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Supplementary Material

In this supplement, we give actual data analyses and proofs of the theoretical results in the main
work in [Aoshima and Yatal (2016) together with additional simulations, additional theoretical
results and proofs of the additional results. We provide a method to distinguish between the
NSSE model defined by (1.4) and the SSE model defined by (1.6). We also give a method to
estimate the parameters required in the test procedure (5.5). The equation numbers and the
mathematical symbols used in the supplement are the same as those which are made reference

to in the main document.

S1 Additional Propositions

In this section, we give two propositions and proofs of the propositions.

S1.1 Proposition S1.1

Proposition S1.1. Let © be the set of positive definite matrices of dimension p. It holds that

argmax

A(A) B
AcO {W} =c(X1/n1 + B2 /n2)

for any constant ¢ > 0.

Proof. We assume A € ©. Let 1g = py/||pall and X4, = 3y 4/n1 + X5 4/n2. Then, we
have that

20 (A)/{K2(A)}? = |l all/(BAS acia) 2.

The eigen-decomposition of ¥ 4, is given by 4, = H A 4 HY, where A4 = diag(A1 4, -, Ap,4)

is a diagonal matrix of eigenvalues, A\; 4 > --- > A, 4 > 0, and Hy = [hy 4,...,h, 4] is
an orthogonal matrix of the corresponding eigenvectors. There exist some constants ci, ..., cp
such that f14 = >0 _, cjh; 4 and 377, ¢ = 1. From Schwarz’s inequality, it holds that

(PAS aufra) (a3 k) = (251 GA5,4) (271 5A ) = 1, so that

2
lall/(BAZaciea) < (Il PEAS Al A" = {1 —p2) T (B1/ma+S2/na) (0 —po) } /2.

Note that [[gall/ (A5 A, )"/ = {(1ty — )7 (S1/ma + Sa/n2) " (ay — pg)}/? when A =
c(X1/n1 + Zg/nz)_l for any constant ¢ > 0. It concludes the result. O
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S1.2 Proposition S1.2

Let us write that py , = Ainul - A;/2M2 and X; 4, = A;/QZJZ'A;Q, i = 1,2. Let
A(Aq, Az) = Hp,AleQ and K(A1,As) = Ki(Ai1,A2) + K2(A1, A2), where Ki1(A1,A2) =
2307 (25 4,)/{ni(ni—1)}+4tr(21 4,20, 4,)/ (n1n2) and Ka(Ar, Az) =437 ply B apa,, /1.
Note that E{T(A1, A2)} = A(A1, Az) and Var{T (A1, A2)} = K(A1, A2). Then, we have the

following result.

Proposition S1.2. Assume (A-i) and the following conditions:

{Amax (Zi,4,)}

— 0 asp— o0 fori=1,2;
n=2,) Pt

(S-)
{A(A1, A)Y

(S-ii) Ki(A1, As)

— 0 as m — oo under Hy.

Then, it holds that as m — oo

( T(A1, A2)

W > Za> =+ O(l) under Ho.

Proof. From Theorem 2 and Lemma 1, the result is obtained straightforwardly. (I

Note that (S-i) is naturally met when A; = 3;', i = 1,2, because 3; 4, = I, when
A; = E;l. However, (S-ii) is difficult to meet when ¥; # X5 and A; = 2;1, 1 =1,2. For
example, when 21 = ¢Xs = I, (¢ > 1) and p; = py = (1,...,1)7, it follows that A(Z; ', 351) =
(1 — ¢?)2p. Then, (S-ii) does not hold because K1(X7',25') = O(p/n2;,). Hence, we do
not recommend to choose A; = 2;1, i = 1,2. In addition, it is difficult to estimate E;ls for

high-dimension, non-sparse data.

S2 How to Check SSE Models and Estimate Param-

eters

In this section, we provide a method to distinguish between the NSSE model defined by
(1.4) and the SSE model defined by (1.6). We also give a method to estimate the parameters
required in the test procedure (5.5).

S2.1 Checking Whether (1.4) Holds or Not

As discussed in Section 3, we recommend to use the test by (3.1) with A = I, when (A-ii)
is met, otherwise the test by (5.5). It is crucial to check whether (1.4) holds or not (that is,
whether (1.6) holds).

Let 0, = S\fI/WWZz for ¢ = 1,2, where Wiy, s are defined in Section 2.2 and :\ijs are defined
by (5.2). Then, we have the following result.
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Proposition S2.1. Assume (A-i). It holds that as m — oo

i =op(l) fori=1,2, under (1.4);

P(f); > ¢) — 1 with some fized constant ¢ € (0,1) for some i under (1.6).

By using Proposition S2.1, one can distinguish between (1.4) and (1.6). One may claim
(1.4) if both 71 and 7j2 are sufficiently small, otherwise (1.6). In addition, we have the following

result for 7);.

Proposition S2.2. Assume (A-viii). Assume also M3 /tr(23) = O(n; ) as m — oo with some

fized constant ¢ > 1/2 for i =1,2. It holds as m — oo
P(ﬁi < KL(TLZ)) —1 fori=1,2,

1/2

where k(n;) is a function such that k(n;) — 0 and n;’"k(n;) — oo as n; — oo.

From Proposition S2.2 one may claim (1.4) if 7j; < x(n;) both for ¢ = 1,2, otherwise (1.6).

One can choose k(n;) such as (n; ' logn,;)/? or n; ¢ with ¢ € (0,1/2). In Section S3, we use

1/2

k(n;) = (ni_1 log n;) in actual data analyses.

S2.2 Estimation of V¥, and £k;

Let ni1) = ’V’I’LZ/QW and Ny2) = MNi — Nyi(1)- Let X;1 = [w117...7w¢ni(1>] and X ;o
[minm)-&-l: woy Tin; ) for i =1,2. We define

Sipa) = {(niqy — 1)(ni2) — 1)}_1/2(Xi1 — X)) (X2 — Xi2)

for i = 1,2, where X,;; = [@in, (j)s - Biny ()] With Bin,q) = 27:1(11) Tit/niy and Ty, 2) =
Zln:ini(l) +1 ®it/Ni(2)- By using the cross-data-matrix (CDM) methodology by [Yata and Aoshimal
(2010), we estimate \;; by the j-th singular value, Ai;, of S;p(1), where Ajg > --- > Aing(gy—1 2
0. [Yata and Aoshimal (2010, [2013)) showed that A;; has several consistency properties for
high-dimensional non-Gaussian data. [Aoshima and Yatal (2011 applied the CDM methodol-
ogy to obtaining an unbiased estimator of tr(X?) by tr(SiD(DS’iTD(l)), i = 1,2. Note that
E{tr(SiD(1>SiTD(1))} = tr(X7). Based on the CDM methodology, we consider estimating ¥,
as follows: Let @i(l) = tr(SiD(l)SiTD(l)) and
j—1
U5y = te(Sip)Sipy) — D An fori=1,2; j =2,..,n2). (52.1)
=1

Note that (I\li(j) >0 w.p.1 for j = 1,...,m42). Then, we have the following result.

Lemma S2.1. Assume (A-i) and (A-vi). Then, it holds that \Tli(j)/\lli(j) =14o0p(1) asm — o
fori=1,2 j=1,. . ki +1.

Let ﬁ;(j) = {I}i(jJrl)/‘/I\li(j) (: 1- j\?j/{l\li(j)) for i = 1,2. Note that 7A'i<]‘) € [0, 1) for Xi]‘ > 0.

