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Key words and phrases: Maximum of a random field, Poisson process, signal detec-

tion.

1. Introduction

Let dW (x) denote Gaussian white noise in r dimensional Euclidean space,
and assume f ≥ 0 is twice continuously differentiable and satisfies

∫
f2(x)dx = 1. (1.1)

Under certain conditions the random variable

Xmax = maxX(t, σ), (1.2)

where
X(t, σ) = σ−r/2

∫
f [σ−1(x− t)]dW (x), (1.3)

is the likelihood ratio statistic for detecting a signal of known shape f , unknown
amplitude, location t, and scale σ (cf. Siegmund and Worsely (1995)). The max-
imization is over t in a region C of possible locations in r dimensional Euclidean
space and over σ in an interval of possible scale parameters: [σ0, σ1].

The three applications cited by Siegmund and Worsley (1995) as motivating
their work are (i) searching the celestial sphere for a point source of muons
against the background of cosmic radiation (Giller (1994)), (ii) searching PET
maps for signals (Worsley et al. (1992); Worsley (1995)), and (iii) searching for
hot spots of disease incidence (Rabinowitz (1994)). These all involve underlying
point processes, so the assumed normality of dW , hence (1.3), implicitly invokes
a central limit approximation. Indeed, the classical papers of Rice (1944, 1945)
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use a similar normal approximation for shot noise in vacuum tubes. Siegmund
and Worsley (1995) conjecture that their approximation to the distribution of
(1.2) is quite accurate under the assumed normality of (1.3). However, one
might reasonably question that assumed normality, especially since extremely
small tail probabilities for (1.3) will be involved in obtaining a small type one
error probability for (1.2).

The purpose of this paper is to develop an approximation for the distribution
of (1.2) for X defined by

X(t, σ) = σ−r/2
∫
f [σ−1(x− t)][dNx − λdx]/λ1/2, (1.4)

where N is a Poisson random field of rate λ in r dimensional Euclidean space. In
the first instance the maximum is over t with σ fixed; in the second the maximum
is over t and σ. Although the assumption of an underlying homogeneous Poisson
field is very special, close examination of this case gives a good sense of the
accuracy of a normal approximation and the tradeoff between computational
effort and improved accuracy one can expect to find by analyzing the underlying
point process.

The paper is organized as follows. In Section 2 we derive (1.4) as a score
statistic for a particular hypothesis testing problem. In Section 3 we assume σ is
fixed and sketch our approach to approximating the distribution of maxtX(t, σ),
which involves a combination of exponential tilting and Gaussian process tech-
niques. We consider several different approximations: one based on large devi-
ation scaling and others based on “intermediate deviation” scaling, which are
substantially easier to evaluate. In Section 4 we consider simultaneous maxi-
mization over t and σ, which gives us an idea of the difficulties involved in using
our approximation in more general settings. In particular a non-homogeneous
Poisson field leads to similar complications.

The distribution of (1.4) is quite different when f is the indicator of a rect-
angle. See Loader (1991).

2. A Class of Statistical Problems

Let f ≥ 0 satisfy (1.1). Assume that N is a nonhomogeneous Poisson process
with intensity at the point x equal to

λ exp{ξσ−r/2f [(x− t)/σ]}. (2.1)

We shall assume λ is known, while the parameters ξ ≥ 0, σ > 0, t ∈ C are in
general all unknown. To avoid questions of edge effects, we assume that N(x)
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is observed throughout the r dimensional Euclidean space. Up to an additive
constant the log likelihood function is

ξ

∫
σ−r/2f [(x− t)/σ]dNx − λ

∫
{exp[ξσ−r/2f [(x− t)/σ] − 1}dx. (2.2)

Differentiation with respect to ξ gives the efficient score
∫
σ−r/2f [(x−t)/σ]dNx−λ

∫
σ−r/2f [(x−t)/σ] exp{ξσ−r/2f [(x−t)/σ]}dx. (2.3)

If t, σ were both known, we would obtain the score statistic for testing H0 : ξ = 0
by setting ξ = 0 in (2.3) and standardizing the result to have unit variance under
H0. This yields (1.4). When t or the pair t, σ are unknown, we can test ξ = 0 by
maximizing (1.4) over those unknown parameters.

