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AND ITS EXTENSIONS, ECM AND ECME
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Abstract: The multivariate t distribution has many potential applications in applied

statistics. Current computational advances will make it routinely available in practice

in the near future. Here we focus on maximum likelihood estimation of the parameters

of the multivariate t, with known and unknown degrees of freedom, with and without

missing data, and with and without covariates. We describe EM, ECM and ECME

algorithms and indicate their relative computational e�ciencies. All three algorithms

are analytically quite simple, and all have stable monotone convergence to a local

maximum likelihood estimate. ECME, however, can have a dramatically faster rate

of convergence.
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1. Introduction

The multivariate t distribution can be a useful theoretical tool for applied

statistics. Of particular importance, it can be used for robust estimation of

means, regression coe�cients, and variance-covariance matrices in multivariate

linear models, even in cases with missing data. A brief history of the theoretical

development leading to such uses is as follows. Dempster, Laird and Rubin (1977)

show that the EM algorithm can be used to �nd maximum likelihood (ML)

estimates (MLEs) with complete univariate data and �xed degrees of freedom,

and Dempster, Laird and Rubin (1980) extend these results to the regression

case. Rubin (1983) shows how this result is easily extended to the multivariate t,

and Little and Rubin (1987) and Little (1988) further extend the results to show

how EM can deal with cases with missing data. Lange, Little and Taylor (1989)

consider the more general situation with unknown degrees of freedom and �nd the

joint MLEs of all parameters using EM; they also provide several applications of

this general model. Related discussion appears in many places; a recent example

is Lange and Sinsheimer (1993).

Here, using a generalization of the ECM algorithm (Meng and Rubin (1993)),

called the ECME algorithm (Liu and Rubin (1994)), we �nd the joint MLE
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much more e�ciently than by EM or ECM. We include comparisons of ECME

with both EM and multicycle ECM and provide some new theoretical results.

Care must be used with these ML procedures, however, especially with small

or unknown degrees of freedom, because the likelihood function can have many

spikes with very high likelihood values but little associated posterior mass under

any reasonable prior. The associated parameter estimates, can therefore, be

of little practical interest by themselves even though they are formally local or

even global maxima of the likelihood function. It is, nevertheless, important to

locate such maxima because they can critically inuence the behavior of iterative

simulation algorithms designed to summarize the entire posterior distribution.

The notation and theory needed to present our results are presented sequen-

tially. First, in Section 2, we summarize fundamental results concerning the

multivariate t distribution, and in Section 3, derive the \complete-data" likeli-

hood equations and associated ML estimates. In Section 4, we present the EM

algorithm for ML estimation with known degrees of freedom, and in Section 5

the EM and multicycle ECM algorithms when the degrees of freedom are to be

estimated. Section 6 derives the e�cient ECME algorithm, and Section 7 ex-

tends ECME for the t to the case of linear models with fully observed predictor

variables. Section 8 illustrates the extra e�ciency of ECME over EM and ECM

in two examples, and Section 9 provides a concluding discussion.

2. Multivariate t Distribution

When we say a p-dimensional random variable Y follows the multivariate t

distribution tp(�;	; �) with center �; positive de�nite inner product matrix 	;

and degrees of freedom � 2 (0;1]; we mean that, �rst, given the weight �; Y

has the multivariate normal distribution, and second, that �� is �2
�
; that is, the

weight � is Gamma distributed:

Y j�;	; �; � � Np(�;	=�);

and (1)

� j�;	; � � Gamma(�=2; �=2);

where the Gamma(�; �) density function is

�
�
�
��1 expf���g=�(�); � > 0; � > 0; � > 0:

As � ! 1, then � ! 1 with probability 1, and Y becomes marginally

Np(�;	): Standard algebraic operations integrating � from the joint density of

(Y; �) lead to the density function of the marginal distribution of Y; namely,

tp(�;	; �) :
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�( �+p
2
)j	j�1=2

(��)p=2�( �
2
)[1 + �Y (�;	)=�](�+p)=2

; (2)

where

�Y (�;	) = (Y � �)0	�1(Y � �);

which is the Mahalanobis distance from Y to the center � with respect to 	: If

� > 1; � is the mean of Y; and if � > 2; 	�=(� � 2) is its variance-covariance

matrix. Because density (2) depends on Y only through �Y (�;	); the density is

the same for all Y that have the same 	 distance from �; and thus the distribution

is ellipsoidally symmetric about �:

Further critical properties of the multivariate t concern its marginal and

conditional distributions. Suppose Y is partitioned into Y = (x; y); where the

dimensions of x and y are px and py; respectively. Given �; we have the well-

known normal results:

xj�;	; �; � � Npx
(�x;	x=�) (3)

and

yjx; �;	; �; � � Npy
(�yjx;	

�

yjx
=�); (4)

where

�yjx = �y �	y;x	
�1
x
(x� �x) (5)

and

	�

yjx
= 	y �	y;x	

�1
x
	x;y; (6)

with (�x; �y) = �; 	x the inner product matrix corresponding to the components

x of Y; and 	y;x = 	0

x;y
the corresponding submatrix of 	 corresponding to the

x columns and y rows of 	; �yjx and 	yjx can be found either analytically as in

(5) and (6) or numerically by the sweep operator (e.g., Goodnight (1979), Little

and Rubin (1987)). Thus, for the marginal distribution of x we have from (1)

and (3)

x � tpx(�x;	x; �):

From (3), given (�;	; �; �) the random variable ��x(�x;	x) is �
2
px

distributed,

that is, Gamma(px=2; 1=2); so that treating x as data, the likelihood of � given

(�;	; �; x) is

L(� j�;	; �; x) / Gamma

�
px

2
;
�x(�x;	x)