Then, we have the following result.
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Proposition S2.3. Assume (A-i) and (A-vi). It holds for i = 1,2 that as m — oo

P(tijy <1 —1c¢;) = 1 with some fized constant ¢; € (0,1) for j =1, ..., ks;

Titki+1) = 1+ op(1).

From Proposition S2.3, one may choose k; as the first integer j such that 1 — 7;(;41) is

sufficiently small. In addition, we have the following result for 7, +1).

Proposition S2.4. Assume (A-vi), (A-viii) and (A-iz). Assume also Ny, 11/%ig,+1) = O(n;°)

as m — oo with some fized constant ¢ > 1/2 for i = 1,2. It holds for i = 1,2 that as m — o
P(Figeerny > {1+ (ki + Dr(ni)} 1) = 1,
where k(n;) is defined in Proposition S2.2.

From Propositions S2.3 and S2.4, if one can assume the conditions in Proposition S2.4,

one may consider k; as the first integer j (= kos, say) such that
Figen{l+ G+ Dr(n)} >1 (5> 0). (S2.2)

Then, it holds that P(I%oi = k;) — 1 as m — oo. Note that @i(ni(2>) = 0 from the fact that
rank(S;p1)) < my2) — 1. Thus one may choose ki as ki = min{koi, n;2) — 2} in actual data
analyses. For x(n;) = (n; *logn;)*/? in (SZ2), the test procedure by (5.5) with ki = ki, i = 1,2,
gave preferable performances throughout our simulations in Sections 6 and S4.2. If ki=0 (that
is, (SZ2) holds when j = 0), one may consider the test with A;,) = I,. In addition, if & = 0
for i = 1,2, we recommend to use the test by (3.1) with A = I,,.

S3 Demonstration

In this section, we introduce two high-dimensional data sets that have the SSE model. We
demonstrate the proposed test procedure by (5.5) by using the microarray data sets. We set
a = 0.05.

We first analyzed leukemia data with 7129 (= p) genes consisting of 71 : acute lymphoblas-
tic leukemia (n1 = 47 samples) and 7 : acute myeloid leukemia (ne = 25 samples) given by
Golub et all (I999). We transformed each sample by x;; — (Z1n, + T2n,)/2 for all i,j, so
that u; = gy = 0 under Hy : p; = py. Then, (A-vii) and (A-x) hold under Hy. We cal-
culated that 71 = 0.697 and 72 = 0.602. Since 7);s are larger than (nl_1 log n1)1/2 = 0.286
or (ny'logns)*/? = 0.359, we concluded from Proposition $2.2 that (1.6) holds for i = 1,2.
We used the test procedure by (5.5). We set x(n;) = (n; 'logn:)*/? in (BZ2). Let Fi(;) =
Tin{1 + jr(ng)} for all ¢,j. We calculated that (7i(1), T1(2), T1(3)) = (0.407,0.993,1.302) and
(Fa(1) Ta(2)s Ta(3), To(ay) = (0.579,0.7,0.902,1.307), so that k1 = 2 and ki = 3. Thus, we chose
k1 =2 and k2 = 3. We calculated that 7/:*/[/(\'11:2 = 46.866. By using (5.5), we rejected Ho with

size 0.05 according to the arguments in Section 5.2.
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Next, we analyzed prostate cancer data with 12625 (= p) genes consisting of 71 : normal
prostate (n1 = 50 samples) and 72 : prostate tumor (n2 = 52 samples) given by [Singh et al.
(2002). We transformed each sample as before. We calculated that (71, 72) = (1.01,1.009) and
(k1,k2) = (4,3) from (BZ2) with (n;) = (n; ' logn;)'/2. Hence, we used the test procedure
by (5.5) with k&1 = 4 and k2 = 3. Then, we calculated that T\*/I?llf = 27.497. Hence, we
rejected Ho by using (5.5). In addition, we considered two cases: (a) 71 : the first 25 samples
(n1 = 25) and 2 : the last 25 samples (n2 = 25) from the normal prostate; and (b) 7 : the first
26 samples (n1 = 26) and 72 : the last 26 samples (n2 = 26) from the prostate tumor. Note
that Hp is true for (a) and (b). We applied the test procedure by (5.5) to the cases. Then, we
accepted Hy both for (a) and (b). We also applied the test procedures by (3.1) with A = I,
and (4.2) to the cases. Then, Ho was rejected by them both for (a) and (b).

S4 Additional Simulations

In this section, we give additional simulations for Sections 3.3 and 6 of the main work in
Aoshima and Yatal (2016]).

S4.1 Simulations for NSSE Model

In this section, we give additional simulations for Section 3.3 under the NSSE model.

We set « = 0.05, p = 2°, s = 4,...,10, n; = [pl/Q], ne = 2n; and g, = 0. When
considering the alternative hypothesis, we set pu, = (1,...,1,0,...,0,—1, ..., —1)T whose first 5
elements are 1 and last 5 elements are —1. We generated &;;, j = 1,2,..., (i = 1,2) inde-
pendently from a multivariate skew normal (MSN) distribution, SN, (€2, o), with correlation
matrix Q = (0.3|i_j‘1/2) and shape parameter vector . Note that E(Z:;) = (2/7)Y?Qa/(1 +
a’Qa)? (= 1, say) and Var(i#:;) = Q@ — pa’ (= 2, say). We set @;; = C,}/Q(iij — )+ p,
for all 4,5, where (c1,c2) = (1,1.5). Note that 3; = 3 and ¥, = 1.53. We considered three
cases: (a) & = 1,; (b) @ = 41,; and (c) @ = 161,, where 1, = (1,...,1)T. See [Azzalini and
Dalla Vallel (1996) and [Azzalini and Capitanio| (1999)) for the details of the MSN distribution.
Note that (1.4) is met. Also, note that (A-i) is met. See Remark S4.1. Similar to Section 3.3,
we calculated @ and 1 — 3 with 2000 replications for the test procedures given by (3.1) with (I)
A=1, (I) A=A, (II[) A= A, g4 and (IV) A = ﬁ*<d). Note that (A-iv) is met for (I) to
(ITT). In Fig. S4.1, for (a) to (c), we plotted @ in the left panel and 1 — 3 in the right panel.
We also plotted the asymptotic power, ®(A(A)/{K(A)}*? — 2., {K1(A)/K(A)}/?), for (I) to
(III) by using Theorem 3.

We observed that the plots become close to the theoretical value even for the skewed
distributions. The tests with (I) and (III) gave similar performances for (a) to (c). This is
probably because o;(;) — ¢; as p — oo for all 4, j in those settings. Similar to Fig. 1, the test
with (I) gave better performances compared to (II) for (a) to (c). See Sections 3.2 and 3.3 for
the details.
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Figure S4.1: Test procedures by (3.1) when (I) A = I,, (II) A = A,, (II[) A = A,
and (IV) A = ﬁ*(d) for p = 2°, s = 4,..,10, n1 = [p*/?] and n2 = 2n;. For (a) to (c),
the values of @ are denoted by the dashed lines in the left panel and the values of 1 —

are denoted by the dashed lines in the right panel.

B(A(A)/{K(A)}? — 2,{K1(A)/K(A)}'/?) for (I) to (IIT) which are denoted by the solid

lines in the right panels.

Remark S4.1. Let by = Q'?a/||2'/2a|| and bs, ..., b, be p-dimensional vectors such that
[lbs|]| = 1, bTbs = 0 for s = 2,...,p, and P bsbl = I,. Then, from Propositions 3 and 6
,b7Q~1/2%,; are independent. Hence, (A-i) is

met from the fact that @i — p; = /> P QY26 (b7 Q" V2(2; — 1)}

in [Azzalini and Capitanio (1999), b¥ Q2% ...

