let U ← [U − R(n − r, SN−k)]/wN−k+1; otherwise, the N − k + 1st unit is not
selected and the value of U does not change.

The use of Procedure 5 is in fact the inverse procedure for generating R.
This is illustrated in Table 3, which is the same as Table 1 except that the
movement is going backward from cell(n,N) to cell(0, 0). A sample drawn by
Procedure 5 is represented by a path connecting cell(n,N) and cell(0, 0). Each
path has exactly N edges of which n edges are diagonal and marked as “in”
(included in the sample), and the other N − n edges are horizontal and marked
as “out” (excluded from the sample). Note that cell(i, j) in the table gives the
quantity R(i, Sj). Thus it is easy to see from the definition of Procedure 5 that
drawing a sample using Procedure 5 is equivalent to selecting a path according
to the following rule: suppose we are currently in cell(i, j), and if the current
U ≥ cell(i, j − 1), we then move to cell(i − 1, j − 1) taking the diagonal edge;
otherwise, we move to cell(i, j − 1) taking the horizontal edge.
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Table 3. Direct sampling from the conditional Bernoulli model for n = 2, N = 4

N

0 1 2 3 4

n

0

1

2

1

�
���1 in

	1 out

0

0

1

w1

0

	 2 out

���
 2 in

1

w1 + w2	2 out 	3 out����
 3 in

w1w2
����
 2 in

	3 out

—

w1 + w2 + w3

���
 3 in

w1w2+w1w3+w2w3

������ 4 in

	4 out

—

—

w1w2 + w1w3 + w1w4+

w2w3 + w2w4 + w3w4

We now compare the advantages and disadvantages of using the five proce-
dures described above. A summary is given in Table 4, where three criteria are
considered – number of operations, number of random draws and extra storage
space needed in addition to N slots for the weights wi. In terms of the computa-
tional cost (certain combination of the “number of operations” and the “number
of random draws” depending on the type of the computer used), Procedure 2
(Open-Market) and Procedure 4 (Open-Pool) are the most expensive ones and
the other three are about the same. In terms of extra storage space, Procedure
5 (Direct) requires considerably more space than the others.

Table 4. Comparisons of the five sampling procedures

Operations Random Draws Extra Space

Drafting O(nN) n N + n

Open-market O(n2N) n 2n

ID-checking O(nN) ∈ [n, N ] 2n

Open-pool O(n2N) 2(N − n) 4n

Direct O(nN) 1 n(N − n + 1)

The relatively low computational efficiency of Procedures 2 and 4 is com-
pensated by their special uses. Specifically, Procedures 2 and 4 can be used in
the situations where the sample size n or the population size N is not known
in advance, respectively. We can also combine them to deal with the situations
where both N and n are unfixed. A classification of the five procedures is given
in Table 5.
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Table 5. Classification of the five sampling procedures
N

fixed non-fixed

n fixed Procedures 1 ∼ 5 Procedure 4
non-fixed Procedure 2 Procedure 2 + 4

5. Conclusions

In this article, we are able to connect several seemingly unrelated statistical
problems by the Poisson-Binomial and conditional Bernoulli distributions. By
doing this, we gain more understanding of and insights into these problems, both
conceptually and computationally.

We have compared different methods for computing the exact distribution
functions of Poisson-Binomial and conditional Bernoulli models and analyzed
their computational complexities. As by-products, we found five efficient ways
of sampling from the conditional Bernoulli distribution. These methods can
be viewed as direct generalizations of methods for conducting simple random
sampling, and can be useful to both applied statisticians and computer scientists
(Knuth (1968)).

Sugden and Smith (1984) advocate the use of the Hájek model for PPS
sampling in a survey. Although the Hájek model is essentially a conditional
Bernoulli model, it can not guarantee that the marginal inclusion probability of
each sample unit equals to its pre-specified value, violating a condition required
by all PPS sampling. To correct it, an inversion scheme as illustrated in (11)
needs to be employed in order to find a set of proper pi’s that give rise to the
pre-specified marginal probability πi. The method illustrated in this article is
thus crucial for conducting a proper PPS sampling.

Lastly, we have found it conceptually more transparent and rewarding to
think of the conditional likelihood of a retrospective GLM as a conditional
Bernoulli probability distribution. This view helps us easily identify the con-
nection and difference between a prospective and a retrospective GLM, and to
design an iterative weighted least squares method for maximizing the conditional
likelihood, similar to the one used in analyzing a prospective GLM. Because of
this computational advance and the reasons discussed at the end of Section 3, we
strongly advocate the use of MCLE for making inference in case-control studies.
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