2

�
:

Since the Gamma distribution is the conjugate prior distribution for the param-

eter �; from (1) and this likelihood, the conditional posterior distribution of �;

i.e., its distribution given (�;	; �; x); is

� jx; �;	; � = � j�x(�x;	x); � � Gamma

�
� + px

2
;
� + �x(�x;	x)

2

�
; (7)
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whence

E(� jx; �;	; �) =
� + px

� + �x(�x;	x)
: (8)

From (4) and (7), the conditional distribution of y given x is tpy (�yjx;	yjx; �+px);

where

	yjx = 	�

yjx

�
� + �x(�x;	x)

� + px

�
:

3. ML Estimation of (�;	; �) with Observed Y and �

From the de�nition of the multivariate t distribution, n independent draws

from tp(�;	; �) can be described as:

Yij�;	; �
ind
� Np (�;	=�i) for i = 1; : : : ; n; (9)

and

�ij�
iid
� Gamma

�
�

2
;
�

2

�
for i = 1; : : : ; n: (10)

When both Y = fY1; : : : ; Yng and � = f�1; : : : ; �ng are considered observed,

fY1; : : : ; Yn; �1; : : : ; �ng comprise the complete data.

Because of the conditional structure of the complete-data model given by

distributions (9) and (10), the complete-data likelihood function can be factored

into the product of two distinct functions: the likelihood of (�;	) corresponding

to the conditional distribution of Y given �, and the likelihood function of � cor-

responding to the marginal distribution of �. More precisely, given the complete

data (Y; �); the log-likelihood function of the parameters �;	 and �; ignoring

constants, is

L(�;	; �jY; �) = LN(�;	jY; �) + LG(�j�); (11)

where

LN(�;	jY; �) =�
n

2
ln j	j �

1

2
trace	�1

P
n

i=1 �iYiY
0

i

+ �
0	�1

Pn

i=1 �iYi �
1

2
�
0	�1

�

Pn

i=1 �i ; (12)

and

LG(�j�) = �n ln

�
�

�
�

2

��
+
n�

2
ln

�
�

2

�
+
�

2

P
n

i=1 (ln(�i)� �i) : (13)

The complete-data su�cient statistics for �; 	 and �; boxed in (12) and in (13),

are

S�Y =

nX
i=1

�iYi; S�Y Y =

nX
i=1

�iYiY
0

i
; S� =

nX
i=1

�i; and S��� =

nX
i=1

(ln(�i)� �i) :

(14)
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Given the complete data (Y; �); fS� ; S�Y ; S�Y Y g is the set of complete-data suf-

�cient statistics for (�;	); and S��� is the su�cient statistic for �:

Given the su�cient statistics S� ; S�Y ; S�Y Y ; and S��� ; the MLE of (�;	)

and the MLE of � can be obtained from LN(�;	jY; �) and LG(�j�); respectively.

Speci�cally, the maximum likelihood estimates of � and 	 from LN(�;	jY; �)

are

�̂ =
S�Y

S�
=

P
n

i=1 �iYiP
n

i=1 �i
; (15)

and

	̂ =
1

n

�
S�Y Y �

1

S�
S�Y S

0

�Y

�
=

1

n

nX
i=1

�i(Yi � �̂)(Yi � �̂)0: (16)

Therefore, the MLE of the center �; namely �̂; is the weighted mean of the

observations Y1; : : : ; Yn with weights �1; : : : ; �n; the MLE of the inner product

matrix 	; namely 	̂; is the average weighted sum of squares of the observations

Y1; : : : ; Yn about �̂ with weights �1; : : : ; �n: The estimators of (�;	) given by (15)

and (16) are known as weighted least squares estimators. With vector � observed,

the MLE of � can be obtained by maximizing LG(�j�) given by (13), that is, by

solving

��(�=2) + ln(�=2) +
1

n
S��� + 1 = 0 (17)

for �; where �(x) = d ln(�(x))=dx is the digamma function; Equation (17) is

discussed in the Appendix.

4. MLE of � and 	 with Known � Using EM

In statistical practice with the multivariate t distribution, the vector � is

missing and also commonly some of the values in Y are missing. In some cases,

however, � can be assumed to be known, as when statistical analyses with dif-

ferent speci�ed degrees of freedom � are used for judging the robustness of the

analyses. The EM algorithm for the MLE of (�;	) is given in this section with

missing � and known � when the data matrix Y can have missing values that arise

from an ignorable mechanism (Rubin (1976), Little and Rubin (1987)). Although

the results have appeared in the literature referenced in Section 1, we derive them

here because the notation and results are needed to present our new results. The

E-step of the EM algorithm involves �nding the conditional expectation of the

complete-data su�cient statistics fS� ; S�Y ; S�Y Y g given the observed values of

Y , the known value of �; and the current estimate of (�;	): The M-step involves

weighted least squares estimation of � and 	 as in (15) and (16).