The asymptotic powers were given by
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S4.2 Simulations for SSE Model

In this section, we give additional simulations for Section 6 under the SSE model.
We set o = 0.05, py = 0 and

) Oap-
3 = o »p? with ;) = diag(p>/?,p'/?) (S4.1)
Op_22 i)

for i = 1,2. When considering the alternative hypothesis, we set p, = (0, ...,0,1,1,1,1)" whose
last 4 elements are 1. We set x(n;) = (n; ' logn;)*/? in (S22). We checked the performance
of five tests: (I) from (3.1) with A = I,, (II) from (4.2), (III) from (5.5), (IV) from (5.5)
with k; = ki, i = 1,2, and (V) from (6.1). Let us write that @;; = (Ti1()s oo Tip()) s By =
(it er piip) T, xij2) = (Tisg), ,..,xip(j))T and p;5) = (i3 e pip) " for all 4,5. We supposed
that (z1(j), Ti2(j))" s are 1.i.d. as N2(0,21)).

First, we checked the performance of the test procedures for the MSN distribution. We set
p=2% n1=3[p'/?] and na = 4[p*/?] for s = 4,...,10. We generated T2, 7 =1,2,..., (i=
1,2) independently from SN,_2(2;, a) with 2, = (0.3‘%]"1/2) and Qy = (0.5“7]-‘1/2)7 where
(Zi1(5), l'i2<j))T and &;;(2) are independent for each j. We considered two cases: (a) a =41, »;
and (b) & = 161,—2. Similar to Section S4.1, we set ®;j(2) = ®45(2) — Bb; + Moy for all 4, j, where
By = E(#ij2) = (2/m)?Qia/(1 + " Qia)'/?, i = 1,2. Then, we had Z;9) = Qi — 1,17,
i =1,2, in (S4J). Note that (4.1) and (A-vi) with k1 = ko = 2 are met. Similar to Remark
S4.1, we note that (A-i) is met. However, (A-viii) is not met. Similar to Section 6, we calculated
@ and 1 — 3 with 2000 replications for the five test procedures. In Fig. S4.2, for (a) and (b), we
plotted @ in the left panel and 1 — § in the right panel. We observed the performances similar
to those in Fig. 2 (a).

Next, we checked the performance of the test procedures for the multivariate skew ¢ (MST)
distribution. See [Azzalini and Capitanio| (2003) and [Guptal (2003)) for the details of the MST
distribution. We considered two cases: (i) (n1,n2) = (40,60) and p = 50 + 100(s — 1) for
s =1,..,7; and (ii) p = 500, n1 = 10s and np = 1.5n; for s = 2,...,8. We generated &),
ji=1,2,.., (i =1,2) independently from a MST distribution, STp_2(;, e, ), with correlation
matrix €2;, shape parameter vector a and degrees of freedom v, where (1), iUig(j))T and &;;(2)
are independent for each j. We set 1 = (0.3“77"1/2), Qs = (0.5”7”1/2) and o = 101,_2. We
considered two cases: (a) v = 10 and (b) v = 20. Note that E(&j¢)) = (v/m)"*{(v/2 —
1/2)/T(r/2)} 20/ (1 + o Q) /2 (= i, say) and Var(@y) = v/ (v — 2) — il (= 5,
say), where I'(-) denotes the gamma function. We set @;j(2) = ®ij(2) — f1; + py(2) for all 4, 7.
Then, we had 3;5) = ¥;, i = 1,2, in (S&I)). Note that (4.1) and (A-vi) with k1 = ko = 2 are
met. However, (A-i) and (A-viii) are not met. Similar to Fig. S4.2, we plotted @ in the left
panel and 1 — § in the right panel for (i) in Fig. S4.3 and for (ii) in Fig. S4.4. We observed the
performances similar to those in Fig. 2 (b) and (c).

Throughout, the test procedure by (5.5) with k; = lAci, i = 1,2, gave adequate performances

for high-dimensional cases even for the skewed and heavy tailed distributions.



MAKOTO AOSHIMA AND KAZUYOSHI YATA

Size Power
. 106 g et e mbm——
0251 \\\\ :—___'____:ﬂ":‘-«:.'—-:-'—::
020f e e (I) 08} e (I)
Tweece |- (1) L +- (II)
0.15¢ - (mn) | 06f Tl » (III)
> AL I U - (V)
o0t T, + V) ) osf Rt N + V)
:"-~-.___-0--"-‘-i\.\_\ @ ‘\\. \*‘\\.
005 -k e P gl -—
- o 02} e
. . . . . . 1o: . . . . . . 1o:
4 5 6 1 8 9 10 e A T €2p
(a) SNp_2(ﬂi, (1) with o = 41p—2'
Size Power
025f " B St i eiinis s =
-~ ¥--
020F Dt o 08}
-~ [h 3
e B e *
01sf = () | osf L » (1)
et N = (IV) i 2 YUY = (IV)
010 e S o V) | o4l P « (V)
1“—-—o----&-_::’:A-‘t-_:—_.":'. ‘~~\.~ “~\\.
(Y157 SN——— S £ oal Tt
. . . . . . 1o: . . . . . . 1o:
4 s 6 1 8 9 10 e A T €2p

(b) SNP_Q(QZ‘7 a) with o = 161p_2.

Figure $4.2: When p = 2°, n; = 3[p'/?] and no = 4[p1/2] for s = 4,...,10, the performances
of five tests: (I) from (3.1) with A = I,, (II) from (4.2), (III) from (5.5), (IV) from (5.5) with
ki = ki, i = 1,2, and (V) from (6.1). For (a) and (b), the values of @ are denoted by the dashed
lines in the left panel and the values of 1 — 3 are denoted by the dashed lines in the right panel.
The asymptotic power of (IIT) was given by ®(A,/K/? — zo(K1./K.)'/?) which is denoted by
the solid line in the right panels. When p is small, @ for (V) was too high to describe in the left

panels.

S5 Appendix A

In this appendix, we give proofs of the theoretical results in Sections 2 and 3 of the main
work in [Aoshima and Yatal (2016).

We simply write 7 = T(A), A = A(A), K = K(A), K, = Ki(A), K, = I?l(A) and
Ky = K2 (A).

Proof of Theorem 1. We note that for i = 1,2
HAZi Aka < Mmax(Bi4) < Atr(EF 4)"2. (85.1)
Hence, from the fact that tr(37 4)/nf < Ki for i = 1,2, it holds that Ky = O(AK,?), so that

Var(T/A) = (K1 + K2)/A? = K1 /A% + O(K,?/A). (S5.2)
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Figure S4.3: When (i) (n1,n2) = (40,60) and p = 50+100(s—1) for s = 1, ..., 7, the performances

of five tests: (I) from (3.1) with A = I, (II) from (4.2), (III) from (5.5), (IV) from (5.5) with
ki = ki, i =1,2, and (V) from (6.1).

Thus, under (A-iii), from Chebyshev’s inequality, we can claim the result. O

Proof of Theorem 2. We first consider the case when (A-iv) is met. From (S5.1)), under (A-ii),
it holds that p’y3; apa/ni = o(Atr(E?YA)l/Q/ni) = o(AKll/z) as m — 00, so that

Ky /K1 = O{K>/(AK}*)} — 0 (S5.3)

under (A-ii) and (A-iv). Let @;; 4 = AY?zi; (j = 1,...,n:), B = AY?p; and T, 4 = AYT
for i = 1,2. We write that

x; 4 =T qowij +p; 4 foralli,j. (S5.4)

Note that Var(e;; 4) = X; 4 for i = 1,2. Then, from (85.3), by using Theorem 5 given in
Aoshima and Yatal (2015), we can obtain the result when (A-iv) is met.