The background noise process, here a homogeneous Poisson field of rate λ,
may be observed for a long enough time over a large enough region that it is
reasonable to regard λ as known. The astronomical example mentioned above
appears to be in this category. There are undoubtedly also applications where it
is more reasonable to regard λ as unknown or to want to model the background
noise by a completely different process. To deal with the comparatively simple
problem of unknown λ, we can (i) assume that the random field is observed over
a bounded region C̃, which contains C, and then some if we are to avoid edge
effects, (ii) replace the known value of λ in (1.4) by the estimated value under
the null hypothesis ξ = 0, to wit λ̂0 = N(C̃)/measure(C̃), and (iii) compute all
probabilities condtionally, given N(C̃). See, for example, Loader (1991). The
issue of an appropriate model for the noise process and estimation of nuisance
parameters of the model is tied to the specific application and sample size, and
will not be discussed here.

3. Known σ

In this section we assume σ is known and without loss of generality set σ = 1.
To simplify the notation we write Xt instead of X(t, 1), for the random field de-
fined in (1.4), so Xmax = maxt∈C Xt. We write Eξ and Pξ to denote expectation
and probability as a function of the parameter ξ. Dependence on the parameter
t is suppressed in this notation. We shall also assume that f is symmetric in each
of its arguments, smooth, and vanishes rapidly at infinity. Although the symme-
try condition is not strictly necessary, it leads to quite substantial simplifications
in the form of the final approximation. Our principal example is the Gaussian
kernel

f(x) = π−r/4 exp(−‖x‖2/2). (3.1)
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Let Zt = λ1/2Xt, ψ(θ) = logE0[exp(θZt)], and note the likelihood ratio

dPξ/dP0 = exp[ξZt − ψ(ξ)]. (3.2)

Straightforward calculations yield

ψ(θ) = λ

∫
{exp[θf(x)] − 1 − θf(x)}dx, (3.3)

ψ′(θ) = Eθ(Zt) = λ

∫
f(x){exp[θf(x)] − 1}dx, (3.4)

and
ψ′′(θ) = Varθ(Zt) = λ

∫
f2(x) exp[θf(x)]dx. (3.5)

We shall write D with coordinates Di to denote differentiation. Thus the
gradient of f isDf = (D1f, . . . ,Drf)T and similarly its Hessian isD2f = (D2

i,jf).
By the assumed symmetry of f ,

Eθ(DZt) = −λ
∫
Df(x){exp[θf(x)]− 1}dx = 0, (3.6)

and hence

Covθ(DiZt,DjZt) = δi,jλ

∫
[Dif(x)]2 exp[θf(x)]dx, (3.7)

where δi,j is 1 or 0 according as i = j or i �= j. Also

Eθ(D2Zt) = −θCovθ(DZt), Eθ(D2ZtDZt) = 0, (3.8)

Covθ(Zt,D
2Zt) = λ

∫
f(D2f) exp(θf)dx, and Covθ(Zt,DZt) = 0. (3.9)

With this notation we can formulate our basic result.

Theorem. Assume b→ ∞, λ→ ∞, in such a way that b/λ1/2 → c, where c is a
positive finite constant. Let θ0 denote the unique positive value of θ satisfying

ψ′(θ0) = bλ1/2. (3.10)

Also let I(θ) = θψ′(θ) − ψ(θ), and let |C| denote the Lebesgue measure of C.
Then

P0{Xmax ≥ b} ≈ 1 − exp[−E0(MC)], (3.11)

where MC is the number of local maxima of the field Xt, t ∈ C of height ≥ b,
given approximately for large b by

E0{MC} ∼ θr−1
0 exp[−I(θ0)](2π)−(r+1)/2 |C|{[ΠiVarθ0(DiZt)]/Varθ0(Zt)}1/2.

(3.12)
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There are two possible interpretations of the approximation in (3.11). (i) C
remains fixed or |C| increases so slowly that the right hand side of (3.12) converges
to zero. In that case the approximation denotes asymptotic equivalence, i.e., the
ratio of the two sides tends to one. (ii) The value of |C| increases sufficiently
rapidly as a function of b that the right hand side of (3.12) is bounded away
from zero and infinity. In that case the approximation in (3.11) indicates that
the difference of the two sides tends to zero. We give an informal discussion
of (3.12) below, which appears to contain the ingredients of a rigorous proof.
We shall not attempt a proof of (3.11), although presumably one can be given
along established lines, e.g., Siegmund (1988) and Kim and Siegmund (1988). See
Aldous (1989), Rabinowitz (1994) or Siegmund and Worsley (1995) for heuristic
discussions of this approximation for Gaussian processes, and Adler (1981) for a
more rigorous treatment and additional references.

