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Abstract: This paper studies the Bahadur asymptotic e�ciency of the maximum like-

lihood estimator for the generalized semiparametric model Y = f(X; �) + g(T ) + ":
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1. Introduction

Let U = (u1; : : : ; un) be a sequence of independent, identically distributed

(i.i.d.) observations. Bahadur (1960) proposed an asymptotically e�cient con-

cept for a consistent estimator based on the rate of its tail probability. It can

be stated (under certain regularity conditions) that, for any consistent estimator

Tn(U);

lim inf
�!0

lim inf
n!1

1

n�2
logP�fjTn(U)� �j � �g � �

I(�)

2
;

and that the maximum likelihood estimator (MLE) �n achieves the lower bound,

that is,

lim
�!0

lim
n!1

1

n�2
logP�fj�n � �j � �g = �

I(�)

2
;

where I(�) is Fisher's information. In other words, for any consistent estimator

Tn; P�fjTn(U) � �j � �g can not tend to zero faster than the exponential rate

give by expf� 1

2
n�

2
I(�)g; and for MLE �n; P�fj�n��j � �g achieves this optimal

exponential rate. The estimator which has reached this rate is called Bahadur

asymptotically e�cient (BAE). Fu (1973) showed, under regularity conditions

which di�er partly from Bahadur's, that a large class of consistent estimators

f��
n
g is asymptotically e�cient in Bahadur's sense. It also gave a simple and

direct method to verify Bahadur's (1967) results. Cheng (1980) proved, under a

weaker condition than Bahadur's, that the MLE in single-parameter and multi-

parameter cases are BAE. Lu (1983) studied the Bahadur e�ciency of the MLE
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for the linear model. There is considerable literature on BAE for parametric

model estimation (see Fu (1982)).

This paper studies the BAE of the MLE for the generalized semiparametric

model

Yi = f(Xi; �) + g(Ti) + "i; (1:1)

where Xi = (xi1; : : : ; xiq); i = 1; : : : ; n; are given row vectors, � is a k � 1 vector

of an unknown parameter to be estimated, "1; : : : ; "n are i.i.d. random variables

with a common probability density function '(�) with respect to the Lebesgue

measure, f(�; �) is an known function de�ned on Rq�Rk
; g is an unknown H�older

continuous function of known order p (see Chen (1988)) in R
1, T and " are

independent and T follows a uniform distribution on [0; 1]:

2. Assumptions and Statement of the Main Result

Let fTi; Yi; i = 1; : : : ; ng be a sample of size n from the model (1.1). Assume

Ti and "i are independent. Throughout this paper we denote a vector by a

boldface letter, a matrix by a calligraphic letter. De�ne

" = ("1; : : : ; "n)
�
; f

0(x; �) =
�
@f(x; �)

@�i

�
k�1

; g(T) = (g(T1); : : : ; g(Tn))
�
;

f 0(X;�) = (f 0(x1; �); : : : ; f
0(xn; �)); R�

n = f 0(X ; �)f 0
�
(X ; �);

I = I(') =

Z
( 0(x))2'(x) dx <1; where  (x) =

'
0(x)

'(x)
:

De�nition 1. For a2Rk, kak=
�P

k

i=1a
2
i

�1=2
, B1=(bij)n1�n2 ; jaj=max1�i�k jaij;

jB1j
� = maxi;j jbijj; kB1k

� = max
a2R

n2

kak=1

kB1ak; where k � k denotes L2-norm,

and k � k� matrix norm.

De�nition 2. The estimator ~hn(Y1; : : : ; Yn) of � is called a locally uniformly

consistent estimator of � if for every �0 2 R
k, there exists � > 0 such that for

each � > 0

lim
n!1

sup
j���0j<�

P�fk~hn � �k > �g = 0:

De�nition 3. Assume R�

n

�1 exists. The consistent estimator ~hn of � is said to

be Bahadur asymptotically e�cient, if for each �0 2 R
k,

lim sup
�!0

lim sup
n!1

1

�2
kR�

n

�1k� logP�0fk
~hn � �0k > �g � �I=2:
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In the paper, we assume that '(x) is positive and twice di�erentiable in R1
;

limjxj!1 '(x) = limjxj!1 '
0(x) = 0; and kf 0(x; �)k is bounded.

In the following we list the su�cient conditions for our main result.