Next, we consider the case when (A-v) is met. Let p,5 = p; — pty. Under (A-v), it holds
that

T-A= 2#?214(51711 — Ton, — M12) + OP(Kzl/Q) (85.5)

from the fact that Var{(Zin, —Zon, —th15) " A(Fin, —Bon, — 1) —t1(S1n; A) /N1 —tr(S2n, A) N} =
Kl. Let wj; = 2[1,’{214(%1]' — [1/1)/77,1 fOI‘ j = 1,...,77,1, and Witny = —2[1;’{214(%2]' — [1,2)/7’[,2 fOI‘
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(b) STp—2(92;, o, v) with v = 20.

Figure S4.4: When (ii) p = 500, n1 = 10s and na = 1.5n4 for s = 2,...,8, the performances of
five tests: (I) from (3.1) with A = I, (II) from (4.2), (III) from (5.5), (IV) from (5.5) with
ki = ki, i =1,2, and (V) from (6.1).

j =1,..,n2. Note that E;if"z wj = 2, A(Z1p, — Tan, — Pyo) and Var( ?;{"2 wj) = Ko.
Note that E(w]) = O{(p431 apa)?/ni} for j =1,..,n1, and E(w)) = O{(p4 s ap4)?/n5}

n1 + 1,...,m1 4+ n2, under (A-i). Then, for Lyapunov’s condition, it holds that as

for j

NMmin — OO

ni+n2
2t E
K3

() _ O{(hS1.apa)*/nt + (WhSsapa)*/nd}

-1
K22 O(nmin) — 0.

Hence, by using Lyapunov’s central limit theorem, we have that Z;’;Y"Q (A}j/K21/2 = N(0,1).
In view of ([S5.H) and K2/K =1+ o(1) as m — oo under (A-v), we can obtain the result when
(A-v) is met. O

Proof of Proposition 1. From (S5.0)) and the fact that tr(Ef,A)/n? < Kj, i = 1,2, it holds that
K /Ky > Kll/z/(SA). Thus, (A-v) implies (A-iii). It concludes the result. O
Proof of Lemma 1. From (S5.3), the result is obtained straightforwardly. O

Proofs of Lemma 2 and Corollary 1. From (2.3), (85.4) and the equation (23) given in[Aoshimal
([2015), we have that K;/K; = 1+ op(1) as m — oo under (A-i). It concludes the
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result of Lemma 2. By using Lemmas 1 and 2, it holds that I?l/K =1+ o0p(1) under (A-i), so
that the result of Corollary 1 is obtained from Theorem 2. O

Proofs of Theorem 3 and Corollary 2. First, we consider Corollary 2. From Theorem 1, under

(A-i) and (A-iii), we have that as m — oo
P(T/R!? > 2,) = P(T/A > 2K/ JA) = P{1+ 0p(1) > 0p(1)} — 1

from the fact that K;/%/A = K;/*{1+0p(1)}/A = op(1) under (A-i) and (A-iii). It concludes
the result of Corollary 2 when (A-iii) is met. From Theorem 2, Lemmas 1 and 2, under (A-i),
(A-ii) and (A-iv), we have that

P(T/KL? > za) = P{(T — A)/K"? > (2o K1/ = A)/KY? 4+ 0p(1)} (S5.6)
= (A — 2. K)?) K} + 0(1) = D(A/KL? — 22) + o(1).

It concludes the result of Corollary 2 when (A-ii) and (A-iv) are met. We note that K/Ks — 1
as m — oo under (A-v). Then, by combining (S5.6) and Theorem 2, we can conclude the result
of Corollary 2 when (A-v) is met.

Next, we consider Theorem 3. By combining (S5.6]) and Theorem 2, we can conclude the
results about size and power in Theorem 3 when (A-iv) is met. From (S5.2) we note that
K/A? — 0 under (A-iii). Tt holds that ®{(A — zaKll/Q)/Kl/2} — 1 under (A-iii), so that from
Corollary 2 we obtain the result about power when (A-iii) is met. Hence, by considering a

convergent subsequence of A/K| /2 we can conclude the result about power in Theorem 3. [

S6 Appendix B

In this appendix, we give proofs of the theoretical results in Sections 4 and 5 of the main
work in [Aoshima and Yatal (2016]). Also, we give two lemmas and proofs of the lemmas.
Let Zi; = Y%, ziji/ne and vy = Sop (20 — Zij)?/(ni — 1) for all 4,5. Let uy; =

(zigts -oes Zigmi )T/ (i = 1)Y2, oij = Poywij = (201 = Zijs ooy Zigm; — Zi)" /(i = 1)Y/? and dvij =
[|wij]] " wqj for all 4, j. Let ¢, be an arbitrary unit random n;-dimensional vector for i = 1,2. Let
Y = le’zl A;S/thSZisj and v;; = §=k,3+1 )\,}8/2’74’527;5]‘ for all ¢, j. Note that x;; = Y, +viit+p,

for all 4,5. Let 9i; = tr(22)/Aij + nipl iy /Nij for i = 1,2; 5 =1,....k;. Let hsy = hi hay
for all s,t. We also let M; = pila fori=1,2.

Proof of Theorem 4. We assume g, = p, = 0 and hijho1 > 0 without loss of generality. Let
Hil = hﬂhle, H~;2 = Ip — H“, 22‘1 = )\ile‘l and 27;2 = Z?:z Aijhijhg; for 7 = 1,2. Note
that 3; = 31 + X2 for ¢ = 1,2. We write that

Tr=T(H11,Ho )+ T(Hi2, Ha2) — 25511 (H11H22 + H12H 1)@ 20, -

We have that \/211‘{71(_1'?1'117 Hzl)} = Kl (H117 H21) =2 Z?:l )\221/{712 (nifl)}+4/\11)\21(h¥11h21)2
/(711712) and Var{T(ng, H22)} = I(l(H127 HQQ) =2 Z?:l tr(ZfQ)/{nl(m — 1)} +4tr(212222)
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/(ning2), where Ki(-,-) is defined in Section S1.2. Let ¢ = (A11/n1 + A21/n2). Then, under
(4.1) it holds that as m — oo

Ki(Hu, Hn) =2¢0°{1+0(1)} and Ki(Hi, Hz2) = o(4”)

because tr(E12X22) < {tr(23)tr(E32)}/2 = (1(2)Wa(a))'/?. Also, under (4.1) it follows that

tr(X11292) + tr(X12X21)
ning

Valr{ilTn1 (H11H22 + Hi2H21)Ton, } = =o(¥”)
because tr(X11X22) < )\utr(2%2)1/2 and tr(X12X¥21) < )\gltr(ng)l/Q. Hence, under (4.1) we
have that K7y = 2¢6°{1 + o(1)} and

2
Tr = Z)\i1(5i21 — V(1) /i) — 2(A11A21) 2211201 (Rl ha1) + op (¥)
i=1
= (\17211 = A1 7221)° — ¥+ 0p(¥)

from the fact that v;;y = 1+ op(1), i = 1,2. By noting that E(z};)’s are bounded, for
Lyapunov’s condition, it holds that > 7_, Z?:'il()\jlmzill/ni)“ = o(1p?). Hence, by using Lya-
punov’s central limit theorem, we have that ¥~ /2(A\j{%211 — A){*Z21) = N(0,1). Thus, from
Ty = 1/)71()\1{2211 — /\;{2221)2 —1+o0p(1) and K1) = 2¢p*{1 + o(1)} under (4.1), we have

that T7/(K1(1)/2)"? +1 = x3. From Lemma 2, it concludes the result. O
Proof of Corollary 3. From Theorem 2, the result is obtained straightforwardly. (I

Throughout the proofs of Propositions 2 to 5, Lemmas B.1, B.2, 3 and Theorem 5, we
assume (A-vi) and (A-viii). Throughout the proofs of Propositions 2 to 5 and Lemma B.1, we

omit the subscript with regard to the population.