Let Yi;obs denote the observed components of Yi and Yi;mis denote the missing

components of Yi; Yobs = fYi;obs : i = 1; : : : ; ng and Ymis = fYi;mis : i = 1; : : : ; ng:

Let pi; �i;obs and 	i;obs be the corresponding dimension, center and inner product
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of Yi;obs; respectively. Also let �i;obs(�;	) = (Yi;obs � �i;obs)
0	�1

i;obs(Yi;obs � �i;obs)

and 
(t) = fYobs; �
(t)
;	(t)

; �g: From (8), we have

w
(t+1)

i;obs = E(�ij

(t)) =

� + pi

� + �
(t)

i;obs

; (18)

where �
(t)

i;obs = �i;obs(�
(t)
;	(t)); which is the 	

(t)

i;obs distance of Yi;obs from �i;obs:

Thus for the expectations of S� ; S�Y and S�Y Y at the (t+ 1)th E-step, we have

S
(t+1)
�

� E(S� j

(t)) =

nX
i=1

w
(t+1)

i;obs ; (19)

where w
(t+1)
i is given in (18). Also from (14), (4) and (5)

S
(t+1)

�Y
� E(S�Y j


(t)) =
nX
i=1

E

�
�iYij


(t)
�
=

nX
i=1

E

h
�iE

�
Yij


(t)
; �i

�
j
(t)

i

=

nX
i=1

E

�
�ij


(t)
�
E

�
Yij


(t)
�
=

nX
i=1

w
(t+1)

i;obs Ŷ
(t)
i ; (20)

where w
(t+1)
i is given in (18) and Ŷ

(t)
i � E

�
Yij


(t)
�
= E

�
Yij


(t)
; �i

�
: The jth

component of Ŷ
(t)
i ; namely Ŷ

(t)
ij ; is the conditional mean of Yij given 
(t); when

Yij is observed, Ŷ
(t)
ij = Yij ; otherwise, Ŷ

(t)
ij can be found using the Sweep operator

applied to (�(t);	(t)) to predict Yi;mis by its linear regression from Yi;obs: Finally,

using an argument analogous to that used for (20),

S
(t+1)

�Y Y
� E(S�Y Y j


(t)) =

nX
i=1

E

h
�i

�
E(Yij


(t))(E(Yij

(t))0 +Cov(Yij


(t)
; �i)

�
j
(t)

i

=

nX
i=1

w
(t+1)

i;obs Ŷ
(t)
i

�
Ŷ
(t)
i

�
0

+

nX
i=1

	
(t)
i ; (21)

where 	
(t)
i = E

�
�iCov(Yij


(t)
; �i)j


(t)
�
: The (j; k)th element of 	

(t)
i is zero if

either Yij or Yik is observed, and, if both Yij and Yik are missing, it is the

corresponding element of

	
(t)

i;misjobs = 	
(t)

i;mis �	
(t)

i;mis;obs(	
(t)

i;obs)
�1	

(t)

i;obs;mis; (22)

where 	
(t)

i;misjobs is found using the Sweep operator on 	(t) to predict Yi;mis from

Yi;obs:

From (15) and (16) we have the EM algorithm for �nding the MLE of (�;	)

with known � and incomplete Y as follows.

At iteration t+ 1 with input (�(t);	(t));

E-step: Calculate w
(t+1)

i;obs for i = 1; : : : ; n in (18) and the expected su�cient

statistics, S(t+1)
�

in (19), S
(t+1)

�Y
in (20), and S

(t+1)

�Y Y
in (21).



ML ESTIMATION OF THE t DISTRIBUTION 25

M-step: Calculate

�
(t+1) =

S
(t+1)

�Y

S
(t+1)
�

=

P
n

i=1 w
(t+1)

i;obs Ŷ
(t)
iPn

i=1 w
(t+1)

i;obs

(23)

and

	(t+1) =
1

n

�
S
(t+1)

�Y Y
�

1

S
(t+1)
�

S
(t+1)

�Y
(S

(t+1)

�Y
)0
�

=
1

n

nX
i=1

w
(t+1)

i;obs

h
Ŷ
(t)
i � �

(t)
i h
Ŷ
(t)
i � �

(t)
i
0

+
1

n

nX
i=1

	
(t)
i : (24)

From (23) and (24), we see that in the case where � is �xed and Y is in-

complete, the EM algorithm involves both iterative imputation and iteratively

reweighted least squares estimation. The E-step of the EM algorithm e�ectively

calculates the weights w
(t+1)
i

in (18) and imputes the missing values Ymis and

their cross products with their conditional expectations given Yobs, �; and the

current estimate of (�;	); (�(t);	(t)): Then the M-step of the EM algorithm

does weighted least squares estimation on the imputed su�cient statistics.

5. MLE of � and 	 with Unknown � Using EM or ECM

For the case where � is unknown, Lange, Little and Taylor (1989) showed how

to use EM to �nd the joint MLEs of all parameters �; 	 and �: This extension

is straightforward. First, with � replaced by its current estimate �
(t)
; the E-

step of EM in this case is the same as that in the case of Section 4 where � is

�xed, except for the additional calculation of the conditional expectation of the

su�cient statistic S��� in (14) given the observed data and the current estimates,


(t) = fYobs; �
(t)
;	(t)

; �
(t)g :

E

�
S��� j


(t)
�
=

nX
i=1

"
�

 
pi + �

(t)

2

!
� ln

 
pi + �

(t)

2

!#
+

nX
i=1

h
ln(w

(t+1)

i;obs )� w
(t+1)

i;obs

i
;

(25)

where, from (8),

w
(t+1)

i;obs = E(�ij

(t)) =

�
(t) + pi

�(t) + �
(t)

i;obs

; (26)

and (25) follows from (7); as in (17), �(x) in (25) is the digamma function.

