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Abstract: This paper concerns segmented multivariate regression models, models

which have different linear forms in different subdomains of the domain of an in-

dependent variable. Without knowing that number and their boundaries, we first

estimate the number of these subdomains using a modified Schwarz criterion. The

estimated number of regions proves to be weakly consistent under fairly general

conditions. We then estimate the subdomain boundaries (“thresholds”) and the

regression coefficients within subdomains by minimizing the sum of squares of the

residuals. We show that the threshold estimates converge (at rates, 1/n and n−1/2,

respectively at the model’s threshold points of discontinuity and continuity) and

that the regression coefficients as well as the residual variances are asymptotically

normal. The basic condition on the error distribution required for the veracity of

our asymptotic results is satisfied by any distribution with zero mean and a mo-

ment generating function (having bounded second derivative around zero). As an

illustration, a segmented bivariate regression model is fitted to real data and the

relevance of the asymptotic results is examined via simulations.

Key words and phrases: Asymptotic normality, consistency, local exponential bound-

edness, rate of convergence, segmented multivariate regression.

1. Introduction

Many practical situations involve a response variable which depends on some
independent variables through a function whose form cannot be uniformly well
approximated by the leading terms of a single Taylor expansion. Consequently,
the usual linear regression model is not applicable and the simplicity of the
methodology is lost.

However a segmented linear model has much of the simplicity of the classi-
cal linear methodology, and more flexibility. It may be regarded as a piecewise
linear approximation deriving from different Taylor expansions in different sub-
domains. We require that a certain independent variable be selected and used
to partition the domain of the independent variables into subdomains. The rela-
tionship between the response and independent variables is allowed to vary from
subdomain-to-subdomain.

The partitioning variable may be suggested by extraneous considerations.
The positive correlation of the production rate on the composition of the chemical
agents involved reverses when the temperature exceeds a certain threshold (or
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limit); Dunicz (1969) provides a specific example in the context of industrial
chemistry, where a broken line model arises in a natural way. Examples drawn
from the agricultural and biological sciences appear in Sprent (1961).

In economics, government interventions and policy changes at designated
times can influence both economic structure and market structure. An example is
given by McGee and Carleton (1970). They investigate the effect of the abolition
in December, 1968, of commission splitting on the daily dollar volume of sales in
regional stock exchanges, specifically the Boston Stock Exchange. These dollar
volumes (y, say) are compared with those of the New York and American Stock
Exchanges combined (x, say). Their results demonstrate the value of piecewise
linear models when the relationship between y and x is nonlinear. Partitioning
the data by “time” gives the four periods, Jan 67 - Oct 67, Nov 67 - July 68, Aug
68 - Nov 68, and Dec 68 - Nov 69 and very linear submodels for each period (see
McGee and Carleton (1970)). The effect of the abolition of commission splitting
is clear and the authors conclude their piecewise linear regression “is a satisfying
solution”.

Broken line regressions also arise in clustering objects into several groups
by some explanatory variable. For example, we may wish to classify athletes by
age with a performance index as a dependent variable or to group cars by their
weights or engine sizes with fuel efficiency as the response of interest. A natural
classification method minimizes the penalized pooled group variations,∑

g

∑
t∈g

[Ytg − Y g]2 + cn(card(g)),

where Y g is the sample mean of group g and cn(card(g)) is the penalty for over-
grouping. In the aforementioned examples, we adopt different constant regres-
sions over different age, weight or engine size groups. More detailed discussion
of the automobile example is given in Section 3.

This paper deals primarily with situations like those described above where
the segmented regression model “explains” a real phenomenon. But it is linked
to other paradigms in modern regression theory. Such paradigms concern the
situation described above: the regression function of y on x cannot be glob-
ally well approximated by the leading terms of its Taylor expansion, ruling out
a global linear model (see the references below, for example). Various locally
weighted “nonparametric regression” approaches have been proposed (see Fried-
man (1991), for a recent survey). However in higher dimensions, difficulties
confront such approaches as the “curse of dimensionality” (COD) becomes pro-
gressively more severe. These difficulties are well described by Friedman (1991)
who proposes an alternative methodology called “multivariate adaptive regres-
sion splines”, or “MARS”. His procedure is closely related to another of Breiman
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and Meisel (1976) which involves an extension of what Friedman calls “recursive
partitioning”.

Our methodology may be viewed as adaptive regression using a different
method of partitioning than Breiman and Meisel (1976). By placing an upper
bound on the number of partitions, we avoid the COD. And we adopt a different
stopping criterion in partitioning x–space; it is based on ideas of model selection
rather than testing and seems more appealing to us. Finally, and most impor-
tantly, we are able to provide a large sample theory for our methodology. This
feature of our work seems important to us. Although the MARS methodology
appears to be supported by the empirical studies of Friedman (1991), there is an
inevitable concern about the general merits of an ad hoc procedure when it lacks
a theoretical foundation.

To summarize, our methodology has some of the simplicity of global linear
models, and some of the modelling flexibility of nonparametric approaches. Our
large sample theory gives precise conditions under which our methodology would
work well (with sufficiently large samples). By restricting the number of x–
subdomains sufficiently we avoid the COD. And our methodology enjoys the
advantage of MARS, that partitioning is data–based.

In this paper we partition the x–domain using an x co-ordinate, xd, sug-
gested, as in the above examples, by substantive considerations. We have paral-
lel, more complex results for the domain of nonparametric regression where the
partitioning variable is not determined in advance. The corresponding papers
are in preparation.

We now give a more precise description of the problem addressed in this
paper. Let Y be the response and x1, . . . , xp, the p regressor variables. The latter
may be covariates or design variables; the theory of this paper includes both. For
simplicity, they will usually be referred to as “covariates” in the sequel.

As indicated above, the model describing the way Y depends upon the x’s
is determined entirely by xd, d ≤ p. So we may decompose (−∞,∞] into
nonoverlapping intervals (τi−1, τi], τi−1 < τi, i = 1, . . . , l + 1 (with τ0 = −∞ and
τl+1 = ∞). The intervals correspond to different regression models. Suppose

Y = fi(x1, . . . , xp; θ̃i) + ε∗, if xd ∈ (τi−1, τi], i = 1, . . . , l + 1; (1.1)

ε∗, with mean zero, represents noise and θ̃i is the model parameter vector, i =
1, . . . , l+1. If fi(·), defined above were sufficiently smooth we could approximate
it by a linear model,

Y = βi0 +
p∑

j=1

βijxj + ε, if xd ∈ (τi−1, τi], i = 1, . . . , l + 1, (1.2)



500 JIAN LIU, SHIYING WU AND JAMES V. ZIDEK

where ε has mean 0 and variance σ2
i . The result is a segmented regression model.

Except in unusual situations, the model parameters including the number of
segments must be estimated.

The classical linear regression model achieves maximal simplicity among
models in the class characterized by (1.2); there is only one Y on x regression
model. The change-point problem gives rise to other members of this class. Yao
(1988) solves such a problem in which βij = 0 for all i = 1, . . . , l and j = 1, . . . , p;
xd is the explanatory variable controlling the allocation of measurements associ-
ated with the various dependence structures. Our formulation differs from that
of Yao in that we introduce an explanatory variable to allocate response mea-
surements. But these two formulations agree when viewed from the perspective
of experimental design. To obtain a third special case of (1.2), assume all regres-
sors are known functionals of xd as in segmented polynomial regression. Feder
(1975) discusses at length, the last case with l assumed known. Hinkley (1969,
1970) looks at estimation and inference for segmented regression models under a
different setup. Quandt (1960, 1972) and Hudson (1966) also consider segmented
regression under various conditions.

Now with the partitioning variable xd identified, the inferential problem con-
fronting us involves three parts: (i) the specification of the number of pieces in
the model, l; (ii) the determination of the boundaries {τi} (called “thresholds”
hereafter) of intervals over which each of the model pieces applies; (iii) the es-
timation of the linear model parameters within each interval. If l and the {τi}
were specified, part (iii) would consist essentially of applying the classical theory,
interval–by–interval. Consistency and asymptotic normality of estimates would
thus obtain within intervals. Moreover, the residual sum of squares for error
would provide an indication of goodness of fit.

However, l and the {τi} have to be estimated. The model parameter estima-
tors and residual sum of squares obtained from the interval–by–interval analysis
described above are functions of l and the {τi}. Summing the residual sums of
squares for the various intervals yields an overall index of the quality of fit of
the segmented model; with l fixed, the {τi} may be estimated by minimizing this
index. But further minimization of the index to estimate l results in gross over-
fitting and formally inconsistent estimators since the data demand, through this
minimization process, that the maximal allowable value of l be selected. Instead
this index must be adapted by adding a penalty term which increases with l.

We present a suitable penalty term in this paper, and this may be considered
a principal result of the work reported herein. The penalty must be severe
enough to limit the estimate, l̂, of l. But it must also force l̂ to converge quickly
enough to the “true” value of l as to assure the asymptotic properties of all the
other estimates which depend on l̂. The criterion proposed by Schwarz (1978)
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and described below, is not sufficiently stringent. Our proposed alternative (see
equation (2.3) below) seems to work well.