Proof of Proposition 2. Let us write that U, = 25:1 Astostl, and Uy = Zgzkﬂ Astusul.
Note that Sp = Uy + P,U2P,. Also, note that Ppi; = @; and \; = @} Spa; = 4} (U1 +

Us)a; when \; > 0. From Lemma 5 in [Yata and Aoshimal (2013) we can claim that as mo — oo

j\j/)\‘j — 6]' = ('lfLJTUﬂAIV)/)\] —|—0P(1) for j= 1, ,k

Also, similar to the proofs of Lemmas 3 and 4 in [Yata and Aoshimal (2012), we have that
ul (Us — 0L, uy = Op(¥([3, /n) and u] (Us — 61,)¢ = Op(¥([3, /n'/?) for j,j' = 1,....k,

(k+1 (k+1
where 6 = >%_, ., As/(n —1). Then, by noting that uliu, = Op(n~Y%) (j # j') and
[[toj||? = [|us]|> + Op(n™1) = 1+ Op(n~1/?) as n — oo, we can claim that

X/ = lws||* 4854+ Op(n™) =146, + Op(n~"/?)
and @) w; =1+0p(n~") forj=1,..k (S6.1)
whu; = Op(n~ 2N /) forj<j <k (S6.2)
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in a way similar to the proof of Lemma 5 in [Yata and Aoshimal (2012]) and the proof of Lemma
9 in [Yata_and Aoshimal (2013). By noting that (X — X)a; = (X — M)@; when \; > 0, we

write that

(hj hy)* = {hj (X = X)a;}*/{(n — D)X} = lJu;|* (@] ;)" (A1 /A)
when ; > 0. Thus, from (S6.1]) we can conclude the results. O

Proof of Proposition 3. We can claim that as mo — oo

jn—1-j)0" (tr(SD) -3 XZ) — 6, =0p(n") forj=1,..k

=1
in a way similar to the proof of Lemma 11 in [Yata and Aoshimal (2013). Then, it follows from
(SE1) that

/A = |lus| P +0p(n™t) =1+ 0p(n?) forj=1,.. k. (S6.3)
Note that (h] hj)? = ||us||? (4} 4t;)*(\;/A;). Then, from (S6.0) and (§6.3) we can conclude the
results. O

Proofs of Propositions 4 and 5. First, we consider Proposition 4. From (S6.) there exists a

unit random vector €; = (&1, ...,€jn)" such that @] €; = 0 and
;= {14+ 0p(n Y}, +e; x Op(n~?) forj=1,...k (S6.4)

as mo — co. By noting that @; = u;{1 +op(1)} and ulu; = O,(n=Y/?) (j # j') as n — oo,
it follows from (56.4) that

whuj = Op(n~'"?) for j' < j <k (S6.5)

Then, from (S6.1) to (S6.3) and (S6.5) it holds that for j =1,....k (I =1,...,n)

hy, @l (X M)y, i Aszar@ ) us

N (U e OO

=z +0p(n~"? (S6.6)

because z5; = Op(1) for s = 1, ..., k. Let us write that
i) = (21, 21-1,0, Zj141, o0y 2n) " /(n — 1)V/? for all j,1.

We have that E{(37_, ,, Aszau] ) usn)/X)*} = O{¥ i1y /(nA])} = O(n™ ") and E(|| 3F_,

Aszsits) /A5 12) = O(¥ 11y /A) = O(1) for j = 1,..., k. It follows that
P Aszaulu LR
sZsiUj)Us(l) —1/2 T sZstUs() _
Z — - Op(n ) and ¢ Z N =Op(1) (56.7)
s=k+1 s=k+1

from the fact that [¢7 Y7, Aszawa@y /Al < I[CI] - || 220 4s 1 Aszaitesy/Aj]] and Markov’s

inequality. Let d, = (n —1)/(n — 2). Here, from (S6.4]) we write that for j =1,....k

dntijy = {1+ Op(n_l)}uj(l)/ﬂujﬂ + €50 X Op(n_l/Q) +(n— 2)_1ﬁjlln(l)7 (S6.8)
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where Ejn) = (Ejl, ...,ajl,hO,ath 4..,8jn)T. Note that H(’I’L—2)71’Iljlln(l)‘| = OP(nil/Z) since
|j1] < 1. Then, it follows from (S6.3)), (86.7) and (S6.8) that for j =1,....k
-7

hjl'vl _ g ’lAl.]T(l)(X — M)T’Ul p Ep: /\stlﬁ?mus(l)
VR (CEI N WEE

- Gz = 0P (569)

s=k-+1
We note that Var(3 7_, ., AszZ/A;) = O(¥ (111)/A3), so that (n — 1)71/2 E et1 Xs2Z /A =
(n — 1)Y25; + Op(n 1/2) for j = 1,...,k, because E(D>_? Xsz24/A;) = (n —1)8;. Then, it
follows from (S6.3) and (S6.1) that for j =1,....k

s=k+1

(dnh; — k)" v (4 —a;0)" (X = M)"v

=d, =
A2 {n=1)A ;3172
—d il i Aszgl . ﬁjllz(l) i )\szslus(l)
— Unly = ——
Sl =D =2 A (AN)Y/2
= dnizi(n—1)"%6;{1 + op(1)} + Op(n~'/?). (S6.10)

By combining (S6.6) and (S6.9) with (S6.10), we can conclude the result of h; in Proposition
4. As for hj, by noting that h; = (\;/A;)?h;, ||u;||> = 14 Op(n~/?), (S6.1) and (S6.3), we
can conclude the result.

Next, we consider Proposition 5. From (S6.3)) we have that for j = 1,....k

(dnhj — h]l )\ Zgl u]lln(l) As Zslus(l)
MnBy = ) S _ g _
)\;/2 U/JZZ n_lA)\)}l/Q ni Z 1/2
= dpiij x Op{(n"/*X;)"" A1} (S6.11)

from the fact that 17 usq) = Op(1) and zq = Op(1), s = 1,...,k. Then, by combining (S6.6)
and (§6.9) with (S6.10)), we can conclude the result. O

Lemma B.1. Assume (A-vi) and (A-viii). It holds for j = 1,...,k that as mo — oo

n

S BT 02y and 30 BT 0, )

=1 =1

Proof. First, we consider the first result. Let Nsja) = Aszslus(l)/)\;/2, £sj(l) = /\i/Qu(s)us(l)/)\Jl./Q
and ws;a) = N,;0) +&s;( for all 7,1, s, where us() is given in the proofs of Propositions 4 and
5. Then, we write that when 5\j >0,