1. There exist constants C1, C2 > 0 such that C1 � �1 � � � � � �k � C2, where

�1; : : : ; �k are eigenvalues of n
�1R�

n
: Denote R = C2/C1:

2. There exist a number & > 1=2 and a functionH�(x) satisfyingEjH�(X)j <1

such that kf 0(x; ��)� f
0(x; �)k � H�(x)k�

� � �k& :

3. lim�!0

R
supjhj�� j 

0(y + h)�  
0(y)j'(y) dy = 0:

4. There exists t0 > 0 such thatZ
expft0j (x)jg'(x) dx <1 and

Z
expft0j 

0(x)jg'(x) dx <1:

5. There exist a measurable function h(x) > 0 and a nondecreasing function (t)

which is positive for t > 0 and limt!0+ (t) = 0 such that
R
expfh(x)g'(x) dx

<1 and j (x+ t)�  (x)j � h(x)(t) whenever jtj � jt0j.

Throughout this paper, it is understood that the MLE �ML of � is based

on fYi = f(Xi; �) + ĝn(Ti) + "i; i = 1; : : : ; ng; where ĝn is an estimator for g

suggested by Chen (1988) which satis�es

jg(Ti)� ĝn(Ti)j � B2M
�p

n
; i = 1; : : : ; n: (2:1)

6. The MLE �ML exists, and for each � > 0, �0 2 R
k, there exist constants

K = K(�; �0) and � = �(�; �0) > 0; such that

P�0

n
j�ML � �0j > �

o
� K expf��kR�

n
k��2g:

The following theorem gives our main result that �ML is a BAE estimator

of �:

Theorem. Suppose conditions 1{3 hold, ~hn is a locally uniformly consistent

estimator; then for each �0 2 R
k

lim inf
�!0

lim inf
n!1

1

�2
kR�

n

�1k� logP�0fk
~hn � �0k > �g � �

I

2
: (2:2)

If the conditions 1 to 6 hold, then for each �0 2 R
k

lim sup
�!0

lim sup
n!1

1

�2
kR�

n

�1k� logP�0

n
k�ML � �0k > �

o
� �

I

2
: (2:3)

Remark. The result (2.3) implies that �ML is asymptotically e�cient in Ba-

hadur's sense.
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3. Proof of the Main Result

We �rst prove the result (2.2). The proof is divided into three steps. First

step: get a UMP test ��
n
whose power is 1=2 for the hypothesis H0 : � = �0 VS

H1 : � = �n: Second step: by constructing a test �n(Y) corresponding to ~hn,

show that the power of the constructed test is larger than 1=2: The last step: by

using the Neyman-Pearson Fundamental Lemma, show that E�0
�n; the level of

�n; is larger than E�0
��
n
:

Proof of (2.2). For each � > 0, set

�n = �0 +
R�

n

�1
an

kR�
n

�1k�
�;

where an 2 R
k, a�

n
R�

n

�1
an = kR�

n

�1k� and kank = 1: Let li = (0; : : : ; 1; : : : ; 0)� 2

R
k. It is easy to show kR�

n

�1k� � a
�R�

n

�1
a � 1=kR�

n
k�; and

j�n � �0j � kR�

nk � kR
�

n

�1k�� � R�:

Denote

�n(Y) =
nY
i=1

'(yi � f(xi; �n)� g(ti))

'(yi � f(xi; �0)� g(ti))
;

�i =f(xi; �n)� f(xi; �0); dn = exp

(
I(1 + �)�2

2kR�

n

�1k�

)
(� > 0):

By the Neyman-Pearson Fundamental Lemma, there exists a test ��
n
(Y) such

that

E�n
f��

n
(Y)g =

1

2
:

Under the H0; we have the following inequality:

E�0
f��

n
(Y)g �

Z
�n�dn

��

n
(Y) dPn�0 �

1

dn

"
1

2
�

Z
�n(Y)>dn

��

n
(Y) dPn�n

#
:

If

lim sup
n!1

P�nf�n(Y) > dng �
1

4
; (3:1)

then for n large enough,

E�0
f��

n
(Y)g �

1

4dn
: (3:2)

De�ne

�n(Y ) =

�
1; if ja�

n
(~hn � �0)j � �

0
�,

0; otherwise,
(3:3)
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where �0 2 (0; 1). Since a�
n
(�n � �0) = � and ~hn is a locally uniformly consistent

estimator, we have

lim inf
n!1

E�n
f�n(Y)g � lim inf

n!1
P�nfk

~hn � �nk � (1� �
0)�g = 1:

We have from Neyman-Pearson Fundamental Lemma that, for n large enough,

E�0
f�n(Y)g � E�0

f��

n
(Y)g: (3:4)

It follows from (3.2), (3.3) and (3.4) that

P�0fk
~hn � �0k � �

0
�g � P�0fja

�

n
(~hn � �0)j � �

0
�g = E�0

f�n(Y)g �
1

4dn
:

By letting � ! 0 and �0 ! 1, this would completes the proof of (2.2) if (3.1) is

proved.