The expected number of local maxima of height at least b of the random
field Xt, t ∈ C involves the integral over C of a quantity calculated from the
joint probability (density) that Xt ≥ b,DZt = 0, and D2Zt = z. To obtain an
approximation to this probability and hence (3.12) we employ an exponential
change of measure and a local central limit theorem. Before presenting some
details of the calculation we examine (3.12) more closely.

Although it is unnecessary to utilize the exponential family Pθ in the Gaus-
sian case, i.e., when Xt is defined by (1.3) with σ = 1, we can, nevertheless use
this approach. We obtain ψ(θ) = λθ2/2 = I(θ), so (3.10) becomes the linear
equation θ0 = b/λ1/2, and (3.11)-(3.12) agrees with a well known result (e.g.,
Adler (1981), p. 160).

When C is small compared to its boundary, we can add a boundary correction
to the right hand side of (3.12), which will contain θ0 to one less power and for
a Gaussian process will agree with the corresponding boundary correction in
Siegmund and Worsley (1995). However, in the analysis that produces (3.12) we
incur an error in our application of the local central limit theorem, which appears
to be of the same order of magnitude as the boundary correction. Although
one can reasonably expect that including a boundary correction will lead to
a better approximation, there is no mathematically rigorous guarantee that this
will occur, even asymptotically. For the numerical examples given in this section,
we have chosen C large compared to the length of its boundary, so the boundary
correction is negligible.

The right hand side of (3.12), which in principle involves the integral of a
function of t over C, has in this case simplified quite considerably because of the
stationarity of Xt. The constant on the right hand side, although written as if
it is a function of t, in fact does not depend on t. When we do not have this
stationarity, the solution of equation (3.10) depends on the value of t, and an
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expression like the right hand side of (3.12) (except for the factor |C|) must be
integrated numerically over C. This can make the evaluation of the approxima-
tion very complicated in other contexts. A nonstationary example is presented
in Section 4.

Assuming (as will be demonstrated numerically below) that (3.11)-(3.12)
is often substantially more accurate than a Gaussian process approximation,
and especially in view of the numerical difficulties mentioned in the preceding
paragraph if one wants to implement this approximation more generally, one
naturally asks if there is a simpler approximation that achieves most of the gain
in accuracy of (3.12). One possibility, which takes into account the skewness of
the Poisson distribution but ignores other features, is to replace b/λ1/2 → c by
b/λ1/4 → 0 (cf. Feller (1972), p. 552). By (3.4) and (3.10) θ0 → 0, so

ΠiVarθ0(DiZt)/Varθ0(Zt) ∼ θr
0λ

(r−1)/2 Πi
∫
(Dif)2(1 + θ0f + O(θ2

0))dx
(1 + θ0

∫
f3 + O(θ2

0))
. (3.13)

To analyse the exponential factor in (3.12) we use the expansion I(θ) = 1
2λθ

2[1+
2c3θ/3 +O(θ2)], where c3 =

∫
f3dx, and use for θ0 the solution of the quadratic

equation obtained by the corresponding expansion of (3.10):

bλ1/2 = λ(θ0 +
1
2
c3θ

2
0). (3.14)

Hence we obtain

Corollary. If b/λ1/4 → 0, then

E0(MC) ∼ |C|(θ0λ
1/2)r−1

(2π)(r+1)/2
exp[−λ(θ2

0/2+c3θ3
0/3)]{

Πi
∫
(Dif)2(1+θ0f)dx
1 + θ0

∫
f3dx

}1/2,

(3.15)
where θ0 is the positive root of (3.14).

In (3.15) the Gaussian process approximation has been corrected for skewness
of the Poisson distribution. If we relax the growth condition on b to b/λ3/10 → 0,
we obtain an approximation that also corrects for kurtosis. We expand I(θ) and
the ratio of variances on the right hand side of (3.12) one more term and use in
(3.10) one more term in the expansion of ψ′(θ). The equation (3.14) is replaced
by a cubic which is easily solved in two or three steps of a Newton-Raphson
iteration starting from b/λ1/2. We omit the details of this calculation.

