
Statistica Sinica 7(1997), 805-813

THE MANN WHITNEY WILCOXON DISTRIBUTION

USING LINKED LISTS

Ying Kuen Cheung and Jerome H. Klotz

University of Wisconsin at Madison

Abstract: We give an improved algorithm for calculating the exact null distribu-

tion of the two sample Mann Whitney Wilcoxon rank sum statistic. The algorithm

modifies the update method of Smid using a minimal linked list which directs calcu-

lation of only those intermediate probabilities required for the final value. Using an

efficient shortened representation of the list of required intermediate values, exact

probabilities for sample sizes of the order of 100 for each of the two samples can

be computed on a personal computer for cases covering the range from many ties

with few different values to few ties with many different values.
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1. Introduction and Notation

Let X1, . . . ,Xm and Y1, . . . , Yn be two independent samples with cumulative
distribution functions F and G respectively. To test the hypothesis H : F = G

against shift alternatives, the Mann-Whitney (1947) form of the two sample
Wilcoxon (1945) rank sum statistic adjusted for possible ties, rejects for extreme
values of

U =
m∑

i=1

n∑
j=1

(I[Yj < Xi] +
1
2
I[Yj = Xi]), (1)

where the indicator I[A] = 1 if the event A is true and I[A] = 0 otherwise.
For the case of no tied values, the null distribution

P [U ≤ u|m,n] = A(u|N,m)/

(
N

m

)
, (2)

where N = m + n and A(u|N,m) is the number of possible arrangements of m

Xs and n Y s that give a value of U that does not exceed u.
A variety of tables exist, such as Milton (1964); and Fix and Hodges (1955)

use partition theory to extend the computation of exact probabilities. Despite
this distribution coverage, problems occur when there are ties and sample sizes
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can be increased. It therefore seems worthwhile to provide an algorithm to com-
pute exact values (2) for a wider range of sample sizes and also cover the more
complicated distribution when ties are present.

2. Update Formulae

For the case of no ties, the update formula (e.g. Mann and Whitney (1947)
or Lehmann (1975), page 51)

A(u|N,m) = A(u|N − 1,m) + A(u − n|N − 1,m − 1) (3)

has often been used to table the distribution. Formula (3) is derived using the
largest value in the pooled sample is either a Y or an X observation respectively.
Boundary conditions are

A(u|N,m) = 0 for u < 0, A(u|N,m) =

(
N

m

)
for u ≥ mn,

A(u|N,m) = (u + 1) for m = 1 or n = 1 and 0 ≤ u ≤ mn.

By distribution symmetry, we can restrict values so that u ≤ mn/2 and
m ≤ n using

P [U ≤ u|m,n] = 1 − P [U ≤ mn − u − 1|m,n] for u > mn/2

and
P [U ≤ u|m,n] = P [U ≤ u|n,m] for m > n.

When the combined sample has ties, let K be the number of distinct obser-
vation values z1 < z2 < · · · < zK , where 1 < K < N . Define for k = 1, . . . ,K,
the counts

Rk =
m∑

i=1

I[Xi = zk], Sk =
n∑

j=1

I[Yj = zk], Tk = Rk + Sk.

Then the average rank version of the Mann-Whitney (1947) statistic (1) can be
expressed in terms of the count vectors R = (R1, . . . , RK)T , S = (S1, . . . , SK)T

and the K × K matrix

Q =




1/2 0 · · · 0
1 1/2 · · · 0
...

...
. . .

...
1 1 · · · 1/2




as the product
U = RT QS.
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Because U can possibly take on half integer values in the case of ties, we
instead multiply by 2 and use the integer valued statistic W = 2U = 2RT QS. If
we partition Q at the last row and column

Q =

(
Q11 0
1T 1/2

)
,

where 1T = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0)T , then we can write

W = 2R11
T Q11S11 + RK(aK − 2m + RK), (4)

where R11
T = (R1, . . . , RK−1), S11 = (S1, . . . , SK−1)T . The coefficients

ak = 2(t1 + t2 + · · · + tk−1) + tk (5)

for k = 2, 3, . . . ,K with a1 = t1. Denote conditionally given T = (T1, . . . , TK)T

= t = (t1, . . . , tK)T

P [W ≤ w|T = t] = A(w|K,m, t)/

(
N

m

)
.

Then equation (4) gives the update formula of Smid (1956) rewritten for W as

A(w|K,m, t) =
L(K)∑

rK=L(K)

A(w−rK(aK−2m+rK)|K−1,m−rK , t11)

(
tK
rK

)
. (6)

Here t11 = (t1, . . . , tK−1)T and the lower and upper limits are respectively

L(K) = max(0,m − t1 − t2 − · · · − tK−1) and L(K) = min(m, tK).