This paper has two parts. Section 2 contains the first: a development of
a convenient notation and a description of our method for fitting a segmented
regression model. The second consists of an exploration of the quality of the
proposed methodology. Simulation studies in Section 3 show that in small sam-
ples our method correctly identifies the number of pieces and thresholds for a
segmented model. An example in this same section shows the feasibility of our
approach in realistic situations. Finally, in Section 4 we give an asymptotic
theory for our methodology. We prove under appropriate conditions that: (i)
the estimate of l is weakly consistent; (ii) estimates of discontinuous thresh-
olds, τi, i = 1, . . . , l, converge at the rate of Op(1/n) and those of the continuous
thresholds at the usual rate of Op(1/

√
n); (iii) and estimates of the segmented re-

gression coefficients and the residual variances are asymptotically normal. Proofs
of these assertions appear in Section 5.

2. The Estimation Procedure

For the segmented linear regression model (1.2), let (Y1, x11, . . . , x1p), . . .,
(Yn, xn1, . . . , xnp) be the independent observations of the response, Y , and co-
variates, x1, . . . , xp. Let xt = (1, xt1, . . . , xtp)′ for t = 1, . . . , n, and β̃i =
(βi0, βi1, . . . , βip)′, i = 1, . . . , l + 1. Then

Yt = x′
tβ̃i + εt, if xtd ∈ (τi−1, τi], i = 1, . . . , l + 1, t = 1, . . . , n; (2.1)

the {εt} are independent and identically distributed (hereafter i.i.d.) random
variables having mean zero and common variance σ2. It is assumed that the {εt}
are independent of {xt} and −∞ = τ0 < τ1 < · · · < τl+1 = ∞. The {εt} need
not be i.i.d.; they could have different distributions from one modelling interval
to another. But we adopt this assumption for convenience.

In the sequel, a superscript or subscript 0 denotes the “true” parameter
values. In addition, let the n × n matrix In(α, η) be defined by

In(α, η) := diag(1(x1d∈(α,η]), . . . ,1(xnd∈(α,η])),∀ −∞ ≤ α < η ≤ ∞.

For simplicity, let

Xn :=




x′
1
...

x′
n


 , Yn :=




Y1
...

Yn


 , ε̃n :=




ε1
...
εn


 , Xn(α, η) = In(α, η)Xn,

and
Hn(α, η) := Xn(α, η)[X ′

n(α, η)Xn(α, η)]−X ′
n(α, η);
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in general, for any matrix A, A− will denote a generalized inverse while 1(·)
represents the indicator function. Finally let the observations and residuals in
the intended modeling interval be

Yn(α, η) = In(α, η)Yn, ε̃n(α, η) = In(α, η)ε̃n,

and the fitted sum of squares be

Sn(α, η) := Y′
n[In(α, η) − Hn(α, η)]Yn,

Sn(τ1, . . . , τl) :=
l+1∑
i=1

Sn(τi−1, τi), τ0 := −∞, τl+1 := ∞,

Tn(α, η) := ε̃′nHn(α, η)ε̃n

and the prediction of Yn in the modeling interval be

Ŷn(α, η) := Hn(α, η)Yn.

Then, in terms of true parameters, (2.1) can be rewritten in the vector form,

Yn =
l0+1∑
i=1

Xn(τ0
i−1, τ

0
i )β̃i + ε̃n. (2.2)

The estimation of all the parameters is done primarily in two steps. First
we estimate l0, the number of thresholds, τ0

1 , . . . , τ0
l0 , by minimizing the modified

Schwarz’ criterion (Schwarz (1978)),

MIC(l) := ln[S(τ̂1, . . . , τ̂l)/(n − p∗)] + p∗
c0(ln n)2+δ0

n
, (2.3)

for some constants c0 > 0, δ0 > 0, where p∗ = (l + 1)p + l ≈ (l + 1)(p + 1)
is the total number of fitted parameters, and for any fixed l, τ̂1, . . . , τ̂l are the
least squares estimates which minimize Sn(τ1, . . . , τl) subject to −∞ = τ0 < τ1 <

· · · < τl+1 = ∞. Recall that the Schwarz criterion (SC) is defined by

SC(l) = ln[S(τ̂1, . . . , τ̂l)/(n − l)] + p∗
2 ln(n)

n
. (2.4)

So MIC(l) and SC(l) differ in the severity of their penalty for overspecification;
and a severe penalty is essential for the correct specification of a non-Gaussian,
segmented regression model, SC(l) being derived under the Gaussian assumption
(c.f., Yao (1988)). It must be noted, however, that although a much severer
penalty than that in (2.3) assures consistency of l̂, underspecification is likely for
such sample sizes. Below, we briefly discuss the choice of c0 and δ0 for small to
moderate sample sizes.
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In general in model selection, a relatively large penalty term would be prefer-
able for easily identified models. A large penalty will greatly reduce the probabil-
ity of overestimation while not unduly risking underestimation. However, if the
model is difficult to identify, for example if it were continuous and ‖β̃j+1 − β̃j‖
were small, the penalty cannot be too large without incurring probable underes-
timation.

Another factor influencing the choice of the penalty is the error distribution.
A distribution with heavy tails is likely to generate extreme values, making it
look as though a change in response has occurred. To counter this effect, one
needs a heavier penalty.

We recognize the point made by an anonymous referee that there exists no
unique choice among the class of alternatives to the Shwarz criterion. Others
may also give consistent model parameter estimators.

However, we do not see any reasonable way of making a “best” choice among
the possibilities. The unicity of such a choice would be illusory and reflect our
substitution of one choice with another, that of a process model. Such a model
would need to specify for example, whether both discontinuous and continuous
changes at the segmentation points would be admitted (as ours does).

We chose our penalty criterion p∗c0[ln(n)]2+δ0/n, in accordance with the
results of our simulation study and our desire to change the well-established
criterion of Schwarz as little as possible. In Section 3, our desires are also reflected
in our choices of constants for situations involving small sample sizes.

Given that the best criterion is model dependent and no uniformly optimal
choice can be made, the following considerations guide us to a reasonable choice
of δ0 and c0:
(1) the proof of Lemma 5.2 in Section 5 suggests the exponent 2 + δ0 in the
penalty term of MIC may be further reduced, while retaining the consistency of
the model selection procedure; and since the Schwarz criterion (where the expo-
nent is 1) obtains from maximizing the posterior likelihood in a model selection
paradigm and enjoys widespread use in model selection, it provides a natural
baseline. From this perspective, δ0 should be small to reduce the potential risk
of underestimation when the noise is normal and n not too large.
(2) for a small sample, it is practically difficult to distinguish normal, double
exponential, and t distributed noise. Hence, one would not expect the choice of
penalty criterion to be critical.
(3) for large samples, SC (Schwarz criterion) tends to overestimate l0 if the noise
is not normal (Yao (1988)). We observe such overestimation in our simulations
under various model specifications when n = 50 (see Section 3.3).

Item (1) above suggests we choose a small value for δ0; and by (2), with δ0

chosen, we can choose some moderate n0, and solve for c0 by forcing MIC equal
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to SC at n0. By (3), n0 < 50 seems desirable. In the simulation reported in
the next section, we (arbitrarily) choose δ0 to be 0.1 (which is considered small).
With such a δ0, we arbitrarily choose n0 = 20 and solve for c0: c0 = 0.299.

In summary, since the “best” selection of the penalty is model dependent
for finite samples, there exists no optimal pair, (c0, δ0). On the other hand, our
choices, δ0 = 0.1 and c0 = 0.299, seem satisfactory in most of our simulation
experiments. (The results of these experiments appear in Section 3.3.) However,
further study is needed on the choice of δ0 and c0 under a variety of assumptions.

With estimates, l̂ of l0, and, τ̂i for τ0
i , i = 1, . . . , l̂ available, we then estimate

the other regression parameters {β̃0
i } and the residual variance σ2

0 by ordinary
least squares,

ˆ̃
βi = [X ′

n(τ̂i−1, τ̂i)Xn(τ̂i−1, τ̂i)]−X ′
n(τ̂i−1, τ̂i)Yn, i = 1, . . . , l̂ + 1,

and
σ̂2 = Sn(τ̂1, . . . , τ̂l)/(n − p̂∗),

where p̂∗ = (l̂+1)p+ l̂. Under regularity conditions essential for the identifiability
of the regression parameters, we shall see in Section 4 that the ordinary least
squares estimates ˆ̃

βj will be unique with probability approaching 1, for j =
1, . . . , l̂ + 1, as n → ∞.

3. Simulated and Real Examples

In this section, simulation studies are used to assess the performance of the
procedure proposed in the preceding section. Limited by computing power, we
study only moderate sample sizes with two to three dependence structures so
that l0 = 1 or 2. An example demonstrates its feasibility in realistic situations.

Let: (i) {εt} be i.i.d. with mean 0 and variance σ2; (ii) zt = (xt1, . . . , xtp) so
that x′

t = (1, zt), where {xtj} are i.i.d. N(0, 4); and (iii) DE(0, λ) denotes the
double exponential distribution with mean 0 and variance 2λ2.