Second, the M-step of EM in this case separately maximizes the expected

LN in (12) over (�;	) and the expected LG in (13) over �: Therefore, the M-step

for (�;	) with unknown degrees of freedom � is the same as that with known

�; which is given in (23) and (24). The M-step for � is more di�cult, however,
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because �(t+1) must be obtained by �nding the solution to the equation:

��(�=2) + ln(�=2) +
1

n

nX
i=1

h
ln(w

(t+1)

i;obs )� w
(t+1)

i;obs

i
+ 1

+
1

n

nX
i=1

"
�

 
�
(t) + pi

2

!
� ln

 
�
(t) + pi

2

!#
= 0: (27)

The left hand side of Equation (27), excluding the last term, equals the left hand

side of the corresponding Equation (17) with the missing value of �i replaced by its

conditional expectation for i = 1; : : : ; n given 
(t); thus, the last term on the left

hand side of Equation (27) can be interpreted as a correction for the mean value

imputation of the missing weights �1; : : : ; �n: As a matter of fact, the solution to

Equation (27) is always greater than or equal to the solution to Equation (17)

with �i replaced by its conditional expectation w
(t)
i

for i = 1; : : : ; n because the

last term on the left side of Equation (27) is non-positive and ��(�=2)+ln(�=2) is

strictly decreasing in (0;+1): A one-dimensional search, such as the half-interval

method (Carnahan, Luther and Wilkes (1969)), can be used to solve (27) for �:

When � is unknown, the convergence of the EM algorithm is very slow (see,

for example, Liu and Rubin (1994)), and the one dimensional search for updating

� is time consuming as discussed and illustrated in Lange, Little and Taylor

(1989). Consequently, we consider extensions of EM that can be more e�cient,

for example, the multicycle ECM algorithm of Meng and Rubin (1993).

The ECM algorithm (Meng and Rubin (1993)) generalizes the EM algorithm

by replacing the M-step with a sequence of simple constrained (or conditional)

maximization steps, abbreviated CM-steps, indexed by s = 1; : : : ; S; each of

which �xes some function of the parameters � to be maximized. Meng and

Rubin (1993) show that the ECM algorithm is a GEM algorithm (Generalized EM

(Dempster, Laird and Rubin (1977))) and shares the nice convergence properties

of EM. The rate of convergence of the ECM algorithm is given in Meng (1994),

and it is typically slower than EM, at least in terms of number of iterations.

A multi-cycle version of ECM (MCECM (Meng and Rubin (1993))) is obtained

by inserting an E-step before each CM-step rather than just before the set of

CM-steps.

For the multivariate t, let the parameters � = (�;	; �) be partitioned into

�1 = (�;	) and �2 = �: In this case, ECM is EM because the complete-data

likelihood function of � = (�;	; �) factorizes into a factor for �1 = (�;	) and a

factor for �2 = �: The MCECM algorithm that performs an E-step before each

CM-step is as follows.

E-step of MCECM at iteration t+ 1: The same as the E-step of EM, just

conditioning on the current parameter estimates, �(t) = (�(t);	(t)
; �

(t)):
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CM-step 1 of MCECM at iteration t+1 : Fix � = �
(t)
; and calculate �(t+1)

and 	(t+1) using (23) and (24) with � replaced by �
(t)
:

E-step of MCECM at iteration t+ 1: The same as the E-step of EM, just

conditioning on the current parameter estimates, �(t+1=2) = (�(t+1);	(t+1)
; �

(t)):

CM-step 2 of MCECM at iteration t+ 1 : Fix � = �
(t+1) and 	 = 	(t+1)

;

and calculate �(t+1); which is the solution to Equation (27) with w
(t+1)

i;obs de�ned as

the conditional expectation of �i given �
(t+1=2) and Yobs rather than given �(t) and

Yobs as in (26); that is, in contrast to (26) for EM=ECM, we have for MCECM

w
(t+1)

i;obs =
�
(t) + pi

�(t) + �
(t+1)

i;obs

; (28)

for i = 1; : : : ; n; where �
(t+1)

i;obs = �i;obs(�
(t+1)

;	(t+1)):

6. MLE of the t Distribution via an E�cient Algorithm: ECME

The ECME algorithm (Liu and Rubin (1994)) extends the ECM algorithm

by allowing CM-steps to maximize either the constrained expected log-likelihood,

as with ECM, or the correspondingly constrained actual log-likelihood function

L(�): Although the ECME algorithm is not a GEM algorithm, it shares the nice

convergence properties of EM (Wu (1983)) and ECM (Meng (1994)) under mild

conditions. Moreover, it typically converges more quickly than either EM or

ECM (Liu and Rubin (1994)).

Our application of ECME maximizes the expected log-likelihood over �1 =

(�;	) given � but maximizes the actual log-likelihood over �2 = � given �1 =

(�;	); and yields a much faster converging algorithm because of the lost-memory

of the � in the second CM step. From Section 2, the loglikelihood function of

� = (�;	; �) given the observed data Yobs; ignoring constants, is

L(�;	; �jYobs) =
nX
i=1

ln

�
�

�
� + pi

2

��
� n ln

�
�

�
�

2

��
�

1

2

nX
i=1

ln j	i;obsj

+
n�

2
ln(�)�

nX
i=1

� + pi

2
ln (� + �i;obs) : (29)

Given �1 = (�;	); we can maximize (29) over �2 = � by �nding the solution to

the following equation:

��(�=2) + ln(�=2) +
1

n

nX
i=1

[ln(wi;obs)� wi;obs] + 1

+
1

n

nX
i=1

�
�

�
� + pi

2

�
� ln

�
� + pi

2

��
= 0; (30)
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where wi = (� + pi)=(� + �i;obs):

Thus, the E-step of ECME is the same as the E-step of EM and ECM; CM-

step 1 of ECME is the same as CM-step 1 of ECM; but CM-step 2 of ECME

maximizes the actual likelihood (29) over � given �1 = (�(t+1);	(t+1)): Code for

this maximization involves a one-dimensional search as with EM.