Boundary conditions on w are

A(w|K,m, t) = 0 for w < wmin, A(w|K,m, t) =

(
N

m

)
for w ≥ wmax,

where wmin and wmax are the smallest and largest possible values of W obtained
from the extreme arrays. These values satisfy, wmin ≥ 0 and wmax ≤ 2mn with
equality for the case of no ties. Boundary conditions on m are

A(w|K, 1, t) =




0, for w < a1 − 1,∑k
j=1 tj, for ak − 1 ≤ w < ak+1 − 1,

N, for aK − 1 ≤ w,
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and

A(w|K,N − 1, t) =




0, for w < 2N − 1 − a1,∑k
j=1 tj, for 2N − 1 − ak ≤ w < 2N − 1 − ak+1,

N, for 2N − 1 − aK ≤ w,

where ak are defined in equation (5).
For the case K = 2 the statistic simplifies to W = R2(t1 + t2) + m(t1 − m).

We thus have the starting condition

A(w|2,m, (t1, t2)) =
∑
r2

(
t1

m − r2

)(
t2
r2

)
, (7)

where these hypergeometric terms are summed over integer values of r2 in the
range

L(2) = max(0,m − t1) ≤ r2, r2(t1 + t2) + m(t1 − m) ≤ w.

3. Computing the C.D.F.

Klotz (1966) discussed computing the exact null distribution of U given
{Tk = tk for k = 1, . . . ,K} and recommended the enumeration of all 2 × K

arrays with fixed margins as follows:

R1 R2 · · · RK m

S1 S2 · · · SK n

t1 t2 · · · tK N

.

The exact upper tail P-value is obtained by calculating U for each possible table
and accumulating the null probability

P [R1 = r1, . . . , RK = rK |T1 = t1, . . . , TK = tK ]

=

(
t1
r1

)(
t2
r2

)
· · ·
(

tK
rK

)/( N

m

)

for all tables that give a value of U greater than or equal the observed value.
More recently, this method has been improved in the statistical package StatXact
using a modification by Mehta, Patel, and Tsiatis (1984), pages 821-823 called
the network algorithm. Their algorithm generates a set of tables by enumerating
paths through a set of nodes determined by m,n, and t. At intermediate nodes,
upper bounds and lower bounds are calculated for the statistic and tables are
skipped for cases in which the upper bound is less or the lower bound is at least
as big as the observed statistic.
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This approach has the virtue of simplicity and can be extended to the several
sample test of Kruskal and Wallis (1952) (see Klotz and Teng (1977)). However,
the algorithm still computes U values for many cases which do not exceed the
bounds and which do not contribute to the final result. In contrast, the update
algorithm can avoid computing extra cases using appropriate logic.

Current computer languages such as Pascal and C or C++ facilitate manip-
ulating linked lists. We propose using the update algorithm of Smid (1956) along
with a minimal linked list to specify only those intermediate calculations needed
for the final probability value.

Consider the example with (K,m,w) = (5, 10, 80) and t = (4, 5, 3, 4, 6)T .
Using equation (6), the boundary conditions and equation (7), Figure 1 gives the
minimal list of necessary intermediate values (K∗,m∗, w∗) in the order of their
generation.

K = 5
� m = 10

�
�

w = 80
�

K∗ = 4
� m∗ = 10 �

w∗ = 80
�

�
m∗ = 9 �

�
w∗ = 61

�

m∗ = 8 �

�
w∗ = 40

�

m∗ = 7
�

�
w∗ = 17

�

K∗ = 3
� m∗ = 8 �

�
w∗ = 60

�
50

�
40

�

m∗ = 7 �

�
w∗ = 47

�
37

�
27

�
17

�

m∗ = 6 �

�
w∗ = 32

�
22

�
12

�

m∗ = 5
�

�
w∗ = 5

�

Figure 1. Linked list for (K,m,w) = (5, 10, 80) and t = (4, 5, 3, 4, 6).

Table 1 gives intermediate A(w∗|K∗,m∗, t) values corresponding to the list in
Figure 1 (in the order of computation).

For example, using equation (6), the boundary conditions and equation (7),
we have

A(47|3, 7, (4, 5, 3)) =
3∑

r3=0

A(47 − r3(7 + r3)|2, 7 − r3, (4, 5))

(
3
r3

)
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=

(
9
7

)(
3
0

)
+

(
9
6

)(
3
1

)
+ 105

(
3
2

)
+ 21

(
3
3

)
= 624.

Table 1. Intermediate values for computing A(80|5, 10, (4, 5, 3, 4, 6)).