For d = 1 and τ0
1 = 1, the following 5 sets of specifications of the model are

used:
(a) p = 2, β̃1 = (0, 1, 1)′, β̃2 = (1.5, 0, 1)′ , εt ∼ N(0, 1);
(b) p = 2, β̃1 = (0, 1, 1)′, β̃2 = (1.5, 0, 1)′ , εt ∼ DE(0, 1/

√
2);

(c) p = 2, β̃1 = (0, 1, 0)′, β̃2 = (1, 1, 0.5)′ , εt ∼ DE(0, 1/
√

2);
(d) p = 3, β̃1 = (0, 1, 0, 1)′ , β̃2 = (1, 0, 0.5, 1)′ , εt ∼ DE(0, 1/

√
2);

(e) p = 3, β̃1 = (0, 1, 1, 1)′ , β̃2 = (1, 0, 1, 1)′ , εt ∼ DE(0, 1/
√

2).
From the theory of Section 4 we know that the least squares estimate τ̂1,

is appropriate if the model is discontinuous at τ0
1 . To explore the behavior of

τ̂1 for moderate sized samples, Models (a)-(d) are chosen to be discontinuous.
The noise term in Model (a) is chosen to be normal as a reference, normal noise
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being widely used in practice. However, our emphasis is on more general noise
distributions. Because the double exponential distribution is commonly used
in regression modeling and it has heavier tails than the normal distribution, it
is used as the distribution of the noise in all other models. The deterministic
part of Model (b) is chosen to be the same as that of Model (a) to make them
comparable. Note that Models (a) and (b) have a jump of size 0.5 at x1 = τ1

while Var (ε1) = 1, which is twice the jump size. Except for the estimation of
the parameter τ1, our model selection method and estimation procedures work
well for both continuous and discontinuous models. Model (e) is chosen to be a
continuous model to demonstrate the behavior of the estimates for this type of
model.

Let L be an upper bound imposed on l. In all, 100 replications are simu-
lated for sample sizes, 30, 50, 100 and 200. Although L = 3 was tried in some
experiments, the number of under- and over-estimated l0’s are the same as those
obtained when L = 2. The result l̂ = 3 obtains in only 1 or 2 of the 100 repli-
cations. This agrees with our intuition for a two-piece model; it is unlikely a
four-piece model will be selected over a two-piece one if a two-piece model is
selected over a three-piece one. This experience suggests setting L = 2 to save
some computational effort, and the results reported in Tables 3.1 and 3.2 are
obtained in this way. However, much larger values of L are feasible in practice
where a single run suffices. The constants δ0 and c0 in MIC are chosen as 0.1
and 0.299 respectively, for the reasons given in Section 2.

Our results are summarized in Tables 3.1 and 3.2. Table 3.1 contains the
estimates of l0, τ0

1 and the standard error of the estimate of τ0
1 , τ̂1, based on the

MIC. The following observations derive from the table:
(i) for sample sizes greater than 30, the MIC correctly identifies l0 in most of
the cases. Hence, for estimating l0, the result seems satisfactory. Comparing
Models (a) and (b), it seems that the distribution of the noise has a significant
influence on the estimation of l0, for sample sizes of 50 or less.
(ii) for small sample sizes, the bias of τ̂1 is related to the shape of the underlying
model. It is seen that the biases are positive for Models (a) and (b), and negative
for the others. In an experiment where Models (a) and (b) are changed so that
the jump size at x1 = τ1 is -0.5, instead of 0.5, negative biases are observed for
every sample size. These biases decrease as the sample size becomes larger.
(iii) the standard error of τ̂1 is relatively large in all cases considered; and, as
expected, the standard error decreases as the sample size increases. This suggests
that a large sample size is needed to estimate τ0

1 reliably. An experiment with
sample size of 400 for a model similar to Model (e) is reported in Wu (1992). In
that experiment the standard error of τ̂1 is significantly reduced.
(iv) the choice of δ0 = 0.1 seems adequate for most of our experimental models
since it does not lead to any discernible pattern in the results, such as regular
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overestimation of l when n = 30 and underestimation of l when n = 50 or vice
versa.

The continuity of Model (e) leads us to our prior expectation that its iden-
tification would be the most difficult of all the cases considered. The c0 chosen
above seems too big for this case, the tendency toward underestimating l being
obvious when the sample size is small. More plausibly, with the small sample
size and the high noise level, there is simply not enough information to reveal the
underlying model. Therefore, choosing a lower dimensional model with positive
probability may be appropriate by the principle of parsimony.

In summary, since the optimal penalty is model dependent for samples of
moderate size, no globally optimal pair of (c0, δ0) can be recommended. On the
other hand, our choices of δ0 and c0 perform reasonably well for our experimental
models.

Table 3.2 shows the estimated values of the other model parameters for the
models in Table 3.1 and a sample size of 200. The results indicate that, in general,
the estimates of the β̃j ’s and σ2

0 are quite close to their true values even when
τ̂1 is inaccurate. So, for the purpose of estimating β̃j ’s and σ2

0, and interpolation
when the model is continuous, a moderate sized sample say of size 200 may be
sufficient. When the model is discontinuous, interpolation near the threshold may
not be accurate due to the inaccurate τ̂1. A careful comparison of the estimates
obtained from Models (a) and (b) shows that the estimation errors are generally
smaller with normally distributed errors. The estimates of β20 have relatively
larger standard errors. This is because a small error in β̂21 would result in a
relatively large error in β̂20.

Table 3.1. Frequency of correct identification of l0 in 100 repetitions and the
estimated thresholds for segmented regression models.

(m, mu, mo are the frequencies of correct, under- and over-estimations of l0)

MIC : m(mu, mo) sample size
τ̂1 (SE) 30 50 100 200
Model (a) 79 (18, 3) 95 (4, 1) 100 (0, 0) 100 (0, 0)

1.168 (1.500) 1.033 (1.353) 1.410 (0.984) 1.259 (0.665)
Model (b) 70 (21, 9) 86 (8, 6) 99 (0, 1) 100 (0, 0)

1.022 (1.546) 1.220 (1.407) 1.432 (0.908) 1.245 (0.692)
Model (c) 80 (6, 14) 97 (1, 2) 100 (0, 0) 100 (0, 0)

0.890 (0.737) 0.761 (0.502) 0.901 (0.221) 0.932 (0.151)
Model (d) 85 (8, 7) 99 (0, 1) 100 (0, 0) 100 (0, 0)

0.791 (1.009) 0.860 (0.665) 0.971 (0.232) 0.963 (0.169)
Model (e) 68 (23, 9) 87 (12, 1) 100 (0, 0) 100 (0, 0)

0.463 (1.735) 0.708 (1.332) 0.989 (0.923) 0.940 (0.707)
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Table 3.2. Estimated regression coefficients and variances of noise and their
standard errors with n = 200.

(Conditional on l̂ = 1)

β̂ij (SE) Model (a) Model (b) Model (c) Model (d) Model (e)

β10 -0.003 (0.145) -0.018 (0.146) 0.004 (0.143) -0.008 (0.154) -0.059 (0.177)

β11 1.001 (0.038) 0.995 (0.037) 1.000 (0.035) 0.995 (0.041) 0.985 (0.045)

β12 1.000 (0.024) 0.996 (0.025) -0.004 (0.025) 0.000 (0.024) 1.000 (0.025)

β13 —– —– —– 0.994 (0.023) 0.995 (0.025)

β20 1.485 (0.345) 1.388 (0.332) 0.962 (0.243) 1.009 (0.225) 0.960 (0.283)

β21 0.005 (0.063) 0.019 (0.067) 0.008 (0.055) 0.000 (0.049) 0.008 (0.057)

β23 1.006 (0.034) 0.998 (0.034) 0.495 (0.032) 0.498 (0.032) 0.998 (0.036)

β24 —– —– —– 0.997 (0.034) 0.996 (0.036)

σ2 0.948 (0.108) 0.950 (0.154) 0.956 (0.156) 0.953 (0.160) 0.944 (0.158)

To assess the performance of the MIC when l0 = 2, and to compare it
with the Schwarz Criterion (SC) as well as a criterion proposed by Yao (1989),
simulations were done for a very simple special case of our general model with
sample sizes n of up to 450. Here we adopt Yao’s (1989) set-up where a univariate
piecewise constant model is to be estimated. Note that such a model is a special
case of Model (1.2). Specifically, Yao’s model is

yt = β0
j + εt if xt ∈ (τ0

j−1, τ
0
j ], j = 1, . . . , l0 + 1,

where xt = t/n for t = 1, . . . , n, εt is i.i.d. with mean zero and finite 2mth
moment for some positive integer m. Yao shows that with m ≥ 3, the minimizer
of log σ̂2

l + l ·Cn/n is a consistent estimate of l0 for l ≤ L, the known upper bound
of l0, where {Cn} is any sequence satisfying Cnn−2/m → ∞ and Cn/n → 0 as
n → ∞. Four sets of specifications of this experimental model are used:
(f) τ0

1 = 1/3, τ0
2 = 2/3, β0

10 = 0, β0
20 = 2, β0

30 = 4, εt ∼ DE(0, 1/
√

2);
(g) τ0

1 = 1/3, τ0
2 = 2/3, β0

10 = 0, β0
20 = 2, β0

30 = 4, εt ∼ t7/
√

1.4;
(h) τ0

1 = 1/3, τ0
2 = 2/3, β0

10 = 0, β0
20 = 1, β0

30 = −1, εt ∼ DE(0, 1/
√

2);
(i) τ0

1 = 1/3, τ0
2 = 2/3, β0

10 = 0, β0
20 = 1, β0

30 = −1, εt ∼ t7/
√

1.4,
where t7 refers to the Students-t distribution with 7 degrees of freedom.