Now we return to prove the inequality (3.1). Let �i = f(Xi; �n)�f(Xi; �0) =

f
0(Xi;

~�n) � (�n � �); then by condition 2, we know that k�ik � RC�; and

nX
i=1

�i

2 �
2a�

n
R�

n

�1
an

kR�

n

�1k�
2 �

2 =
2�2

kR�

n

�1k�
: (3:5)

According to the Taylor expansion, for � su�ciently small,

nX
i=1

log
'(Yi)

'(Yi +�i)
= �

nX
i=1

�
 (Yi)�i +

1

2
( 0(Yi) +Ri(Yi))�

2
i

�
;

where Ri(Yi) =  
0(Yi + �i�i)�  

0(Yi), 0 < �i < 1, then

P�nf�n(Y ) > dng = P0

(
nY
i=1

'(Yi)

'(Yi +�i)
> dn

)

= P0

(
nX
i=1

log
'(Yi)

'(Yi +�i)
>
I(1 + �)�2

2kR�

n

�1k�

)

� P0

(
1

2

nX
i=1

I(')�2
i
>
I(1 + �=2)�2

2kR�

n

�1k�

)
+ P0

(
�

nX
i=1

 (Yi)�i >
I��

2

12kR�

n

�1k�

)

+ P0

(
�

nX
i=1

1

2
[ 0(Yi) + I(')]�2

i
>

I��
2

12kR�

n

�1k�

)

+ P0

(
�
1

2

nX
i=1

Ri(Yi)�
2
i
>

I��
2

12kR�

n

�1k�

)

= P1 + P2 + P3 + P4; say.
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We now estimate the four probabilities P1; P2; P3 and P4; respectively.

P1 = P0

(
I(')

1

kR�

n

�1k�
>
I(1 + �=2)

kR�

n

�1k�

)
= 0: (3:6)

It follows from the Tchebichev inequality, condition 1 and (3.5) that

P2 = PT

�
P0

�
�

nX
i=1

 (Yi)�i >
I��

2

12kR�
n

�1k�

�����T
��

� PT

�
144kR�

n

�1k�

I�2�2

�
! 0; as n!1;

P3 � PT

��6kR�

n

�1k�

I��2

�2
(CR�)

2 �
2

kR�

n

�1k�
E0( 

0(Y1) + I('))2
�
! 0; as n!1;

P4 � PT

�
6kR�

n

�1k�

I��2
�

1

kR�
n

�1k�
�
2
E0fmax

1�i�n
jRi(Yi)j

���Tg�:
From condition 3, and for � be su�ciently small such that j�ij < �; then

E0fmax
1�i�n

jRi(Yi)j
���Tg � Z

sup
jhj<�

j 0(y + h)�  
0(y)j'(y) dy �

�

24
: (3:7)

Combining the results (3.6) to (3.7), we have completed the proof of (3.1). The

proof of (2.2) is now complete.

Now, we outline our proof of the result (2.3). First, by using the Taylor

expansion and condition 2, we get the expansion of the projection, a�(�ML � �);

of �ML�� on the unit sphere kak = 1: Second we decompose P�0fja
� (�ML��0)j >

�g into �ve terms. Last step, we calculate, carefully, the value of each term.

It follows from the de�nition of �ML; the Taylor expansion and condition 2

that

a
�(�ML � �) =� ((FI)

�1
+ ~W )

h nX
i=1

 (Yi � f(Xi; �)� g(Ti))a
�R�

n

�1
i

�
nX
i=1

 
0(Yi�f(Xi; �)

��g�(Ti))a
�R�

n

�1
f
0(Xi; �)(ĝn(Ti)�g(Ti));

where f(Xi; �)
� lies between f(Xi; �ML) and f(Xi; �), and g

�(Ti) lies between

g(Ti) and ĝn(Ti). Denote

Ri(Yi;Xi; Ti) =  
0(Yi � f(Xi; �)

� � g
�(Ti))�  

0(Yi � f(Xi; �)� g(Ti));

R
�

1 =
nX
i=1

[I +  
0(Yi � f(Xi; �)� g(Ti))]R

�

n

�1
f
0(Xi; �)f

0�(Xi; �);

R
�

2 =
nX
i=1

Ri(Yi;Xi; Ti)R
�

n

�1
f
0(Xi; �)f

0�(Xi; �):
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Let � be su�ciently small such that det(�FI +R�
1
+R�

2
) 6= 0 when jR�

1 +

R
�
2j < �: Hence (�FI+R�

1+R
�
2)
�1 exists, and we denote it by �((FI)

�1
+ ~W ):