K∗ m∗ w∗ A K∗ m∗ w∗ A

3 8 60 494 4 10 80 6864
50 474 9 61 4865
40 402 8 40 1266

7 47 624 7 17 60
37 412 5 10 80 56244
27 201
17 60

6 32 458
22 68
12 10

5 5 5

For the third term in the above sum we use equation (7)

A(29|2, 5, (4, 5)) =
3∑

r2=1

(
4

5 − r2

)(
5
r2

)
= 105.

Finally, using equation (6), previously computed values, and the boundary con-
dition on the lower range of w∗ values,

A(80|5, 10, (4, 5, 3, 4, 6))=
6∑

r5=0

A(80 − r5(18 + r5)|4, 10−r5, (4, 5, 3, 4))

(
6
r5

)

= 6864 × 1 + 4865 × 6 + 1266 × 15 + 60 × 20 + 0 + 0 + 0 = 56244.

This gives

P [U ≤ 40|m = 10, t = (4, 5, 3, 4, 6)] = 56244/

(
22
10

)
.= 0.08697804 .

4. Simplifying the Linked List

For large samples with few ties, the minimal list of intermediate integer
(N∗,m∗, w∗) values that determines the calculation of A(w|N,m, t) can be quite
large. To save on required storage, we consider a shortened list representation
that takes advantage of regularities.
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To illustrate the regularities, consider the stage K∗ = 3 and m∗ = 7 in Figure
1. In this part of the linked list the intermediate values w∗ range from 47 down
to 17 in decrements of ∆ = 10. Thus the set of values {47, 37, 27, 17} could be
replaced by [47, 17] and the decrement ∆ = 10.

To see why this regularity occurs, use equation (4) repeatedly to write the
value

w =
K∑

i=1

ri(ai − 2mi + ri),

where mi =
∑i

j=1 rj. For intermediate (K∗,m∗) an intermediate value w∗ is of
the form

w∗ = w −
K∑

i=K∗+1

ri(ai − 2mi + ri). (8)

For fixed values of (rK∗+3, rK∗+4, . . . , rK) and mK∗+2−m∗, consider the values w∗

given by (8) for all possible (rK∗+1, rK∗+2) such that rK∗+1 + rK∗+2 = mK∗+2 −
m∗. Then after some algebra we have

w∗ = C + rK∗+1(tK∗+1 + tK∗+2),

where the integer

C =w−
K∑

i=K∗+3

ri(ai−2mi+ri)−(rK∗+1+rK∗+2)(aK∗+2−2mK∗+2)−(rK∗+1+rK∗+2)2

is a constant. Thus consecutive values differ by ∆ = tK∗+1 + tK∗+2 and we
can save considerable storage if we represent such sets by their upper and lower
endpoints as in the example above.

To illustrate the savings, consider a case with U = 13.5, m = 10, n = 9 and
tie vector t = (1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, ) (from Daniel (1990), page 131,
table 3.46). Table 2 describes the intermediate values of (K∗,m∗, w∗) and uses
the notation for the set of integer values from b down to a in decrements of ∆
given by [b, a] = {b, b − ∆, b − 2∆, . . . , a}. This is a case with 124 w∗ values in
the minimal list and P [U ≤ 13.5|t] = 370/92378 .= 0.00400528.

For large samples this list representation saves considerable memory. Mem-
ory is also conserved by writing over earlier values of A(w∗|K∗,m∗, t) keeping
double precision values only for the most recently updated values with even and
odd K∗.

To illustrate the capability of the algorithm, the data of Mehta, Patel and
Tsiatis (1984), page 823 with U = 5462, m = 107, n = 112 and t = (35, 88, 43, 40,
13) was run using a C program on a personal computer and quickly obtained a
P-value of α̂

.= 0.11927038.
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Table 2. Intermediate values for U = 13.5, m = 10, n = 9, with ties t =
(1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1).

K∗ ∆ m∗ w∗ K∗ ∆ m∗ w∗

15 10 27 9 2 9 [23,19], 15, [11,9]
14 10 27 8 [15,1]

9 9 7 3
13 2 10 27 8 3 8 [15,3], 13, [11,5], 7, 1

9 [11,9] 7 15, [13,1], [11,8], [6,0], 2
12 4 10 27 6 3, 1

9 [15,11], 9 7 3 7 [13,1], [11,2], [9,0]
8 1 6 11, [9,0], [7,1], 2

11 4 10 27 6 2 6 [11,1], [8,0]
9 [19,11], 9 5 [7,3], 2
8 [5,1] 5 2 5 [9,1], [6,2]

10 2 10 27 4 [3,1]
9 [21,19], 15, [11,9] 4 3 3 [5,2], [3,0],1
8 11, [7,1] 3 3 2 [3,0], 1

A zip file of an executable program for a Windows IBM-PC compatible
system can be downloaded from the World Wide Web homepage

http://www.stat.wisc.edu/∼klotz/klotz.html

by clicking on Wilcox.zip under the Software: heading.
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