Figure 1 gives a numerical example. The set C is a disc in the plane of radius
R = 10, so r = 2 and |C| = πR2; and λ = 10. The Figure displays (i) a Gaussian
process approximation to P{Xmax ≥ b}, (ii) the large deviation approximation
(3.11)-(3.12), (iii) the simpler approximation from (3.14) and (3.15), and (iv) the



THE MAXIMUM OF A SMOOTHED POISSON RANDOM FIELD 173

0.001

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

b

P
r
o
b

0.01

0.1

1

Figure 1. Comparison of approximations of the tail probability for the max-
imum of the random field (1.4) (with σ = 1): (i) Gaussian process approxi-
mation �, (ii) first order corrected approximation based on (3.14)-(3.15) �,
(iii) large deviation approximation based on (3.10)-(3.12) �, and (iv) Monte
Carlo simulation based on 2500 repetitions ♦.
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Figure 2. Comparison of the approximations of the tail probability for the
minimum of the random field (1.4) (with σ = 1): (i) Gaussian process approx-
imation �, (ii) first order corrected approximation based on (3.14)-(3.15) �,
(iii) large deviation approximation based on (3.10)-(3.12) �, and (iv) Monte
Carlo simulation based on 2500 repetitions ♦.
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results of a Monte Carlo experiment based on 2500 realizations of the random
field (1.4) with σ = 1. The numerical results indicate that the Gaussian pro-
cess approximations are always too small (anti-conservative), often considerably
so. The putatively more accurate approximations are all about equally accurate.
Thus in practice, (3.15), which is much easier to evaluate than (3.12) and pro-
vides only slightly different values, might reasonably be the preferred method. If
one looks in more detail at the numerical results, one sees some favorable cancel-
lation in the various constituent parts of (3.15). The next order approximation,
obtained by expanding (3.10) and (3.12) to one more term in θ, gives numerical
results in slightly better agreement with (3.12), with the constituent factors in
substantially better agreement. Figure 2 gives similar numerical results for the
minimum over t of the random field (1.4), or equivalently the maximum of the
negative of the random field. In this case the Gaussian process approximation
substantially overestimates the true probability, while the other three approxi-
mations are in close agreement with each other and the Monte Carlo simulations.

The terms of order θ0 in the right hand factor of (3.15) need not be included
for the indicated asymptotic result to be valid. Omitting them leads to a slightly
larger, but still numerically insignificant discrepancy between the simplified ap-
proximation and the large deviation approximation.

Remark. The simplified approximation based on the quadratic equation (3.14)
involves some technical problems, since that equation has two roots, whereas
(3.10) has only one. Since we are interested in the positive root, which in fact is
larger than b/λ1/2, the correct root is easily recognized in practice. If we were
interested in the minimum of the random field, the problem would be potentially
more complicated. For small λ the quadratic equation has no real roots, so the
simplified approximation (3.15) does not exist, although the second simplified
approximation base on a cubic equation does have the desired root. This problem
is in principle worse in the following section where the simplified approximation
involves simultaneous solution of two quadratic equations, hence possibly four
roots. In practice it is easy to identify the appropriate roots by their proximity
to the roots of the linear equations corresponding to the Gaussian case, which
serve as starting points for iterative solutions.

To derive (3.12) we start from the standard representation of E0(MC) as the
integral over C of

E0{‖D2Zt‖;Zt ≥ bλ1/2,DZt = 0,D2Zt < 0},

where the double vertical bars indicate the absolute value of the determinant and
the inequality D2Zt < 0 indicates negative definiteness of the matrix. By (3.2)
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and (3.10) this equals

exp[−I(θ0)]Eθ0{‖D2Zt‖ exp[−θ0(Zt − bλ1/2)];Zt ≥ bλ1/2,DZt = 0,D2Zt < 0}.
(3.16)

The expectation in (3.16) can be expressed as
∫ ∞

0
e−θ0yEθ0{‖D2Zt‖;D2Zt<0|Zt

= bλ1/2+y,DZt =0}Pθ0{Zt∈bλ1/2+dy,DZt =0}. (3.17)