In each of these cases the variances of εt are scaled to 1 to make the noise
levels comparable. Note that for εt ∼ t7/

√
1.4, E(ε6

t ) < ∞ and E|ε7
t | = ∞, so the

model barely satisfies the condition of Yao and Au (1989) with m = 3 and does
not satisfy our exponential boundedness condition. In the paper of Yao and Au
(1989), {Cn} is not specified, so {Cn} must be chosen to satisfy the conditions.
The simplest {Cn} is Cn = c1n

α. With m = 3, we have nα−2/3 → ∞ implying
α > 2/3. (We shall call the criterion with such a Cn, Y C, hereafter.) To reduce
the potential risk of underestimating l0, we round 2/3 up to 0.7 as our choice of
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α. The δ0 and c0 in MIC are chosen as 0.1 and 0.299 respectively, for the reasons
previously mentioned. c1 is chosen by the same method we used to choose c0,
that is, forcing log n0 = c1n

α
0 and solving for c1. With n0 = 20 and α = 0.7, we

get c1 = 0.368.
The results for model selection are reported in Tables 3.3-3.4. Table 3.3

tabulates the empirical distributions of the estimated l0 for different sample sizes.
From the table, it is seen that for most cases, MIC and Y C perform significantly
better than SC. And with a sample size of 450, MIC and Y C correctly identify
l0 in more then 90% of the cases. For Models (f) and (g), which are more easily
identified, Y C makes more correct identifications than MIC. But for Models (h)
and (i), which are harder to identify, MIC makes more correct identifications.
From Theorem 4.1 and the remark after its proof, it is known that both MIC

and Y C are consistent for the models with double exponential noise. This theory
seems to be confirmed by our simulation.

Table 3.3. The empirical distribution of l̂ in 100 repetitions by MIC, SC

and Y C for piecewise constant model.

(n0, n1, n2, n3 are the frequencies of l̂ = 0, 1, 2, 3 respectively)

MIC : n0, n1, n2, n3 sample size
Y C : n0, n1, n2, n3

SC : n0, n1, n2, n3 50 150 450
5, 30, 48, 17 0, 18, 79, 3 0, 0, 98, 2

Model (f) 5, 36, 45, 14 0, 36, 64, 0 0, 9, 91, 0
0, 17, 52, 31 0, 1, 64, 35 0, 0, 83, 17
5, 38, 51, 6 0, 23, 72, 5 0, 0, 99, 1

Model (g) 7, 41, 48, 4 0, 46, 53, 1 0, 7, 93, 0
3, 18, 56, 23 0, 2, 79, 19 0, 0, 87, 13
0, 3, 81, 16 0, 0, 96, 4 0, 0, 98, 2

Model (h) 0, 3, 84, 13 0, 0, 100, 0 0, 0, 100, 0
0, 0, 63, 37 0, 0, 82, 18 0, 0, 87, 13
0, 5, 85, 10 0, 0, 97, 3 0, 0, 100, 0

Model (i) 0, 7, 86, 7 0, 0, 100, 0 0, 0, 100, 0
0, 1, 73, 26 0, 0, 83, 17 0, 0, 93, 7

Model selection seems to be little affected by varying the noise distribution.
This may be due to the scaling of the noises by their variances, since variance
is more sensitive to tail probabilities compared to quantiles or mean absolute
deviation. Because most people are familiar with the use of variance as an index
of dispersion, we adopt it, although other measures may reveal the tail effect on
model identification better for our moderate sample sizes. Table 3.4 shows the
estimated thresholds and their standard deviations for Models (f), (g), (h), (i),
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conditional on l̂ = l0. Overall, they are quite accurate, even when the sample
size is 50. For Models (h) and (i), the accuracy of τ̂2 is much better than that
of τ̂1, since τ2 is much easier to identify by the model specification. In general,
for models which are more difficult to identify, a larger sample size is needed to
achieve the same accuracy.

Table 3.4. The estimated thresholds and their standard errors for piecewise
constant model.

(Conditional on l̂ = 2)

τ̂1, (SE) sample size
τ̂2, (SE) 50 150 450
Model (f) 0.335 (0.078) 0.338 (0.039) 0.334 (0.012)

0.660 (0.032) 0.666 (0.008) 0.667 (0.003)
Model (g) 0.313 (0.076) 0.332 (0.032) 0.334 (0.013)

0.656 (0.015) 0.669 (0.009) 0.667 (0.002)
Model (h) 0.316 (0.027) 0.334 (0.007) 0.333 (0.002)

0.662 (0.030) 0.667 (0.006) 0.667 (0.003)
Model (i) 0.323 (0.023) 0.332 (0.010) 0.334 (0.004)

0.661 (0.030) 0.666 (0.007) 0.667 (0.003)

A data set used in Henderson and Velleman (1981) has been analyzed, using
our proposed method. The data consist of measurements of three variables, miles
per gallon (MPG), weight (WT) and horse power (HP), on thirty eight 1978-79
model automobiles. The dependence of MPG on WT and HP is of interest.
Graphs of the data reveal a nonlinear dependence of MPG on WT (see Figure
3.1). Four models are fitted to the data set and the MIC procedure is used to
select the “best” model. The four candidate models are

MPG = β0 + β1WT + ε, (3.1)

MPG = β0 + β1WT + β2HP + ε, (3.2)

MPG = β0 + β1WT + β2WT 2 + β3HP + ε, (3.3)

MPG =

{
β10 + β11WT + β12HP + ε, if WT < τ,

β20 + β21WT + β22HP + ε, if WT ≥ τ.
(3.4)

As suggested by the previous simulations, the constants c0 and δ0 in the penalty
term of MIC are chosen, respectively, as 0.2 and 0.05. The MIC values for
the four models are 2.24, 2.28, 2.12 and 2.11 respectively. So Model (3.4) is
chosen as the “best” model. With this model, σ̂2 = 4.90, τ̂ = 2.7, and the
estimated coefficients are (β̂10, β̂11, β̂12) = (48.82,−5.23,−0.08), (β̂20, β̂21, β̂22) =
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(30.76,−1.84,−0.05). Needless to say, the selected model is only the “best”
among the four models considered; further model reduction may be possible.
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Figure 3.1. Mile per gallon vs. weight for 38 cars.

4. Asymptotic Properties of the Parameter Estimates

Consider the segmented linear regression model, (2.1), or its equivalent vector
form (2.2). Let l̂ minimize MIC(l) as defined in (2.3). To identify the number
of thresholds l0 consistently, assume:

Assumption 4.1. {xt} is a strictly stationary, ergodic process with positive
definite matrices E{x1x′

11(x1d∈(τ0
i −δ,τ0

i ))} and E{x1x′
11(x1d∈(τ0

i ,τ0
i +δ))} in a small

δ-neighbourhood of each of the true thresholds τ0
1 , . . . , τ0

l0; or

Assumption 4.1′. If the covariates are not random, (1/n)
∑n

t=1xtx′
t1[xtd∈(τ0

i−δ,τ0
i ]]

and 1
n

∑n
t=1 xt x′

t1[xtd∈(τ0
i ,τ0

i +δ]] converge to positive definite real matrices for
δ ∈ (0, min1≤j≤l0 (τ0

j+1 − τ0
j )/4).

(When l0 = 1, this last requirement reduces to 0 < δ < ∞ since τ0
l0+1 is always

set to be infinity.)

Assumption 4.1 implies that the design matrix Xn(α, η) has full column rank
a.s. as n → ∞ for every open interval (α, η) in the small neighbourhood of τ0

i , i =
1, . . . , l0, for which xd has a positive probability density. When Assumption 4.1′

is satisfied, Xn(α, η) will have full column rank for large n and for every open

interval (α, η) in a small neighbourhood of τ0
i , i = 1, . . . , l0. So ˆ̃

βi will be unique
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with probability tending to 1 as n → ∞, for i = 1, . . . , l̂, provided that l̂ converges
to l0 in probability.

When the segmented regression model (2.1) reduces to the segmented poly-
nomial or functional segmented regressions discussed by Feder (1975), a condition
similar to either Assumption 4.1 or Assumption 4.1′ is essential for identifying the
segmented model parameters (see Feder 1975). In particular, for the segmented
polynomial regression model, Assumption 4.1 is automatically satisfied if the key
covariate xd has a positive density within a small neighbourhood of each of the
thresholds.

In addition, we need to place some restriction on the distribution of the
i.i.d. errors {εt}. We will require that they be locally exponentially bounded
(LEB). A random variable Z is said to be LEB if there exist constants, c0 and
T0, in (0,∞) such that

E(euZ) ≤ ec0u2
, ∀ |u| ≤ T0. (4.1)

Remark. The LEB condition is satisfied by any distribution with zero mean
and moment generating function having bounded second derivative near zero.
Many commonly used error distributions such as the symmetrized exponential
family are of this type. Hence the theory of this section applies to a wide range
of problems.