@y (X — M)Ta, A2

Ej1 = dn (=TT :anm N)Zws](l), (S6.12)
J

where d, = (n —1)/(n —2). Let e1 = (1,0,...,0)7,..., e, = (0, ...,0,1)T be the standard basis
vectors of dimension n. In view of (86.3) and (S6.8), by noting that ||u;||> = 14 Op(n~1/2),
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[[(n — 2)71'&]'11»”(1)” = Op(nfl/Q) as n — oo and U; — ;) = Uje — (n — 1)7111]11"([) for

l=1,...,n, we have that as mg — oo

dnt; iy (N /AN =0 /| Jug P + (n — 2) gl + (€5 — ener) x Op(n™'/?)
+¢; xOp(n™") forallland j=1,..k, (S6.13)

where €; and €;; are given in the proofs of Propositions 4 and 5 and ¢, is a random unit vector
depending on j and I. Note that Op(n~*/?) and Op(n™') in (86.13) do not depend on I. In
view of (A-viii), we have that for j =1,...,k

o " p P )\)\S/EZngles/lZJz/Zsz/ZS/l/)
(S 35 )} o3 35 M
1=1

s=1(j) 1A 5,8/ (#3)
+O0{tr(Z?)/)\} = 0{tr(22)/xj}. (S6.14)

On the other hand, we have that for j =1,....k

E{(Z“(l) Z €sg(z>)} O( y Asi()) O(np" S/ N;). (S6.15)

s=1(#4) s=1(#£4)
Then, by using Markov’s inequality, it follows from (S6.14) and (S6.15) that
B2
Zum) > woo/lulf = 0nw) (36.16)
s=1(#7)

Also, we have that E{}7]", (1) X0_, we)?} = O(ny), B(II X270, X0, wej %) = O(n;)
and B, 127, wsow?) = O(ny;) for j = 1,..., k. Thus, it holds that

‘Zujlln(l) Zwsj(l)‘ < ( uﬂ) {Z (ln(l) Zwsj(l)) }
Zzw‘”(”‘ < llesl - H ZZ‘”W)H = Op(n'/*p}/?) and

=1 s=1
‘Zcﬁzwsm\ < (ZHC;JHQ) (ZHZ‘%;(Z)H )1/2 ¢]1~/2) (86.17)
=1 s=1 -1

by using Markov’s inequality and Schwarz’s inequality. Then, by noting that elTwsj<l) =0 for

all I, s, we have from ([S6.12), (S6.13), (S6.16) and (S6.17) that for j =1,...,k

n oo~ n 2 2
Tj1 — Zj1 @(Hug‘(l)” = ||| ) Op(n~tyl/?
2T = o T ) o)

~ ~ [J; |2

= lez —1,1/2 —1,1/2
= E 0O . =0 X S6.18
l=1nn_1 ‘U’JHQ +Or(n vi ) p(n ¥ ) ( )
b it holds that noxpzy| < o2 S AN B 22) = n() 2
ecause it holds that |>5)" ) wjzj| < Q2L x5 >y, 250) " EQCi z5) = n(X; + ki),
B, Z?l) = 0(n), A; < tr(£?)/); and ,u%j) < uT2p/X;. Thus, we can conclude the first

result.

1/2

= Op(n'*p}/?),

J
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Next, we consider the second result. From (56.12)) and (56.13) we have that

n

) (Z;1 —nwﬂ)z -0 ( -

=1

+0P{Z( uj(py Z ws](l)) /n}

s=1(#£7)

)

+0P{Zuj 8 a)wa) /n*}
+0p{e] Z(Sngm)(;wsﬂl))T‘?j/”Q}
00 Z i Z o) (inj(Z))T@, ). (86.19)

By using Markov’s inequality, for any 7 > 0, it holds that P(> ;" , :c , > Tnap;) = O(t71) and
S P(zj; > ™) = O(r™") for j = 1,..., k, so that

Zxﬂz]l = Op(nw] _max z]l) = Op(n’i;). (S6.20)

=1
We have that for j =1,....k

n

P
> (“jT(l) > wsj(l))2 = Op(¥5),

=1 s=1(£)
N o (T % 2 N7 2
> (1n<z> Zwsm) <> (1n<z> Z“’sm)) = Op(niy),
=1 s=1 =1 s=1
T n p p T n P 2
D (Zws;‘u)) (Zwsm)) &< H Zwsij = Op(ny;) and
=1 s=1 s=1 =1 s=1
" P T n o p )
> ¢ ( > wsj(l)) (Z wsj(l)) i<y H D W H = Op(nyy;) (56.21)
=1 s=1 s=1 =1 s=1
because it holds that E{Z?zl(uf(l) 25:1(#) wsj(l))Q} = 0(v;), E{Z?:l(lz:(l) >r wsm))z} =
O(ny), B, 18 wsjoll?) = O(ny;) and 45, < 1 for all I. Then, by combining (S6.20)

and ([S6.21) with (S6.19), we can conclude the second result. O

Lemma B.2. Assume (A-vi) and (A-viii). It holds that as m — oo

~T _ nd _

hajhaj = hyjr+Op(ny /%) and hijhay = hyj + Op(ny /%)

~T ~ ~T ~ —
hyjhoj — hyjr = hijhoy — hyje + hijhag — hyj + Op{(nanz) =%}

fOT‘j = 17 "'7k1 and j/ = 1, ...,kg.

Proof. First, we consider the first result. We note that (X; — X;)@;; = (X; — M,;);; when
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Ai; > 0. From (S6.) to (S6.5) we have that as m — oo

aly (X1 — M1)Thyy ad; S0 NP b

~T
hihy = - = L
T - DAY Ay
~T ) 1/2
U7, s— A s hs-/uls _
_ hjj’ n 1j Lis=k1+1 71 J + Op(n1 1/2) (86.22)

{1+ 0p(1)}

for j =1,....,k1 and j' = 1,..., k2. It holds that for j = 1,....,k1 and j' = 1,..., ko

E{(u&’; i )\}é2hsj/uls)2}zo( i )\1sh§j//n1):O()\lk1+l/”1)§

s=ki+1 s=ki+1

E(| i A2 b 2):0( i MshZ;) = 00k 1)

s=ky+1 s=k1+1

because >0_, ., hgj, < 1. Then, by using Markov’s inequality, it follows from (S6.4]) that for
j = 1,...,k1 and jl = 1, ...,kz

~T P 1/2
Wij D o1 Ms Psjr s —1/2
1/\1/2 = 0p{n; "* ik 41/215) "} (S6.23)
15

Thus, by combining (§6.22)) with ([S6.23]), we can conclude the result for fzfj hajr. As for hi;hojr,
we obtain the result similarly.

Next, we consider the second result. From (S6.2)), (S6.5) and (S6.23) we have that for
jAl=1,..,kiand 7 £1'=1,... k2

~T D 1/2,1/2 T\~
Uy, (Zs:k1+1 ALs Agyr By un sty ) oy

-0 (f"ﬂ D k41 >‘¥2hsl’uls>
1/2,1/2 - YP 1/2,1/2
AN ny* A/
= Op[{A1ky 11/(mm2A1;)}/?] and
~T 1/2 » 1/2 T \»~
(A wn YN ALy hygrtaggs g
= VR 2 = Op [k i1/ (ninada; )}, (S6.24)
)‘13' )‘23"

From (S6.0)), (S86.3) and (56.23) we have that for j = 1,....,k1 and j' = 1,..., k2

T 1/241/2 T\ A 1/2
w1 (320, 41 /\1£ /\24/ hsjrurstg ;) o; Uy k1 )‘1£ hsjrurs 14 O0p(nst
735172 = o {1+0p(n;")}
15 25/ 1j
. 1/2
ulj Zp:k 41 )\1 hsj/u1s _1/9
= s 15\1/2 : + O0p{(ninz)"*?} and
15
~T (y1/2 1/2 T \x 1/2 T A
Uy, ()‘1]/' U1j Zf’:k2+1 >‘2£' h’jS’u2s’)u2j’ - Z§'=k2+1 )‘Qéf hjS’u’Qs”u’Qj’ O —1/2
3L/231/2 - 31/2 +Op{(n1n2) 12
15 "oy 2j