Given Zt = Eθ0(Zt) + y,DZt = 0, one can see from the moment relations (3.6)-
(3.9) that D2Zt is approximately normally distributed with mean Eθ0(D

2Zt) +
O(y) and variance O(λ). By virtue of the exponential in (3.17) it is only necessary
to integrate over y in a large bounded interval, so the term O(y) is negligible
compared to Eθ0(D

2Zt), which is of order λ. Moreover, since the conditional
standard deviation is of order λ1/2, the variability in D2Zt can be ignored for the
purpose of evaluating the conditional expectation in (3.17), which, therefore, by
(3.7) and (3.8)

∼ ‖Eθ0(D
2Zt)‖ = θr

0‖Eθ0(DZtD
TZt)‖ = θr

0ΠiVarθ0(DiZt). (3.18)

By (3.7), (3.9) and a local limit theorem, for bounded y

Pθ0{Zt ∈ Eθ0(Zt) + dy,DZt = 0}
∼ (2π)−(r+1)/2[Varθ0(Zt)‖Eθ0 [(DZt)(DTZt)]‖]−1/2dy.

Substituting this and (3.18) into (3.17) and performing the indicated integration
yield (3.12).

4. Unknown σ

The case of unknown σ is treated similarly, but the methods sketched above
are substantially trickier to implement. In particular we must imbed P0 in a two
dimensional exponential family and replace (3.10) by two simultaneous equa-
tions. The quantity corresponding to (3.16) depends on the point in the random
field where it is evaluated and hence must be integrated numerically over the set
indexing the field–in this case over the range of σ. The approximation corre-
sponding to (3.14) involves replacement of two transcendental equations by two
quadratic equations ((4.14) and (4.15) below) and hence requires substantially
less computation. It is easy to see from the results of Siegmund and Worsley
(1995) that a boundary correction at the minimum value of σ is necessary to
obtain a reasonable approximation in this case. The reason is that small values
of σ lead to large fluctuations in the random field (1.3) or (1.4). Indeed, for a
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broad range of thresholds a reasonably good approximation is obtained by con-
sidering σ to be fixed at its minimum value and maximizing over t alone. (This
cannot be true without some qualification because the boundary term with σ
fixed is smaller by an order of magnitude when b → ∞ than the term involving
the maximum over σ; but numerically in the range of b of primary interest, say
2.5 ≤ b ≤ 5, it works out that an approximation that is wrong in principle can
be reasonably accurate in practice. The situation is completely different at the
maximum value of σ, which plays practically no role in the approximation. The
approximation approaches a limit as the maximum value becomes infinite, and
for most numerical purposes one can just use that limiting value.) The primary
contribution of the following discussion may be to indicate the methodology re-
quired and the the difficulties that will be encountered in other more complex
problems. In particular, a non-homogeneous Poisson field with intensity λ = λ(x)
leads to similar calculations.

Let X be defined by (1.4). It will be helpful to introduce s = (log σ) and put

Y (t, s) =
∫
f [e−s(x− t)](dNx − λdx), Z(t, s) = e−rs/2Y (t, s).

For ease of exposition we shall take r = 1; D2 denotes partial differentiation with
respect to s, while D1 denotes partial differentiation with respect to x or t. Also
put f1(x) = xD1f(x).

Let ψ(θ1, θ2; s) = logE0{exp[θ1Y (t, s) + θ2D2Y (t, s)]}. A simple calculation
gives

ψ(θ1, θ2; s) = λes
∫
{exp[θ1f − θ2f1] − 1 − (θ1f − θ2f1)}dx. (4.1)

SinceD2Z(t, s)=−Z(t, s)/2+e−s/2D2Y (t, s), for ψ̃(ξ1, ξ2; s)=logE0{exp[ξ1Z(t, s)
+ξ2D2Z(t, s)]} we obtain

ψ̃(ξ1, ξ2; s) = ψ(θ1, θ2; s), (4.2)

where θ1 = e−s/2(ξ1 − ξ2/2), θ2 = e−s/2ξ2. Let the probability Pξ be defined by
the likelihood ratio

dPξ/dP0 = exp[ξ1Z(t, s) + ξ2D2Z(t, s) − ψ̃(ξ1, ξ2; s)]. (4.3)

We shall be interested in the particular values (ξ1, ξ2) (for which we continue to
use the same notation rather than introducing another subscript as in Section 3)
such that

Eξ[Z(t, s)] = bλ1/2, Eξ[D2Z(t, s)] = 0.