Since the sample size n is always finite, only bounded l0
′
s can be effectively

identified. So we assume an upper bound L of l0. Another simplification in the
nonlinear minimization of S(τ1, . . . , τl) is obtained without loss of generality by
limiting the possible values of τ1 < · · · < τl to the discrete set, {x1d, . . . , xnd}.
Theorem 4.1. Suppose the segmented linear regression model (2.2) obtains, with
Xn independent of ε̃n. Assume:

(i) the ε̃n have i.i.d., LEB components with mean zero and variance σ2
0;

(ii) l0 ≤ L for some specified upper bound L > 0;
(iii) one of Assumptions 4.1 or 4.1′ is satisfied.

Then l̂ → l0 in probability as n → ∞.

Next, we show that the threshold estimates (τ̂1, . . . , τ̂l̂) converge to the true
thresholds, (τ0

1 , . . . , τ0
l0) at the rate of Op(1/n); and the least squares estimates

of β̃0
j and σ2

0 based on the estimated thresholds are asymptotically normal.

Assumption 4.2. (A.4.2.1) The covariates {xt} are i.i.d. random variables with
E(x′

1x1)u < ∞ for some u > 2.
(A.4.2.2) Within some small neighborhoods of the true thresholds, x1d has a
positive and continuous probability density function fd(·) with respect to the
one dimensional Lebesgue measure.
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(A.4.2.3) There exists one version of E[x1x′
1|x1d = x] which is continuous within

some neighborhoods of the true thresholds and that version has been adopted.

Remark. Assumptions (A.4.2.1) - (A.4.2.3) are satisfied if (xt1, . . . , xtp)′ has a
joint exponential distribution in the canonical form.

To obtain a rate of convergence, Op(1/n), for the threshold estimates, we
need the following additional assumption.

Assumption 4.2′. There exist some positive η and δ such that

inf
|x−τ0

j |<δ
{P (|x′

1(β̃
0
j+1 − β̃0

j )| > η|xd = x)} > 0

for some j.

This assumption holds if (xt1, . . . , xtp)′ has a joint distribution from the
exponential family in canonical form.

Similar assumptions can be made when the covariates are nonrandom by
replacing the distributions in Assumption 4.2 and 4.2′ by their empirical coun-
terparts.

Theorem 4.2. Consider the segmented linear regression model (2.2) with Xn

independent of ε̃n. Assume that its i.i.d., LEB components have mean zero and
variance σ2

0 while Assumptions 4.1, 4.2 and 4.2′ hold for some j = 1, . . . , l0. Then

τ̂j − τ0
j = Op(

1
n

).

Remark. If we replace Assumption 4.2′ by the slightly weaker condition
P (x′

1(β̃
0
j+1 − β̃0

j ) �= 0|xd = τ0
j ) > 0 for some j = 1, . . . , l0 and maintain the rest

of the assumptions of Theorem 4.2, then

τ̂j − τ0
j = Op(

ln2 n

n
).

A detailed proof can be found in Wu (1992).

Recall that ˆ̃βj and σ̂2 are the least squares estimates of β̃0
j and σ2

0 based on
the estimates l̂ and τ̂j’s as defined in Section 2, j = 1, . . . , l0 + 1.

Theorem 4.3. Under the conditions of Theorem 4.2 except Assumption 4.2′,
the least squares estimates ˆ̃

βi and σ̂2 based on the estimated l̂ and τ̂i’s as defined
in Section 2 are asymptotically normal estimates of β̃0

i and σ2
0, i = 1, . . . , l0 + 1.

Namely,
√

n( ˆ̃
βi − β̃0

i ) and
√

n(σ̂2 −σ2
0), i = 1, . . . , l0 +1, converge in distribution

to normal distributions with zero means and finite variances.
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The asymptotic variances can be computed by first treating l0 and (τ0
i , i =

1, . . . , l0) as known so that the usual “estimates” of the variances of the estimates
of the regression coefficients and residual variance can be written down explicitly
then by substituting l̂ and (τ̂i, i = 1, . . . , l̂) for l0 and (τ0

i , i = 1, . . . , l0) in these
variance “estimates”.

Though most of the above results are stated for a discontinuous segmented
regression model, i.e. P (x′

1(β̃
0
j+1 − β̃0

j ) �= 0|xd = τ0
j ) > 0 for some j = 1, . . . , l0,

similar asymptotic results hold at continuity points of the model except that the
rate of convergence of the threshold estimates is reduced to Op(1/

√
n) (see Wu

(1992)).

5. Proofs

The proof of Theorem 4.1 follows a series of preliminary lemmas.

Lemma 5.1. Assume Z1, . . . , Zk are i.i.d. LEB random variables, i.e. for some
T0 > 0 and 0 < c0 < ∞, E(euZ1) ≤ ec0u2

for |u| ≤ T0. Let Sk =
∑k

i=1 aiZi,
where the a′is are constants. Then for any t0 > 0 satisfying |t0ai| ≤ T0 and all
i ≤ k,

P{|Sk| ≥ x} ≤ 2e−t0x+c0t20
∑k

i=1
a2

i . (5.1)

Proof. The result is a direct application of Markov’s inequality to P{Sk ≥ x} =
P{et0Sk ≥ et0x} and P{Sk ≤ −x} = P{−Sk ≥ x}.
Lemma 5.2. For the segmented regression model (2.2), assume that the i.i.d. er-
rors {εt} are LEB and independent of Xn. Let Tn(α, η),−∞ ≤ α < η ≤ ∞, be
defined as in Section 2. Then

P
{

sup
α<η

Tn(α, η) ≥ 9p3
0

T 2
0

ln2 n
}
→ 0, as n → 0, (5.2)

where p0 is the true order of the model and T0 is the constant associated with the
local exponential boundedness of {εt}.
Proof. Conditioning on Xn, we have

P
{

sup
α<η

Tn(α, η)≥9p3
0

T 2
0

ln2 n|Xn

}
= P

{
max

xsd<xtd

ε̃′nHn(xsd, xtd)ε̃n≥9p3
0

T 2
0

ln2 n|Xn

}

≤
∑

xsd<xtd

P
{
ε̃′nHn(xsd, xtd)ε̃n ≥ 9p3

0

T 2
0

ln2 n|Xn

}
.

Since Hn(xsd, xtd) is idempotent, one can write, for p := rank(Hn(xsd, xtd)) =
rank(Λ) ≤ p0 with Q having full row rank p

ε̃′nHn(xsd, xtd)ε̃n = ε̃′nQ′Qε̃n =
p∑

l=1

u2
l ,
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where Q′ = (q1, . . . ,qp) and ul = q′
lε̃n, l = 1, . . . , p. Since p ≤ p0 and p0 is finite,

it suffices to show that

∑
xsd<xtd

P
{
u2

l ≥ 9p2
0

T 2
0

ln2 n | Xn

}
→ 0, as n → 0,

for any l. Noting that p = trace(Hn(xsd, xtd)) =
∑p

l=1 ‖ ql ‖2, we have ‖ ql ‖2=
q′

lql ≤ p ≤ p0, l = 1, . . . , p. By Lemma 5.1, with t0 = T0/p0 we have
∑

xsd<xtd

P{|ul| ≥ 3p0 ln n/T0 | Xn}

≤
∑

xsd<xtd

2 exp(−T0

p0
· 3p0

T0
ln n) exp(c0(T0/p0)2p0)

≤ n(n + 1)/n3 exp(c0T
2
0 /p0) → 0,

as n → ∞, where c0 is the constant specified in Lemma 5.1. Finally, by appeal-
ing to the dominated convergence theorem we obtain the desired result without
conditioning.

Lemma 5.3. For the segmented regression model (2.2), assume: (i) the design
matrix Xn satisfies Assumption 4.1 or Assumption 4.1′; (ii) the i.i.d. errors {εt}
are LEB and independent of Xn. Then

[Sn(τ0
r − δ, τ0

r + δ) − Sn(τ0
r − δ, τr) − Sn(τ0

r , τ0
r + δ)]/n a.s.−→ Cr (5.3)

for any δ ∈ (0,min1≤j≤l0(τ0
j+1 − τ0

j )/4), any r = 1, . . . , l0 and some Cr > 0 as
n → ∞.

Proof. It suffices to prove the result when l0 = 1. Since the proofs under
Assumption 4.1 and Assumption 4.1′ are essentially the same, for brevity we
prove the result only under Assumption 4.1. For expository simplicity, we omit
the subscripts and superscripts 0 in this proof. Let X∗

1 = Xn(τ1 − δ, τ1), X∗
2 =

Xn(τ1, τ1 + δ), X∗ = Xn(τ1 − δ, τ1 + δ) = X∗
1 + X∗

2 , ε̃∗ = In(τ1 − δ, τ1 + δ)ε̃n and
ˆ̃
β = (X∗′X∗)−X∗′Yn. As in ordinary regression, we have

Sn(τ1 − δ, τ1 + δ)

= ‖X∗
1 (β̃1− ˆ̃

β )‖2+‖X∗
2 (β̃2− ˆ̃

β )‖2+‖ε̃∗‖2+2ε̃∗′X∗
1 (β̃1− ˆ̃

β )+2ε̃∗′X∗
2 (β̃2− ˆ̃

β ).