(S6.25)
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It holds that for j = 1,...,k; and j' =1, ..., ko

1. 30.) )

2 tr
B A, )} = o HERE)),

s=k1+1s'=ko+1

(H Z Z )\1/2 112 gs/u1]u15u2g

s=k1+1s'=ko+1

(H Z Z )\1/2)‘1/2 ss'ulsugTS/qu/

s=k1+1s'=ko+1

1/2 1/2 T
E E )\ 247/ ss’ulsu25’

s=k1+1s'=ko+1

2) = O{tr(zl*EQ*)/nl};

2) = O{tr(X14+324)/n2}; and

") = Oftr(S1. 7)),

where ||-||  is the Frobenius norm. Then, by noting that tr(21.32.) < {tr(23,)tr(23,)}/? and

1/2,1/2 1/2,1/2
I¢T (o= ki+1 >0 I —ko+1 Alé )‘221 hssrurstuz)Col < || >0 —k1+1 20 k2+1 é )‘zéf hesuisuzy||r,

it follows from (S6.4) that for j =1,....,k1 and j' = 1,..., ko

T 1/2 1/2 .
W5 (0 1 2y 1 Al Aglr hewr tsug, ) thayr =0 {(tr(zl*z%))l/g} = Op{(niny)*?}
/\152/\2/42 "W ninadi ey rem '

J

(S6.26)

Then, from (S6.0) to (S6.5), (56.24), (S6.25) and (S6.26) we have that for j = 1,...,k1 and
-/

1/241/2 T \n
AL AL g sty ) g

. T
FLT i:L ulj( s, s’
1570250 = )\1/2)\1/2
15 7257
T A1/2y1/2 T\~
ul](z Zs’ 1 ls s/ hSS,ulSuQS/)'qul JFO {(n n )71/2}
= 3L/231/2 paliianz
15 Noj/
N 1/2 P 1/2
ul] Zs ki1+1 )\ls th’uls T Zs/:k2+1)‘ hJS/u'Qe’uzj
312 /\1/2
15 25"
1/241/2 4 /2.1
_n ()‘lj Ay ,'u,lj'u,lju%,ug] )‘1j aiu >\ 'u,QJ/'u,QJ
i’ $1/271/2 $1/2 1/2
ALj Agj ALj )‘2j/

~T ~ _
+ hyjhy + h1Tjh2j’ + Op{(nins2) 1/2}
AT AY2ZGT o )
=iz (“fgj - 1) (% - 1) +hijhoj + hijhoy — Dy + Op{(nan2) /%)
)\1]- )‘2j’
_T ~ _
:hlthj’ —+ h{thj/ — hjj’ —+ Op{(n1n2) 1/2}

from the facts that hljh%/ =ai,; 37 K hS]/uls/)\l/2 and hT, hQJ/ =>7%_ Al/QhJSIuQTS/'uQJ /)\2] .
O

It concludes the second result.

Proof of Theorem 5. We assume (A-ix) and (A-x). Let Zj; = > %, @yi/ns for i = 1,2; j =
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. ki. Fori=1,2 and j =1, ..., k;, we have that as m — oo

Z1; — ) = Op(A 1/2/n1/2 and Z (@it = pii)* = 0p(\;j) (6.27)

n;
=1 ¢

from the facts that Var(3) | @iji/ni) = O(X\ij/n:) and P, (wiji — pay)® > ™hidij) =
O(r™") for any 7 > 0. Let Ziju = > (Fij1 — zi0)/mi for i = 1,2; j =1, ..., k;. Note that for
i=1,2 =1, ki

.. 2 TZJ,-* e ki )\is 2

Yij :O( )\“2 My Fix Z;s,l Mz(.s)) +o(1) =0

n%Kll,{Q nltr(zz*) tr(zz*)

from the facts that tr(X7) < kA3 +tr(37,), tr(7, )1/2/(an11,{2) =00), uISip; = phTip;+
Z’;;l )\isﬂ?(s) and u?(s) = O(X\is/n;) for s = 1, ..., k;. Also, note that w1/2 1/2/(n?/2K11:2) —0
fori=1,2; 5 =1,...,k;. Then, with the help of Lemma B.1, we have that for i = 1,2; j =
1.,k

NG~ ~ Mg~ ~ nig ~2 2
22 TijiTiji — TijiTijr Z TijiTiji — Tiji&igr Ti51 — Tijl
n2 = 2 E : 2

n; ns:
=<V * L g =1 K
3
— mljl + Tijl xz]l + xljl)(xljl xzjl)
= Lig Ty, B n
1=1 ¢ i

_ (Ziji — miji) + 2(1’”1 BiG)) + 2445) (i Tiji — 17ijl)
g igx
T

:op{( Ui 2 ) @] s+ N ) = op (K1) (56.28)

from the fact that 37 |(ziji — pac) (@iji — 2ij)| < {000 (@i — pai)F P00, (@i —
z:51)*}*/2. From Lemma B.2 it holds that for j = 1,..., k1 and j' = 1,..., k2

~T ~ _ ~T ~
hyjhaoj = hyj+Op(ngt/?), haj(hay — hoy) = Op(ny /%)

)

hay (R — haj) = Op(ny %) and (haj — huy)" (hay — haj) = Op{(nin2) ™%} (56.29)
Then, it follows from Lemma B.1, (§6.27) and ([S6.29) that for j = 1,...,k1 and j' =1, ..., ko

S (Erhay — i) SO0A (@2 hay — Tag ko)

nin2
= {@1jxh1j + 715 (h1j — b)Y {@ajr.hoj + oy (hay — hoyr)}
= Op{(1 "0y /(mina)} + Op{(v1)? /ma) (A7 /5’ + i) /ny*}
+0p{(w,)7 /n2) M2 /i’ + pagy) i}
+0p{(N)7 /" + ) gl /md'? + pagny) /(nan2) %}
= op(K1/?) (S6.30)
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from the fact that Ai;/(n?K,/?) = O{\i; /(nitr(32,)/?)} = o(1) for i = 1,2; j =1, ..., ki. Note
that p;, = A, B = 2ty 11 Hits)his for i = 1,2. We write that when A1y > 0,

~T_(iy+ ) at;( X1 — M1)(3)2, var/ne + po,)

— (- DAL
P
)\13 Ss’uls()\25/ Z25 + ,U/Q(s’))
= af; Z > e (S6.31)
s=1s'=kg+1 15

It holds that

P P 2
E{ (u’{j Z Z )\i£2hss’uls(A;£/ZEZS’ + /1/2(.9’))) }

s=k1+1s'=ko+1
P
=0{( 30 Mehiu(Bae/na+ py 3 )b ) /|
s=ki+1
= O{tr(Z1.224) /(nin2) + o, S1aphy, /n1} for j =1, ki;
2
(H Z Z >\1/2 ss’uls(A;£/2223’ +H2(s’))H )
s=k1+1s'=ko+1
= O{tr(Z1.32.) /n2 + 13, T1ap, }; and
2
{( Z h]e 2 /Z2s +,U/2(9’))) }
s'=ko+1

= O(h1;(Bax/n2 + po, 3. )h15) = Of{Xaky 11/n2 + (hijp,,)?} for j=1,.. k.