Straightforward calculation of these expectations allows us to express the equa-
tions analytically as

be−s/2/λ1/2 =
∫
f{exp[θ1f − θ2f1] − 1}dx, (4.4)
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and
−be−s/2/2λ1/2 =

∫
f1{exp[θ1f − θ2f1] − 1}dx. (4.5)

Let [s0, s1] denote the range over which s can vary and let C̃ = C × [s0, s1].
For an approximation analogous to (3.11) we now want to use in the exponent
E0(MC̃), the expected number of local maxima of Z(t, s), (t, s) ∈ C̃ of height
≥ bλ1/2. For large b the reasoning leading to (3.16) in conjunction with (4.3),
(4.4) and (4.5) show that E0(MC̃) is given by the integral over C̃ of

exp[−I(ξ)]Eξ{‖D2Z‖ exp[−ξ1(Z − bλ1/2)];Z ≥ bλ1/2,DZ = 0,D2Z < 0}, (4.6)

where I(ξ) = ξ1Eξ(Z) − ψ̃(ξ1, ξ2; s) and the dependence of Z on the point (t, s)
has been suppressed.

One can evaluate the expectation in (4.6) in terms of the following moments.
We let f1(x) = xf ′(x) as above, and f2(x) = x2f ′′(x). Then

Varξ(Z) = λ

∫
f2 exp(θ1f − θ2f1)dx; (4.7)

Varξ(D1Z) = λe−2s
∫

(D1f)2 exp(θ1f − θ2f1)dx; (4.8)

Varξ(D2Z) = λ

∫
(f/2 + f1)2 exp(θ1f − θ2f1)dx; (4.9)

Covξ(Z,D2Z) = −λ
∫

(f2/2 + f1f) exp(θ1f − θ2f1)dx; (4.10)

Covξ(Z,D1Z) = 0, Covξ(D1Z,D2Z) = 0; (4.11)

Eξ(D2
1Z) = λe−3s/2

∫
D2

1f [exp(θ1f − θ2f1) − 1]dx, Eξ(D2
12Z) = 0; (4.12)

Eξ(D2
2Z) = λes/2

∫
(3f1/2 + f2)[exp(θ1f − θ2f1) − 1]dx. (4.13)

Although the evaluation of (4.6) is straightforward in principle, since (4.4)
and (4.5) depend on s, the solution of those equations, substitution into (4.6)
and integration with respect to s is onerous. In view of the numerical accuracy of
the simplified approximation based on (3.14) in Section 3, we consider only that
case in detail here. Since

∫
fkf1 = −(k + 1)−1

∫
fk+1, a Taylor series expansion

of equations (4.4) and (4.5) up to the quadratic terms yields

be−s/2/λ1/2 = θ1 + θ2/2 + θ2
1

∫
f3/2 + θ1θ2

∫
f3/3 + θ2

2

∫
ff2

1/2 (4.14)

and

be−s/2/λ1/2 = θ1 + 2θ2
∫
f2
1 + θ2

1

∫
f3/3 + 2θ1θ2

∫
ff2

1 − θ2
2

∫
f3
1 . (4.15)
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The expansion of I(ξ) up to the cubic terms gives

1
2
λes{θ2

1+θ1θ2+(
1
2
−
∫
f2
1 )θ2

2+
2
3

∫
f3θ3

1+
5
6

∫
f3θ2

1θ2+
∫
f3θ1θ

2
2/3+

∫
(ff2

1 /2−f3
1/3)θ

3
2}.

(4.16)
The expectation in (4.6) is easily evaluated by expanding the appropriate

moments in (4.7)-(4.13) with ξ1 ∼ b/λ1/2 → 0, ξ2 ∼ 0. The leading term is easily
seen to equal

exp[−Î(ξ)]ξ1λ1/2(2π)−3/2e−s{
∫

(f ′)2(
∫
f2
1 − 1/4)}1/2, (4.17)

where Î(ξ) is the cubic approximation to I(ξ) given in (4.16).
If we drop the quadratic terms in (4.14) and (4.15), the solution of the