To sharpen the comparison among ECME, EM and ECM for �nding the MLE

of the t distribution, assume that (�;	) is known. ECME �nds the MLE of �

directly using a one dimensional search over the actual likelihood. In contrast,

EM, ECM and MCECM �nd the MLE of � iteratively based on (27), where each

iteration itself requires a one dimensional search over the expected log-likelihood

of �: Therefore, the ECME algorithm should converge substantially faster than

EM, ECM or MCECM. A numerical example comparing the convergence rates

of EM, ECM, MCECM and ECME is presented in Section 8.

7. Extension to Linear Models with Fully Observed Predictor Vari-

ables

The previous results can be easily extended to linear models with q fully

observed predictor variables, X; where the residuals of Yi given Xi are inde-

pendently and identically multivariate t distributed. The required work is a

straightforward modi�cation of the previous development where now, instead of

a common mean � for all i = 1; : : : ; n; we have �i = �
0
Xi for i = 1; : : : ; n; where �

is (q�p) matrix of regression coe�cients. MLEs of the regression coe�cients, the

inner product matrix of the errors, and the degrees of freedom are now described

as simple extensions of the previous results.

A multivariate linear model can be represented as follows:

Y(n�p) = X(n�q)�(q�p) + e(n�p); (31)

where the predictor matrix X consists of n fully observed q-dimensional vectors,

the response data matrix Y contains the corresponding n observations of p-

dimensional outcome variables, the coe�cient matrix � is (q � p) dimensional,

and the error term e consists of the corresponding n p-dimensional errors. Let

Y
0

i
; X

0

i
and e

0

i
be the ith rows of Y; X and e; respectively, so that model (31)

can be written as

Yi = �i + ei = �
0
Xi + ei (32)

for i = 1; : : : ; n; where, as in previous sections, the error terms e1; : : : ; en are

independently and identically tp(0;	; �) distributed. In analogy with Section 3,

we have the following complete-data model. The outcome vector observations Yi
are conditionally independent and normal given the parameters and the weight

vector �:

Yij(X; �;	; �)
ind
� Np(�

0
Xi;	=�i) for i = 1; : : : ; n; (33)
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and the marginal distribution of weights is Gamma,

�ij�
iid
� Gamma(�=2; �=2) for i = 1; : : : ; n: (34)

Following the development in Section 3, we now have a set of complete-data

su�cient statistics for (�;	; �) that generalize S� to S�XX and S�Y to S�XY : The

set of complete-data su�cient statistics for (�;	; �) is:

S�Y Y = Y0
WY =

nX
i=1

�iYiY
0

i
; S�XY = X0

WY =

nX
i=1

�iXiY
0

i
;

S�XX = X0
WX =

nX
i=1

�iXiX
0

i
; (35)

and S��� is given by (14), where W = diagf�1; : : : ; �ng: The MLE of � given the

complete-data fY;X; �g is just as given in Section 3. The complete-data MLE

of (�;	) is easy to derive and is given by

�̂ = S
�1
�XX

S�XY = (X0
WX)�1X0

WY (36)

and

	̂ =
1

n

�
S�Y Y � S

0

�XY
S
�1
�XX

S�XY

�
=

1

n
(Y �X�̂)0W (Y �X�̂); (37)

�̂ in (36) is the weighted least squares estimator of �; and 	̂ in (37) is the

associated estimator of residual variance.

When the weights �1; : : : ; �n are unknown, and Y is either complete or in-

complete, we can use EM, ECM, or ECME to �nd the MLEs of the parameters.

The conditional expectations of the su�cient statistics needed for the E-step can

be obtained case by case, i.e., for i = 1; : : : ; n; where, with the linear model,

�i = �
0
Xi plays the role of � in Sections 2 | 6. Therefore, the conditional

expectation calculations for the linear model are essentially the same as those in

Sections 2 | 6. For example,

Ŵi;i � E(�ijYobs; �;	; �) =
� + pi

� + �i;obs
; (38)

where, as before, �i;obs = (Yi;obs � �i;obs)
0	�1

i;obs(Yi;obs � �i;obs) and pi is the di-

mension of Yi;obs and �i;obs; but now �i;obs refers to the components of �i = �
0
Xi

corresponding to the components of Yi;obs; i.e., the components of Yi that are

observed, rather than simply the components of the common �:

Because it is so much more e�cient, as will be seen in Section 8, we only

give the ECME algorithm for �nding the MLE of the parameters (�;	; �): As in
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Section 6, we use the partition �1 = (�;	) and �2 = �; and maximize the actual

likelihood over � given (�;	):

At iteration t+ 1 with input (�(t);	(t)) and �
(t)
;

E-step: Calculate

Ŵ
(t+1)
i;i �E(�ijYobs; �

(t)
;	(t)

; �
(t)) =

�
(t) + pi

�(t) + �
(t)

i;obs

;

Ŷ
(t)
i � E(YijYobs; �

(t)
;	(t)

; �
(t));

and 	
(t)

i
in (22), where �

(t)

i;obs = (Yi;obs � �i;obs)
0(	

(t)

i;obs)
�1(Yi;obs � �i;obs); and

thereby calculate the su�cient statistics:

S
(t+1)

�XX
=

nX
i=1

Ŵi;iXiX
0

i
; S

(t+1)

�XY
=

nX
i=1

Ŵi;iXi

�
Ŷ
(t)
i

�
0

;

and S
(t+1)