It then follows from the Law of Large Numbers for stationary ergodic stochastic
processes that as n → ∞,

ˆ̃
β

a.s.−→ {E{x1x′
11[x1d∈(τ1−δ,τ1+δ)]}}−1E{Y1x11[x1d∈(τ1−δ,τ1+δ)]} := β̃∗,
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and hence

lim
n→∞

1
n

Sn(τ1 − δ, τ1 + δ)

= (β̃1−β̃∗)′ · E(x1x′
11[x1d∈(τ1−δ,τ1)]) · (β̃1−β̃∗)

+(β̃2 − β̃∗)′ · E(x1x′
11[x1d∈(τ1,τ1+δ)]) · (β̃2−β̃∗)+σ2P{xtd∈(τ1−δ, τ1+δ)}.

Similarly, we can show that 1
nSn(τ1 − δ, τ1) and 1

nSn(τ1, τ1 + δ) converge to
σ2P{x1d ∈ (τ1 − δ, τ1)} and σ2P{x1d ∈ (τ1, τ1 + δ)}, respectively. Finally, we
have

Cr = (β̃1 − β̃∗)′E(x1x′
11[x1d∈(τ1−δ,τ1)])(β̃1 − β̃∗)

+(β̃2 − β̃∗)′E(x1x′
11[x1d∈(τ1,τ1+δ)]) · (β̃2 − β̃∗)

is positive. This completes the proof.

Lemma 5.4. Assumptions (i) and (ii) of Lemma 5.3 imply
(i) for all l < l0, P{σ̂2

l > σ2
0 + C} → 1, n → ∞ for some C > 0 (ii) for all l such

that l0 ≤ l ≤ L, L being a specified upper bound for l0,

0 ≤ 1/n
n∑

t=1

ε2
t − σ̂2

l = Op(ln2(n)/n), (5.4)

where σ̂2
l = 1

nSn(τ̂1, . . . , τ̂l) is the least squares estimate (LSE) of σ2 when l0 is
the number of true thresholds.

Proof. (i) Since l < l0, for δ ∈ (0,min1≤j≤l0(τ0
j+1 − τ0

j )/4), there exists 1 ≤
r ≤ l0, such that (τ̂1, . . . , τ̂l) ∈ Ar := {(τ1, . . . , τl) : |τs − τ0

r | > δ,∀ s = 1, . . . , l}.
Hence, if we can show that for each r, 1 ≤ r < l0, with probability approaching
1,

min
(τ1,...,τl)∈Ar

Sn(τ1, . . . , τl)/n > σ2
0 + Cr,

for some Cr > 0. By choosing C := min1≤r≤l0{Cr}, we prove the desired result.
For any (τ1, . . . , τl) ∈ Ar, let ξ1 ≤ · · · ≤ ξl+l0+1 be the ordered set {τ1, . . .,

τl, τ
0
1 , . . . , τ0

r−1, τ
0
r − δ, τ0

r + δ, τ0
r+1, . . . , τ

0
l0} and let ξ0 = −∞, ξl+l0+2 = ∞. Then

it follows from Lemmas 5.2 and 5.3 and the law of large numbers that uniformly
in Ar,

1
n

Sn(τ1, . . . , τl) ≥ 1
n

Sn(ξ1, . . . , ξl+l0+1)

=
1
n

ε̃′nε̃n + Op(ln2(n)/n)+
1
n

(Sn(τ0
r −δ, τ0

r + δ) − Sn(τ0
r −δ, τ0

r )−Sn(τ0
r , τ0

r + δ))

= σ2
0 + Cr + op(1), (5.5)
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where Cr is defined in (5.3).
(ii) Let ξ1 ≤ · · · ≤ ξl+l0 be the ordered set, {τ̂1, . . . , τ̂l, τ

0
1 , . . . , τ0

l0}, ξ0 = τ0
0 =

−∞ and ξl+l0+1 = τ0
l0+1 = ∞. Using an argument similar to that in (i) and

noting that Sn(·) is the residual sum of squares, we can show that

ε̃′nε̃n ≥ Sn(τ0
1 , . . . , τ0

l0) ≥ nσ̂2
l ≥ Sn(τ0

1 , . . . , τ0
l0, τ̂1, . . . , τ̂l)

= ε̃′nε̃n −
l0+1∑
j=1

∑
τ0
j−1≤ξk−1<ξk≤τ0

j

Tn(ξk−1, ξk) = ε̃′nε̃n + Op(ln2(n)).

This proves (ii).

Proof of Theorem 4.1. It follows from Lemma 5.4 (i) that P{l̂ ≥ l0} → 1 as
n → ∞. By Lemma 5.4 (ii) and the law of large numbers, for l0 < l ≤ L,

0 ≥ [σ̂2
l − 1

n
ε̃′nε̃n] − [σ̂2

l0 −
1
n

ε̃′nε̃n] = Op(ln2 n/n),

and

[σ̂2
l0 − σ2

0 ] = [σ̂2
l0 − ε̃′nε̃n/n] + [ε̃′nε̃n/n − σ2

0] = Op(ln2 n/n) + op(1) = op(1).

Hence 0 ≤ (σ̂2
l0 − σ̂2

l )/σ̂
2
l0 = Op(ln2(n)/n). Note that for 0 ≤ x < 1/2, ln(1−x) ≥

−2x. Therefore,

MIC(l) − MIC(l0) = ln(σ̂2
l ) − ln(σ̂2

l0) + c0(l − l0)(ln n)2+δ0/n

= ln(1 − (σ̂2
l0 − σ̂2

l )/σ̂
2
l0) + c0(l − l0)(ln(n))2+δ0/n

≥ −2Op(ln2(n)/n) + c0(l − l0)(ln(n))2+δ0/n > 0

for sufficiently large n; so l̂
p→ l0 as n → ∞.

The proof of Theorem 4.2 will be delayed until after the proof of Theorem
4.3. To simplify the statement of required preliminary results, let Rj = (τ0

j−1, τ
0
j ],

R̂j = (τ̂j−1, τ̂j ], τ0
0 = τ̂0 = −∞, τ0

l0+1 = τ̂l0+1 = ∞, and ∆nj = |τ̂j−τ0
j | = Op(an),

j = 1, . . . , l0 + 1, where {an} is a sequence of positive numbers.

Lemma 5.5. Suppose that the assumptions of Theorem 4.2 except Assumption
4.2′ are satisfied and that {(Zt, xtd)} is a strictly stationary, ergodic sequence. If
for some u > 1, E|Z1|u < ∞, then 1

n

∑n
t=1 |Zt‖1(xtd∈R̂j)

− 1(xtd∈Rj)| = Op(a
1/v
n ),

where 1/v = 1 − 1/u.

Proof. It suffices to show that for every j,

1
n

n∑
t=1

|Zt|1(|xtd−τ0
j |<∆nj)

= Op(a1/v
n ).
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By assumption, ∆nj = Op(an). So for all ε > 0 there exists M > 0 such that
P (∆nj > anM) < ε for all n. Thus

P (
1
n

n∑
t=1

|Zt|1(|xtd−τ0
j |<∆nj)

> a1/v
n M)

= P (
1
n

n∑
t=1

|Zt|1(|xtd−τ0
j |<∆nj)

> a1/v
n M,∆nj ≤ anM)

+P (
1
n

n∑
t=1

|Zt|1(|xtd−τ0
j |<∆nj)

> a1/v
n M,∆nj > anM)

≤ P (
1
n

n∑
t=1

|Zt|1(|xtd−τ0
j |<anM) > a1/v

n M) + ε.

Hence it remains only to prove that S∗ := a
−1/v
n n−1 ∑n

t=1 |Zt|1(|xtd−τ0
j |<anM) is

bounded in probability. However Hölder’s inequality and the assumptions imply
that the expected value of this last quantity is bounded above by (E|Z1|u)1/ua

−1/v
n

(CanM)1/v for some constant C. This shows that S∗ is bounded in L1 and hence
in probability, so the proof is complete.

Proposition 5.1. Assume for the segmented linear regression model (2.2) that
the assumptions of Theorem 4.2 except Assumption 4.2′ hold. Then

τ̂ − τ0 = op(1),

where τ0 = (τ0
1 , . . . , τ0

l0) and τ̂ = (τ̂1, . . . , τ̂l̂) is the least squares estimator of τ0

based on l = l̂, l̂ being a minimizer of MIC(l) subject to l ≤ L.