resulting linear equations is ξ1 = b/λ1/2, ξ2 = 0, as expected. Using these as
initial values we have solved (4.14) and (4.15) numerically by using three steps
of a Newton-Raphson iteration, and substituted the solution into (4.16), then
integrated (4.17)×|C| with respect to s to give an approximation to P{Xmax ≥
b}. For this field the greatest fluctuations occur when σ equals its minimum value,
so a boundary correction at that minimum value appears necessary before one
can hope to have a reasonable overall approximation. The expression obtained by
Siegmund and Worsley (1995) for the Gaussian case illustrates this phenomenon.
(For small C one might want to add other boundary corrections as well.) The
boundary term involves an expectation similar to (4.6), but modified as follows:
(i) s is set equal to its minimum value, s0; (ii) the conditions DZ = 0,D2Z < 0 in
(4.6) are replaced byD1Z = 0,D2

1Z < 0,D2Z < 0, so that we count local maxima
in t that have not already been counted as local maxima in t, s for s > s0; (iii)
the exponential becomes exp[−ξ1(Z − bλ1/2) − ξ2D2Z], since we no longer have
D2Z = 0 (cf. (4.3)). It is easy to see from (4.14) and (4.15) that ξ2 = O(ξ21) and
hence the boundary term, to be added to the preceding approximation, is

∼ |C| exp[−Î(ξ)](4π)−1e−s0[
∫

(f ′)2dx]1/2. (4.18)

In the Gaussian case this boundary correction is just one-half the leading term of
the approximation to the tail probability for maxt∈C Z(t, s0), as one easily sees
geometrically from the representation of that probability in terms of a tube vol-
ume. In principle, because of the two dimensional exponential family inbedding,
the situation is different here; but in the range of our numerical examples the
parameter ξ2 is close to zero, so numerically (4.18) is roughly equal to one-half
of (3.15).

We have simulated 400 realizations of this field for 0 ≤ t ≤ 50, 0 ≤ s ≤ 2,
with λ = 10. The results, displayed in Figure 3, show in agreement with Figure
1 that the approximation developed here is more accurate than the Gaussian
process approximation, which consistently gives values smaller than the simulated
probability.
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Figure 3. Comparison of approximations for the tail probability of the max-
imum of the random field (1.4) over 0 < t < 50, 0 < s < 2: (i) Gaussian
process approximation �, (ii) Monte Carlo simulation based on 400 repeti-
tions �, and (iii) approximation derived in Section 4 �.

5. Discussion

We have shown that it is possible at some increase in computing effort to
improve substantially on the known Gaussian process approximations to the dis-
tribution of (1.2) when the underlying random field is a Poisson field. The same
methods are applicable to other underlying point processes, provided the appro-
priate moment generating function can be evaluated. However, given the sim-
plicity of the Gaussian process approximation, one may quite reasonably prefer
to use it, provided it is not drastically misleading.

In the examples given above for the distribution of Xmax, the Gaussian ap-
proximation was about 1/3 to 1/2 the true probability when that probability
was in the range 0.01 to 0.05. For larger values of λ the Gaussian process ap-
proximation will improve; for smaller values it will be worse, and there can be
larger discrepancies between the basic approximation exemplified by (3.12) and
the simplified approximations. For example, for the field of Figure 1, but with
R = 10, λ = 1, b = 4.5, the approximation using (3.12) is 0.034, the first sim-
plified approximation using (3.15) is 0.023, the second simplified approximation
is 0.031. A Monte Carlo simulation with 400 repetitions gave 0.033, while the
Gaussian approximation is a miserable 0.0018.

Another interesting case involves larger search regions, which can easily arise
in higher dimensional problems, resulting in higher thresholds b to obtain smaller
marginal tail probabilities, hence less accurate Gaussian approximations. Simu-
lation over the relatively small regions used in our numerical examples is quite
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time consuming, and could be almost prohibitive for larger regions. For the field
of Figure 1 with R = 40, a value roughly appropriate for the astrophysical whole
sky search (Giller, 1994), and with λ = 10 (much smaller than for the whole sky
search), for b = 4, 4.5, and 5 our approximations give 0.4, 0.1 and 0.02 compared
to Gaussian process approximations of 0.2,0.03 and 0.003, respectively. For the
admittedly less interesting minimum, there are substantially greater discrepan-
cies. Our approximations are 0.05, 0.003 and 0.0001, respectively.
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