Moreover, according to continuity, there is a nondecreasing function �(�) > 0

such that j ~W j < �(�) and lim�!0 �(�) = 0 when jR�
1 +R

�
2j < �: Hence, we have,

for every 0 < � < 1=4; a 2 Rk and kak = 1; that

P�0

n���a�(�ML � �0)
��� > �

o

� P�0

n��� nX
i=1

 (Yi � f(Xi; �0)� g(Ti))a
�R�

n

�1
f
0(Xi; �)

��� > (1� 2�)I�
o

+ P�0

n��� nX
i=1

a
�
 (Yi � f(Xi; �0)� g(Ti))R

�

n

�1
f
0(Xi; �)

��� > ��

�(2�)

o

+ P�0fjR
�

1j > �g+ P�0fjR
�

2j > �g

+ P�0

n nX
i=1

jĝn(Ti)�g(Ti)jj 
0(Yi � f(Xi; �)

��g�(Ti))a
�R�

n

�1
f
0(Xi; �)j>��

o

= P1 + P2 + P3 + P4 + P5; say:

In the following we use Lemma 1 of Lu (1983) to calculate each term above.

We only calculate the probability P4; since the probabilities P1; P2; P3; P5 are

obtained similarly.

It follows from condition 4 that,

jRi(Yi; Xi; Ti)j = j 0(Yi � f(Xi; �)
� � g

�(Ti)�  
0(Yi � f(Xi; �0)� g(Ti))j

� h(Yi � f(Xi; �0)� g(Ti))(f
0(Xi; �)(�ML � �0)� (g�(Ti)� g(Ti))):

Denote h0 = E�0
h; then

P4 �
kX

j=1

kX
s=1

P�0

n��� nX
i=1

h(Yi � f(Xi; �0)� g(Ti))
�
f
0(Xi; �)(�ML � �0)

� (g�(Ti)� g(Ti))
�
l
�

j
R�

n

�1
f
0(Xi; �)f

0� (Xi; �)ls

��� � �

o

�
kX

j=1

kX
s=1

"
P�0f

n[
i=1

jĝn(Ti)� g(Ti)j > �g + P�0fj�ML � �0j � �g

+ P�0

n��� nX
i=1

h(Yi � f(Xi; �0)� g(Ti))(C� + �)l�
j
R�

n

�1

f
0(Xi; �)f

0�(Xi; �)ls

��� � �

o#

= P
(1)
4 + P

(2)
4 + P

(3)
4 ; say:
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Let � � (2�=((1 � 2�)2I))1=2. It follows from condition 5 and ja�R�

n

�1
aj �

1=kR�

n
k� that

�(�; �0)kR
�

nk
� �

(1� 2�)2I

2a�R�

n

�1
a
�
2 and P

(2)
4 � K(�; �0) exp

n
�
(1� 2�)2I

2a�R�

n

�1
a
�
2
o
: (3:8)

Let �2
h
= E�0

[h(Yi � f(Xi; �0) � g(Ti)) � h0]
2; it follows from Lemma 1 of Lu

(1983) that

P
(3)
4 � P�0

n��� nX
i=1

[h(Yi � f(Xi; �0)� g(Ti))� h0]

l
�

j
R�

n

�1
f
0(Xi; �)f

0� (Xi; �)ls

��� � �

2(C� + �)

o

� 2 exp
n
�(

�

2(C� + �)
)
2
.
(2C2

R�
2
h
a
�R�

n

�1
a)
�
1 +O4(

�

2(C� + �)
)
�o
;

where
���O4(�=(2(C� + �)))

��� � B4�=2(C� + �), B4 depends on h("1) only but

not n: Further, for � small enough,

P
(3)
4 � 2 exp

n
�
(1� 2�)2I�2

2a�R�

n

�1
a

o
:

From (2.1) we know that

P
(1)
4 = P�0f

n[
i=1

j(ĝn(Ti)� g(Ti))j > �g = 0: (3:9)

Combining the results of (3.8) to (3.9), we have

P4 � (2 +K) exp
n
�
(1� 2�)2I�2

2a�R�

n

�1
a

o
:

This implies that we have proved

P�0

n
ja� (�ML��0)j > �

o
� (Kk2+K+4k2+2k) exp

n
�
(1� 2�)2I�2

2a�R�
n

�1
a

(1+O(�))
o
:

O(�) = minfO1(�); O2(�); O3(�); O4(�); O5(�)g; jO(�)j � CRB(��1(2�) + 1):

Hence

lim sup
�!0

lim sup
n!1

a
�R�

n

�1
a

�2
logP�0

n
ja�(�ML � �0)j > �

o
� �

(1� 2�)2I

2
:

Since a is arbitrary, the result (2.3) follows from �! 0: This completes the proof

of our main result (2.3).
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