Proof. By Theorem 4.1, the problem can be restricted to {l̂ = l0}. For any
sufficiently small δ′ > 0, substituting δ′ for the δ in (5.5) in the proof of Lemma
5.4 (i), we get the following inequality

1
n

Sn(τ1, . . . , τl0) ≥
1
n

ε̃′nε̃n + Op(ln2(n)/n)

+
1
n

[Sn(τ0
r −δ′, τ0

r +δ′)−Sn(τ0
r −δ′, τ0

r )−Sn(τ0
r , τ0

r +δ′)],

uniformly in (τ1, . . . , τl0) ∈ Ar := {(τ1, . . . , τl0) : |τs − τ0
r | > δ′, 1 ≤ s ≤ l0}. By

Lemma 5.3, the last term on the RHS converges to a positive Cr. For sufficiently
large n, this Cr will dominate the term Op(ln2 n/n). Thus, uniformly in Ar,
r = 1, . . . , l0, and with probability tending to 1,

1
n

Sn(τ1, . . . , τl0) >
1
n

ε̃′nε̃n +
Cr

2
.
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This implies that, with probability approaching 1, no τ in Ar is qualified as a
candidate for the role of τ̂ , where τ̂ = (τ̂1, . . . , τ̂l0). In other words, P (τ̂ ∈ Ac

r) →
1 as n → ∞. Since this is true for all r, P (τ̂ ∈ ⋂l0

r=1 Ac
r) → 1, as n → ∞. Note

that for δ′ ≤ min0≤i≤l0{(τ0
i+1 − τ0

i )/2},
l0⋂

r=1

{|τ̂r − τ0
r | ≤ δ′} =

l0⋂
r=1

{|τ̂ir − τ0
r | ≤ δ′, for some 1 ≤ ir ≤ l0} = {τ̂ ∈

l0⋂
r=1

Ac
r}.

Thus we have,

P (|τ̂r − τ0
r | ≤ δ′ for r = 1, . . . , l0) = P (τ̂ ∈

l0⋂
r=1

Ac
r) → 1, as n → ∞,

which completes the proof.

Proof of Theorem 4.3. Let (β̃∗
1 , . . . , β̃∗

l0+1) and σ2∗ be the least squares esti-
mates of (β̃1, . . . , β̃l0+1) and σ2

0 when l0 as well as (τ0
1 , . . . , τ0

l0) are assumed known.
Then it is clear that

√
n[(β̃∗′

1 , . . . , β̃∗′
l0+1)

′ − (β̃′
1, . . . , β̃

′
l0+1)

′] and
√

n[σ2∗ − σ2
0]

converge in distribution to normal distributions. So it suffices to show that
β̃∗

j − ˆ̃βj = op(n−1/2) and σ2∗ − σ̂2 = op(n−1/2).
Set for say, Rj = (τ0

j−1, τ
0
j ], X∗

j = In(Rj)Xn = In(τ0
j−1, τ

0
j )Xn and X̂j =

In(R̂j)Xn. Then, with probability tending to 1 as n tends to infinity,

β̃∗
j − ˆ̃

βj

= [(
1
n

X̂ ′
jX̂j)− − (

1
n

X∗′
j X∗

j )−][
1
n

X̂ ′
jYn] + [(

1
n

X∗′
j X∗

j )−][
1
n

(X̂j − X∗
j )′Yn]

=: (I)(II) + (III)(IV ).

By the law of large numbers, both (II) and (III) are Op(1); and the order of
op(n−1/2) for (I) and (IV) follows from Lemma 5.5 by taking Zt = (a′xt)2 for any
real vector a and u > 2.

Similarly, we can show that σ2∗ − σ̂2 = op(n−1/2). This completes the proof.

Proof of Theorem 4.2. The already proven result that ˆ̃τ → τ̃ implies we need
only consider those τ ’s in the neighborhoods of the true threshold parameters
the τ0’s. For simplicity, we may assume without loss of generality that l0 =
1. Furthermore, we assume that d = 1 and p ≥ d = 1. Also, for notational
convenience, we let τ0 = τ1

0 = 0.
By combining Proposition 5.1 and Theorem 4.3, we get τ̂

p→τ0, ˆ̃
β1

p→β̃0
1 , and

ˆ̃
β2

p→β̃0
2 . So it suffices to consider those τ ′s and β̃j , j = 1, 2, satisfying (τ, β̃1, β̃2) ∈

ω(∆), where ∆ > 0, and

ω(∆) = {(τ, β̃1, β̃2) : ‖β̃j − β̃0
j ‖ < ∆, j = 1, 2, |τ − τ0| < ∆}.
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Claim 1. For any ε > 0 there exist K > 0 and ∆ > 0, such that for all sufficiently
large n

P{S∗
n(τ, β̃1, β̃2) − S∗

n(τ0, β̃1, β̃2)} > 1 − ε,

uniformly in (τ, β̃1, β̃2) ∈ ω(∆) and |τ | > K/n where

S∗
n(τ, β̃1, β̃2) := Sn(−∞, τ ; β̃1) − Sn(τ,∞; β̃2),

Sn(α, η; β̃) =
n∑

t=1

(Yt − xt
′β̃)21(xt1∈(α,η)).

To this end, we note that

S∗
n(τ, β̃1, β̃2) − S∗

n(τ0, β̃1, β̃2)

= Sn(τ0, τ ; β̃1) − Sn(τ0, τ ; β̃2)

=
n∑

t=1

[(xt
′β̃0

2 + εt − xt
′β̃1)2 − (xt

′β̃0
2 + εt − xt

′β̃2)2]1(xt1∈(τ0,τ))

= 2
n∑

t=1

εtxt
′(β̃2−β̃1)1(xt1∈(τ0,τ))+

n∑
t=1

{xt
′(2β̃0

2−β̃1−β̃2)xt
′(β̃2−β̃1)}1(xt1∈(τ0,τ))

= (I) + (II). (5.6)

In the following, we show that after appropriate renormalization, (I) is arbitrarily
small while (II) is positive.

By choosing ∆ sufficiently small and the Law of Large Numbers we get

1
n

(II) =
1
n

n∑
t=1

[x′
t(β̃

0
2 − β̃0

1)]21(xt1∈(τ0,τ)) + O(∆) · 1
n

n∑
t=1

‖xt‖21(xt1∈(τ0,τ))

≥ η2

n

n∑
t=1

1(|x′
t(β̃

0
2−β̃0

1)|>η)1(xt1∈(τ0,τ)) + O(∆) · 1
n

n∑
t=1

‖xt‖21(xt1∈(τ0,τ)), (5.7)

where O(∆) denotes the term of the same order as ∆ for small ∆.

Set ¯̃
β

0
= 2(β̃0

2 − β̃0
1). Then the first term of (5.6) can be written as

1
n

(I) =
1
n

n∑
t=1

εt1(xt1∈(τ0,τ))x
′
t
¯̃
β

0
+ O(∆) · 1

n

n∑
t=1

|εt|‖xt‖1(xt1∈(τ0,τ)). (5.8)

For any η > 0 let:

ω(η, τ) : = {(1,x′)′ : x1 ∈ [τ0, τ ]}
⋂

{(1,x′)′ : |(1,x′)′(β̃0
2 − β̃0

1)| > η};
Q(τ) = E{1(xt1∈(τ0,τ))}; Q̃(τ) = E{1(xt∈ω(η,τ))}. (5.9)
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Then

Sn(τ, β̃1, β̃2)−Sn(τ0, β̃1, β̃2)
nQ(τ)

≥ η2 1
nQ(τ)

n∑
t=1

1(xt∈ω(η,τ)) +
1

nQ(τ)

n∑
t=1

εtx′
t
¯̃
β

0
1(xt1∈(τ0,τ))

+ O(∆)
1

nQ(τ)

n∑
t=1

[‖xt‖2 + |εt|‖xt‖]1(xt1∈(τ0,τ)). (5.10)

It now suffices to show that on the RHS of (5.10), the first term is positive while
the second and the third are op(1) and Op(∆), respectively, uniformly in β̃′s.

Claim 2. For any ε > 0 and γ > 0, there exists K > 0 such that for any n > 0:

(a) P
{

sup
K/n<τ−τ0≤∆

[| 1
nQ̃(τ)

n∑
t=1

1(xt∈ω(η,τ)) − 1|] < γ
}

> 1 − ε;

(b) P
{

sup
K/n<τ−τ0≤∆

[| 1
nQ(τ)

n∑
t=1

εtx′
t
¯̃
β

0
1(xt1∈(τ0,τ))|] < γ

}
> 1 − ε;

(c) sup
K/n<τ−τ0≤∆

{ 1
nQ(τ)

n∑
t=1

[‖xt‖2 + |εt|‖xt‖]1(xt1∈(τ0,τ))

}
= Op(1);

(d) inf
K/n<τ−τ0≤∆

{Q̃(τ)
Q(τ)

}
> 0.

Clearly if Claim 2 holds, for arbitrarily small ε > 0 the RHS of (5.10) is
positive with probability exceeding 1 − ε uniformly in (τ, β̃1, β̃2) ∈ ω(∆).

Proof of Claim 2. (d) Assumption 4.2′ tells us that for some η > 0, there exists
a δ > 0 such that

δ∗ = inf
|x−τ0|<δ

[P{|x′
t(β̃

0
2 − β̃0

1)| > η | xt1 = x}] > 0.

Hence

Q̃(τ) = E[1(xt1∈(τ0,τ)) · 1(|x′
t(β̃

0
2−β̃0

1)|>η)]

= E{E[1(xt1∈(τ0,τ))1(|x′
t(β̃

0
2−β̃0

1)|>η) | xt1]}
≥ E[1(xt1∈(τ0,τ)) inf

|xt1−τ0|<δ
[P{|x′

t(β̃
0
2 − β̃0

1)| > η | xt1}]]
≥ δ∗E[1(xt1∈(τ0,τ))] = δ∗Q(τ),
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where we have assumed that for the constant provided by Claim 1, ∆ ∈ (0, δ)
(otherwise we can select a new smaller ∆ with that property). Thus

inf
K/n<τ−τ0≤∆

{Q̃(τ)
Q(τ)

}
> δ∗ > 0.