�Y Y
=

nX
i=1

Ŵi;iŶ
(t)

i

�
Ŷ
(t)

i

�
0

+

nX
i=1

	
(t)

i
:

CM-step 1: Calculate

�̂
(t+1) = (S

(t+1)

�XX
)�1S

(t+1)

�XY
=
�
X0
Ŵ

(t+1)X
�
�1

X0
W Ŷ(t)

and

	̂(t+1) =
1

n

�
S
(t+1)

�Y Y
� (S

(t+1)

�XY
)0(S

(t+1)

�XX
)�1S

(t+1)

�XY

�

=
1

n
(Ŷ(t+1)

�X�̂(t+1))0Ŵ (t+1)(Ŷ(t+1)
�X�̂(t+1)) +

1

n

nX
i=1

	
(t)

i
:

CM-step 2: Use a one-dimensional search, such as that in Section 3, to �nd

�̂
(t+1)

; the solution in � to Equation (30) with �i replaced by �i;obs(�
(t+1)

i
, 	

(t+1)

i;obs );

which is the 	
(t+1)

i;obs distance of Yi;obs from �
(t+1)

i;obs ; where �
(t+1)
i =

�
�
(t+1)

�0
Xi:

8. Numerical Examples

To illustrate the use of the EM, MCECM and ECME algorithms, we �rst

present an arti�cial example that demonstrates their essential features and then

present a real data example.

An Arti�cial Example: Table 1 is an arti�cial bivariate data set, where the

symbols \?" denote missing values, created by appending four extreme values

to the arti�cial dataset used in Murray (1977). We suppose that the data follow

the bivariate t and the missing-data mechanism is ignorable. Using a variety of
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starting values �(0); 	(0) and �
(0) for the iterative algorithms, we found three

stationary points of the likelihood, which are displayed in Table 2. Table 2 also

gives three stationary points under the multivariate normal model.

Table 1. A bivariate data set with missing values

x1 �1 �1 1 1 �2 �2 2 2 ? ? ? ? �12 12 ? ?

x2 �1 1 �1 1 ? ? ? ? �2 �2 2 2 ? ? �12 12

Table 2. Stationary points of the parameters in the arti�cial example

Model � (	1;1; 	2;2; 	2;1) � Loglikelihood

(0; 0) (5.6565, 5.6565, 4.3883) 1.4030 �45:5543

t (0; 0) (5.6565, 5.6565, �4:3883) 1.4030 �45:5543

(0; 0) (4.2347, 4.2347, 0.0000) 1.2527 �45:7713

(0; 0) (38.0000, 38.0000, 36.9865) | �47:4185

Normal (0; 0) (38.0000, 38.0000, �36:9865) | �47:4185

(0; 0) (38.8000, 38.8000, 0.0000) | �51:2066

To compare the convergence rates of the algorithms described in this ar-

ticle, we started all three, that is, EM = ECM, multicycle ECM, and ECME

= multicycle ECME, from the same value. Speci�cally, we let �(0) = (0; 0);

	
(0)
1;1 = 	

(0)
2;2 = 38:0000; 	

(0)
1;2 = 36:9865; that is, the maximum likelihood esti-

mate of � and 	 with � �xed at 1; and let �(0) = 1000:00: For judging con-

vergence, we set the tolerance parameter for each component of �(t+1) � �
(t) to

1.0E-05. The sequences of �(t) (t = 1; 2; : : :) and the corresponding loglikelihoods

L(�(t);	(t)
; �

(t)jYobs) using EM, multicycle ECM and ECME are displayed in Fig-

ure 1, and these demonstrate a signi�cantly faster convergence rate for the ECME

algorithm in this arti�cial example. With respect to the actual computational

times of the di�erent methods, Table 3 shows that ECME has at least a seven-fold

advantage in this case over EM and multicycle ECM. We expect such advantages

to be typical, although not guaranteed, because of the freedom to maximize

over � the constrained actual likelihood rather than the expected complete-data

loglikelihood, which has the memory of the previous value of the parameter �

through the expected complete-data su�cient statistics; Liu and Rubin (1994)

provide explicit large sample results for the one-dimensional t-distribution.

An analogy with the Gibbs sampler may help to clarify the source of the

expected gains. Consider the simple case with missing random variable Ymis and
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random parameter � = (�1; �2): ECM employs an E-step using the distribution

(Ymisj�1; �2); a �rst CM-step using the distribution (�1jYmis; �2); and a second

CM-step using the distribution (�2jYmis; �1); the analogous Gibbs sampler takes

draws from these three conditional distributions. In contrast, ECME uses the

same E-step and the same �rst CM-step, but uses the distribution (�2j�1) for the

second CM-step, where the E-step and second CM-step distributions are factors

of the joint distribution (Ymis; �2j�1); the analogous Gibbs sampler takes draws

from these three distributions, which is equivalent to the two-step Gibbs sampler

drawing (Ymis; �2j�1) in one step and (�1jYmis; �2) in the other. Liu, Wong and

Kong (1994) and Liu (1994) give results supporting the expected more rapid

convergence with the two-step Gibbs sampler.

ln(Iteration) ln(Iteration)

Figure 1. The sequences of �(t) (t = 1; 2; : : :) in (a) and the corresponding actual log-

likelihood in (b) found by multicycle ECM (solid line), EM (dotted line that is indistin-

guishable from the solid line) and ECME (dashed line) in the arti�cial example. Note

the use of the logarithmic scale for the number of iterations.