By Assumption 4.2,

Q(τ) =
∫ τ

τ0
f1(x)dx = f1(ξ)(τ − τ0), ξ ∈ (τ0, τ),

which implies that Q(τ) is equivalent to τ − τ0 or simply τ when τ0 = 0 is
assumed. Thus we may assume without loss of generality that Q(τ) = τ , at least
for small τ .

As for Q̃(τ), we note that for any τ > 0, b > 1 with bτ < ∆,

|Q̃(bτ)
Q̃(τ)

− 1| =
|Q̃(bτ) − Q̃(τ)|

Q̃(bτ)
≤ E[1(xt1∈[τ,bτ ])]

δ∗Q(τ)
≤ K∗(b − 1)τ

δ∗τ
=: K∗(b − 1),

(5.11)
where the constant K∗ used here and in the sequel does not depend on τ .

Now let:

Q̃n(τ) =
1
n

n∑
t=1

1(xt∈ω(η,τ));

Qn(τ) =
1
n

n∑
t=1

1(xt1∈(0,τ));

Rn(τ) =
1
n

n∑
t=1

[‖xt‖2 + |εt|‖xt‖]1(xt1∈(0,τ));

R(τ) = E[Rn(τ)]. (5.12)

We now need to replace the interval K/n < τ < ∆ by a countable subset {zi =
biK/n, i = 0, 1, . . .}. To that end let H(·) and Hn(·) generically represent any
member of {Q̃(·), Q(·), R(·)} and {Q̃n(·), Qn(·), Rn(·)}, respectively. Note that
for 0 < x ≤ y ≤ bx ≤ ∆, when

|Hn(x)
H(x)

− 1| < γ and |Hn(bx)
H(bx)

− 1| < γ,

we have
−O(|b − 1|) − γ ≤ Hn(y)

H(y)
− 1 ≤ O(|b − 1|) + γ, (5.13)

where O(|b − 1|) → 0 as b → 1.
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To verify (5.13), noting that both H(·) and Hn(·) are non-decreasing func-
tions of τ we have

Hn(y)
H(y)

− 1 ≤ Hn(bx)
H(x)

− 1 =
H(bx)
H(x)

· Hn(bx)
H(bx)

− 1.

By an argument similar to that used for (5.11) we can show that the last quanitity
obtained just above cannot exceed

|H(bx)
H(x)

− 1| · (1 + γ) + γ

≤ O(|b − 1|)(1 + γ) + γ = O(|b − 1|) + γ, (5.14)

while
Hn(y)
H(y)

− 1 ≥ Hn(x)
H(bx)

− 1 =
H(x)
H(bx)

· Hn(x)
H(x)

− 1 ≥ −O(|b − 1|) − γ. (5.15)

To establish (a) and (c) of Claim 2 by taking (5.13) into account, we need
in addition that for any ε > 0 and γ > 0, there exist b > 1 and K > 0, such that

P
{
sup
i≥0

|Hn(biK/n)
H(biK/n)

− 1| > γ
}
≤

∞∑
j=0

K∗

b jK
=

b · K∗

K(b − 1)
< ε. (5.16)

To prove (5.16), observe that its LHS cannot exceed
∞∑
i=0

P
{
|Hn(biK/n)
H(biK/n)

− 1| > γ
}
≤

∞∑
i=0

1
γ2n2

Var [nHn(biK/n)]
[H(biK/n)]2

≤
∞∑
i=0

K∗

n

1
H(biK/n)

≤
∞∑
i=0

K∗

Kbi
.

It remains to verify (b). Let:

Ũn(α, ξ) =
1
n

n∑
t=1

|εt||x′
t
¯̃
β

0|1(xt1∈(α,ξ));

Un(τ) =
1
n

n∑
t=1

εt(x′
t
¯̃
β

0
)1(xt1∈(0,τ));

Ũ(α, ξ) = E[Ũn(α, ξ)];
U(τ) = E[Un(τ)]; (5.17)

and zj = b jK/n, j = 0, 1, . . ., K > 0, b > 1, n ≥ 1. Observe that for zj < τ ≤
zj+1,

|Un(τ)
τ

| ≤ |Un(τ)
zj

| ≤ |Un(τ) − Un(zj)|
zj

+ |Un(zj)
zj

| ≤ Ũn(zj , τ)
zj

+ |Un(zj)
zj

|

≤ Ũn(zj , zj+1)
zj

+ |Un(zj)
zj

|.
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Hence,

sup
K/n<τ≤∆

{
|Un(τ)
Q(τ)

|
}

= sup
j≥0

{
sup

K/n<τ≤∆,zj<τ≤zj+1

[|Un(τ)
Q(τ)

|]
}

≤ sup
j≥0,zj≤∆

{ Ũn(zj , zj+1)
zj

}
+ sup

j≥0,zj≤∆

{
|Un(zj)

zj
|
}
. (5.18)

Thus, it suffices to show that the two terms on the RHS of (5.18) are of the order
op(1). To this end let γ > 0. Then

P
{

sup
j≥0

[|Un(zj)
zj

|] > γ
}
≤

∑
j

P
{
|Un(zj)

zj
| > γ

}
≤

∑
j

1
γ2z2

j

Var [Un(zj)]

=
∑
j

σ2

nγ2z2
j

E[(x′
t
¯̃
β

0
)21(xt1∈(0,zj))] ≤

∑
j

K∗

nz2
j

zj ≤ b

b − 1
K∗

K
→ 0, (5.19)

as K → ∞, by using Assumptions 4.2 and 4.2′.
To show that the first term of the RHS of (5.18) is op(1), we need the following

results:

sup
j≥0,zj≤∆

{ Ũ(zj , zj+1)
zj

}
≤ K∗(b − 1), (5.20)

and

sup
j≥0,zj≤∆

{ |Ũn(zj , zj+1) − Ũ(zj , zj+1)|
zj

}
= op(1). (5.21)

We shall first establish (5.20). Observe that

Ũ(zj , zj+1)
zj

=
K∗

zj
E[|x′

t
¯̃β

0|1(xt1∈(zj ,zj+1))]

≤ K∗

zj
E{E[|x′

t
¯̃
β

0| | xt1] · 1(xt1∈(zj ,zj+1))}

≤ K∗

zj
E{{E[|x′

t
¯̃β

0|2 | xt1]}1/2 · 1(xt1∈(zj ,zj+1))}

≤ K∗

zj
(zj+1 − zj) = K∗(b − 1).

Finally, for (5.22), we note that for any γ > 0,

P
{

sup
j≥0,zj≤∆

{|Ũn(zj , zj+1) − Ũ(zj , zj+1)|
zj

} > γ
}

≤
∑
j

1
γ2z2

j

Var [Ũn(zj , zj+1)]
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=
∑
j

K∗

nz2
j

Var [|εt||x′
t
¯̃β

0|1(xt1∈(zj ,zj+1))]

=
∑
j

K∗

nz2
j

E{{E[|x′
t
¯̃
β

0|2 | xt1]} · 1(xt1∈(zj ,zj+1))}

≤
∑
j

K∗

nz2
j

(zj+1 − zj) ≤ K∗/(Kb).

Thus, choosing K sufficiently large will make the RHS of this last term arbitrarily
small. This completes the proof of Theorem 4.2.

6. Concluding Remarks

Section 2 offers a segmented regression methodology for fitting a set of in-
dependent variables to a response variable. Our method retains much of the
simplicity of the linear model. And it gains some of the flexibility of a non-
parametric model. Yet it avoids the difficulties faced by standard nonparametric
methods in higher dimensions when the “curse of dimensionality”is encountered.

The method looks promising. This promise is indicated by the empirical
results of Section 3 and the theoretical results indicated in Section 4 and proved
in Section 5.

The number of pieces, l, for our piecewise model is chosen by the data. But
an upper bound is imposed on l to ensure computational feasibility and to ensure
sufficient data so that each piece of the model can be well estimated even when x

is a vector of high dimension. And it is shown that our estimate of l is consistent
under reasonably general conditions.

The data also select the subdomain boundaries for the piecewise linear model;
the results are shown to be consistent. The rate of convergence of these boundary
estimates is surprisingly fast at (log n)2/n.

Once the boundaries are estimated, conventional parameter estimates for
parameters of the component linear models are used. Moreover, their asymptotic
theory is the same of that of conventional (global) linear models, permitting the
calculation of confidence intervals and so on. However, we do not have at this
time the asymptotic distributions of the threshold estimates and estimator of the
number of subdomains.

The constant c0 in display (2.3) is chosen in accordance with the guidelines
in Section 2. It allows us, even in small samples, to adhere to the philosophy
underlying our methodology: there is an underlying function of x which is being
approximated differently in different subdomains by the leading terms of different
Taylor expansions and hence linear models. At the same time, our choice allows
for the possibility of choosing the quadratic model and a single domain.
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Work currently underway addresses some of the questions left open by this
work, such as how to partition using more than one independent variable and
how to deal with correlated errors.
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