Table 3. CPU times of di�erent algorithms until convergence

for the arti�cial example

Algorithm CPU time per iteration # of iterations Total CPU time

(sec) (min:sec)

EM = ECM 0.26 7,061 30:27

Multicycle ECM 0.26 7,053 30:11

ECME 1.92 130 4:10
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Table 4. Data for the Creatinine Clearance Example (Shih and Weisberg (1986))

No. WT SC Age CR

1 71.0 0.71253 38 132.0

2 69.0 1.48161 78 53.0

3 85.0 2.20545 69 50.0

4 100.0 1.42505 70 82.0

5 59.0 0.67860 45 110.0

6 73.0 0.75777 65 100.0

7 63.0 1.11969 76 68.0

8 81.0 0.91611 61 92.0

9 74.0 1.54947 68 60.0

10 87.0 0.93873 64 94.0

11 79.0 0.99528 66 105.0

12 93.0 1.07445 49 98.0

13 60.0 0.70122 43 112.0

14 70.0 0.71253 42 125.0

15 83.0 0.99528 66 108.0

16 70.0 2.52212 78 30.0

17 73.0 1.13100 35 111.0

18 85.0 1.11969 34 130.0

19 68.0 1.37982 35 94.0

20 65.0 1.11969 16 130.0

21 53.0 0.97266 54 59.0

22 50.0 1.60602 73 38.0

23 74.0 1.58339 66 65.0

24 67.0 1.40244 31 85.0

25 80.0 0.67860 32 140.0

26 67.0 1.19886 21 80.0

27 68.0 7.60001 81 4.3

28 72.2 2.10001 43 43.2

29 NA 1.35719 78 75.0

30 NA 1.05183 38 41.0

31 107.0 NA 62 120.0

32 75.0 NA 70 52.0

33 62.0 NA 63 73.0

34 52.0 NA 68 57.0

The table reports the results of a clinical trial on Endogenous creatinine clearance of 34

male patients, conducted overseas by Merck Sharp and Dohme Research Laboratories.

WT = body weight, SC = serum creatinine concentration, CR = Endogenous creatinine

clearance, NA = not available.
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Table 5. Mahalanobis distances and weights evaluated

at MLE in the clinical example under the t model

where the p-values are calculated based on the approximation �i;obs=pi � Fpi;� .

Case i �̂i;obs p-value ŵi

1 2.1531 0.2863 1.3995

2 2.5139 0.3413 1.2982

3 3.9687 0.5258 1.0049

4 3.6915 0.4953 1.0501

5 3.1494 0.4294 1.1514

6 2.8120 0.3841 1.2249

7 3.9468 0.5235 1.0083

8 2.0130 0.2641 1.4433

9 0.9163 0.0870 1.9108

10 2.8648 0.3914 1.2128

11 1.9731 0.2577 1.4562

12 4.0596 0.5354 0.9909

13 2.7458 0.3748 1.2405

14 1.9759 0.2582 1.4553

15 2.0294 0.2667 1.4380

16 6.0978 0.7006 0.7551

17 2.7311 0.3727 1.2440

18 3.8146 0.5091 1.0295

19 4.9598 0.6190 0.8708

20 9.2908 0.8375 0.5501

21 4.2477 0.5545 0.9631

22 6.7422 0.7373 0.7023

23 1.4412 0.1707 1.6543

24 4.3536 0.5648 0.9482

25 4.8966 0.6137 0.8783

26 5.5908 0.6671 0.8026

27 86.3933 0.9993 0.0728

28 8.5917 0.8157 0.5849

29 3.2238 0.5767 0.9607

30 15.1689 0.9605 0.3101

31 4.9377 0.7305 0.7384

32 1.4378 0.2924 1.3998

33 1.2040 0.2430 1.4889

34 4.6031 0.7068 0.7733
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A Clinical Trial Example: The data in Table 4, reproduced from Table 1

in Shih and Weisberg (1986), are from a clinical trial on 34 male patients with

3 covariates, body weight (WT) in kg, serum creatinine (SC) concentration in

mg/deciliter, and age in years, and one outcome variable, endogenous creatinine

(CR) clearance. Of the 34 male patients, two had no recorded WT, and four were

missing SC; the missingness is assumed to be ignorable as in Shih and Weisberg

(1986). A typical model recommended in many pharmacokinetics textbooks for

modelling CR as a function of WT, SC and Age (see Shih and Weisberg (1986))

is of the form

E(ln(RC)) = �0 + �WT ln(WT) + �SC ln(SC) + �Age ln(140 �Age): (39)

Shih and Weisberg (1986) use this data to illustrate their method for as-

sessing inuence in multiple linear regression using the multivariate normal dis-

tribution with incomplete data. Assuming that the response ln(RC) and the

three predictors ln(WT), ln(SC), and ln(140-Age) are jointly multivariate nor-

mal, they found that one observation, case 27, is inuential, and another case,

case 30 (with WT missing), has relatively large inuence on the regression coef-

�cient � = (�0; �WT; �SC; �Age) but is not \signi�cant".

Here, we apply the multivariate t distribution to this data set. Starting from

various places, there appears to be only one mode, with �̂ = 6:51: The likelihood

ratio statistic G2 for the t relative to the normal is 10.0694, which suggests that

the t distribution is more appropriate for these data than the normal distribution.

Table 5 shows the corresponding estimated Mahalanobis distances of all cases

with � = �̂; the MLE. Because, given �; �i;obs=pi � Fpi;�
; where Fpi;�

denotes the

F-distribution with degrees of freedom (pi; �); we have approximately

P ( max
1�i�34

�i;obs > 86:3933) = 0:0235;

which is the chance that the largest Mahalanobis distance among 34 cases inde-

pendently drawn from t4(�̂; 	̂; �̂) is larger than �̂27;obs = 86:3933:

Table 6 gives the MLEs of the regression coe�cients in Equation (39) based

on all patients and based on all patients except patient 27 under the t distribution

and normal distribution, respectively. The estimate of the treatment e�ect, �SC;

is less sensitive to the deletion of patient 27 under the t model than under the

normal model.
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Table 6. The MLEs of the regression coe�cients

for the model of the clinical trial example

Model All patients

� �0 �WT �SC �Age

t 6.51 �2:96 1.02 �0:82 0.70

Normal (1) �3:34 1.17 �1:08 0.65

Patient 27 deleted

� �0 �WT �SC �Age

t 1 �3:25 1.07 �0:77 0.71

Normal (1) �3:25 1.07 �0:77 0.71

9. Discussion

The EM, ECM and ECME algorithms can all be used to �nd the MLEs of

the parameters of the multivariate t distribution. The associated large sample

variances of the MLEs based on second derivatives of the log-likelihood at the

MLEs can be obtained, for example, using SEM (Meng and Rubin (1991)) and

its extensions SECM (van Dyk, Meng and Rubin (1995)), or using the explicit

formulas given in Lange, Little and Taylor (1989). Due to the fact that the

likelihood of the multivariate t distribution can have many modes, the full poste-

rior distribution is far more reliable inferentially than the MLEs and associated

variances, especially with small samples. However, the MLEs and associated

variances of the parameters of the t distribution can still be very useful. First,

they can provide sensible values of the degrees of freedom that can be used, for

example, in sensitivity analyses of models. Second, and perhaps more important

in practice, they can be used to create an approximate starting distribution for

multiple sequences of the Gibbs sampler (Gelman and Rubin (1992)), which in

turn can track the entire posterior distribution.

The Gibbs sampler can be viewed as a stochastic version of EM type algo-

rithms (EM, ECM, ECME), where the parameters are considered random vari-

ables, and di�erent versions of the Gibbs sampler exist corresponding to the EM,

ECM and ECME algorithms. When data contain missing values, an especially

e�cient method is provided in Liu (1995), which extends the monotone data

augmentation of Rubin and Schafer (1990) for multivariate normal data to mul-

tivariate t data and generalizes the results of Liu (1993) to implement e�ciently

monotone data augmentation for multivariate t data.
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Appendix

Proposition 1 shows that Equation (17) has a unique solution in the interval

(0;+1]: To �nd this solution, one can use a one-dimensional search such as the

half-interval method (Carnahan, Luther and Wilkes (1969)). To calculate the

Digamma function �(�); we use

�(x+ 1) = �(x) +
1

x
; x > 0; (40)

(see (6.3.5) of Davis (1965)) and the integral of

�(x) = � +

Z 1

0

1� y
x�1

1� y
dy (41)

for 2 � x < 3 (Davis (1965), eq. 6.3.22), where  is Euler's constant. Although

(41) is true for all x > 0; we use (41) with 2 � x < 3 because (1� y
x�1)=(1� y)

is quite smooth (in fact, almost linear) as a function of y in the interval (0; 1)

given x 2 [2; 3):

Proposition 1. Let

u(x) = ��(x) + ln(x) + S���=n+ 1; (42)

where S��� is given in (14). Then u(x) has the following properties:

(1) The function u(x) is concave over (0;+1); i.e., u00(x) < 0 for all x 2

(0;+1):

(2) ��(x) + ln(x); is strictly decreasing over (0;+1); with limits

lim
x!0+

(��(x) + ln(x)) = +1 and lim
x!+1

(��(x) + ln(x)) = 0:

(3) S���=n+1�0; and S���=n+1=0 i� �=+1: When S���=n+1<0; the max-

imization of u(x) has a unique solution that is determined by u
0(x) = 0: When

S���=n + 1 = 0; u(x) is strictly increasing in (0;+1) and sup
x2(0;+1) u(x) =

u(+1):

Proof. From Equation (42), conclusion (1) will be proved by showing �
0(x) �

(1=x) > 0 for all x in (0;+1): From (6.4.12) of Davis (1965), i.e., as x! +1;

�
0(x) �

1

x
+

1

2x2
+

1

6x3
�

1

30x5
+

1

42x7
�

1

30x9
+ � � � ;
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we have

lim
x!+1

x
2

�
�
0(x)�

1

x

�
=

1

2
:

Thus, there exists a positive constant N0 > 1 such that �0(x)� (1=x) > 0 for all

x � N0: Suppose that this inequality holds for all x � m > 1; then from (40), for

all x in [m�1;m); �0(x)�(1=x) = �
0(x+1)+(1=x2)�(1=x) > �

0(x+1)�1=(x+1)

> 0: By induction, we have �0(x) � (1=x) > 0 for all x 2 (0;+1): Thus, (1) is

proved and the �rst part of (2) follows from (1).

From (40) we have

lim
x!+0

(��(x) + ln(x)) = lim
x!+0

�
��(x+ 1) +

1

x
+ ln(x)

�
= +1:

From (6.3.18) of Davis (1965) we have

lim
x!+1

(��(x) + ln(x)) = lim
x!+1

�
1

2x
+

1

12x2
�

1

120x4
+

1

252x6
� � � �

�
= 0:

Thus (2) is proved. The �rst part of (3) is an immediate result of the inequality

ln(�i)� �i+1 � 0 for all �i > 0 and ln(�i)� �i+1 = 0 i� �i = 1: The second part

of (3) follows from (2).
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