In view of (S6.1)) to (S6.5) and (S6.31]), by using Markov’s inequality, we have that for j = 1, ..., k1

n 14
~T V21 1/2_
hy; (Z i #2*) = > hiw (N R + piaer))

=1 s'=ko+1

+ Op[{tr(B1.B2.)/(Arynana) } /2 + A2 /(nina) V7]

k1
+Op [{Ng*zl*y?*/()‘ljnl) +y (thj'NQ*)Q/nl}l/Q]- (56.32)

J'=1

Note that hT; (312, var/nats.) = S0y o1 hyer (NL Zawr Hta(ery) and S0, 1 by (AL Zawr +
pasry) = Op(A ééjﬂ/nl/z hi;p,,). Also, note that Ak, 41 = o{tr(X%)Y?} for i = 1,2. Then,

it follows from Lemma B.1, (§6.27)) and ([S6.32) that for j = 1,..., k1

{Z1jxhaj + 21 (h1j — hlj)}T(Z ’1;221 + ) = op(K,/?). (S6.33)
=1

Similarly, it follows that for j =1, ..., k2

ni

(Z nl g ) { J J 2-7( 25 — !2]’)} Ol (}i a{ ) (8634)
1
=1
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In view of (S6.30)), (S6.33) and (S6.34]), we have that
M (= S8 Erihag) T YA (o — S5 Fajhag)

nin2
X 0t )T S (0o + )

nina

+ op(K.1?). (S6.35)

Then, by combining (B6.28) with (§6.35), we have that T, — T\ = op(K,’?), so that from
Corollary 3, (T. — A*)/K,}/2 = N(0,1) under limsup,, . AZ/Ki, < co. It concludes the
results. O

Proof of Lemma 3. We assume (A-ix). Let S, = (ni —1)7" >y — Y )(y” -3,)7,
Site) = (ni=1)7" T (Y=Y (v ~5i)", Si(uy) = Sz(yv) and Si(wy) = (ni=1)7" iy (vi—

©;)(vi; —0:)T for i = 1,2, where g, = Dot yii/ni and v = 377 wij/ni. Note that Sin, =
Si(yy) T Si(yv) T Si(uy) + Si(we) for i = 1,2. Also, note that S;(,,) = Sk Nij|[woij || hijhi; +

j=1
Zf;j, Agj/Q)\l/,Quzi]um]/h”h ., for 1 = 1,2. We write that for ¢ = 1,2
k; T k; T k; T
S'Lni hijhi]- = )\ijhijhij = )\ijhijhij (: Si(?J'U)’ Say).
j=1 j=1 j=1

Then, by noting that ||u.i;||* = ||ui;||* + Op(n; ') and ulum; = Op(n; V(G #£ 5 as
n; — oo, it follows from (S6.3) that as m — co

ks
Sityy) — Sl(yy) _ZAZJ hzahzg —hijhi;) + Z )\1/2 1/2 OT”umJ/hmh”, +Op(n _1 Z)\l]hl]h”

Jj=1 J#i! j=1
ki

=Y Xij{(hij — hij)hi; — hij(hi; — hi) "}
=1

+O0p(n kahmh” +Op(n;'/? Z NN Rk (S6.36)

j=1 J#3!

for i = 1,2. From Lemma B.2, (§6.29) and (S6.36) we have that

tr{(S1(yy) — gl(yy))(sﬂyy) - §2(yy))} = OP{/\11A21("1”2)71/2}7

so that
tr{(S1(yy) — ‘§1(yy>)(52(yy) - ‘§2(yy>)}/(n1n2) = op (K1) (S6.37)
from the facts that )\11)\21(n1n2)_3/2 < A3 /nd+ A3 /nd and Ai = o(n)/*tr(X2,)"/?). Note that
Siyo) = E] D Al/g)\lls/QuoT,]uouhijhz; for i = 1,2. Here, we write that when 5\1]- >0,

i, T 1/2,.T T
(X1 — M) (O AL ruly i ugashoj bl
hlgSQ(yv)hlj = § )\1/2 IJ( ) Zs =ko+1 "\2s 2j 25/ o by )h

= 17
frat (77/1—1)1/2/\1]/2 J
P A2 kg un s N Pl g
D DRV Dl Dk LS L e

j'=1 s=1s'=ko+1 1j
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It holds that for j' =1, ..., ko

2
E{(ulj Z Z )\1/2 SJ/hjs/U1SAé£?u32j/uogs/) }

s=ki1+1s'=ko+1

hi;32.h1hy; S1hoj o Ak +1 A2k 41
o ) o

n1n2 ninz

) for j =1,..., k1,

2) _ O()\lk1+1)\2k2+1 )

n2

j : j : 1/2 1/2 T
(H )\ Sj/hjsruls/\%, ’U,ng/'LLOQS/
s=k1+1s'=ko+1

p 2
and E{( 3 hsj/hjs/)\;é?ufzj/uogs/) }:O(Agk2+1/n2) for j,s=1,.., k1.  (S6.39)
s'=ko+1

In view of (S6.1)) to (SE.H) and (S6.38), by using Markov’s inequality, we have that for j = 1, ..., k1
. 1/2
/\1;h1jsz(yu)h1g = A1y Z /\1/2 Z hjj/hjsl)\Qé, UZleuogsl +op(nin2Kix) (S6.40)
j'=1 s'=ko+1
because \ix; 11 = o{tr(X2,)/?} for i = 1,2. Similarly, it follows that
p
Ajhi; 8o hij = A1 Z MY hhie Mgty + op(ninaKil). (S6.41)
j'=1 s'=ka+1

‘We write that

P A2 2 b ui A 2l 1

h S h E: 1/2 51 Z Z 15 A1t Nsjr st Wis A Wpho i Wo2s! Uy
1592(yv) 15 = )\2// UU 5\ 2s 027

15

jr=1 st s'=ko+1

Uyj. (56.42)

It holds that for j' =1, ..., ko

2

1/2 1/2 /2. T T

E{H Z Z /\/ hsjrhrsr s Ay Wonjrtoss Uty F}
s,t>k1+1s'=ka+1

= O{tr(Z1.32.)h3;: S1.hoj /na + hyy 21,22, B1.hojr /(nina)
= O{tr(X 1224 ) A1k +1/n2 + )\%k1+1)\2k2+1/(n1n2)}. (S6.43)
Then, in a way similar to (S6.26]), by combing (S6.39) and (S6.43) with (S6.42), we have that

for j = 1, ...,kZ1

p
ijhi; Sauha; = Mij Z M DT by N g s + op(nanaKiL).  (S6.44)
j’'=1 s'=ko+1

Also, from (§6.39) we have that for 5,5 =1, ...,k

p
)‘1/2)‘1/2h SQ(yv)hljl - )‘1/2 1/2 ZA1/2 Z hjsh / ’)\ qus“on’ = OP(nf/znZKl*)-
s'=ko+1
(S6.45)
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Then, it follows from (S6.36)), (S6.40), (S6.41)), (S6.44) and (S6.45) that
6 {(S10m) — S100)) 2000} = 0r{(S143) = S1(01))S2uy} = 0p(Mn2 K1), (56.46)

Similarly, it follows that tr{(Sz(y,) — §2(yy))51(yv)} = tr{(S2(yy) — §2<yy))51(vy)} = op(nin2Kix).

Note that S;(,.) = Zz >k +1 /\}S/QAjj,QuoTisum/hishZ;, for ¢ = 1,2. Then, in a way similar to

Si(yv), We can claim that for ¢ = 1,2 (j # )
tr{(Sityw) = Sitwn)Siwn} = 0p(Min2 K1) (86.47)
Then, by combining (§6.46) and (S6.47) with (S6.3T), we have that
tr(S1ny A1 (ky)S2ns As(hy)) = tr{(S1ny — S1(yy))(S2ny — Satyy))} +op(min2Kis).  (56.48)

Let 3, = Ef’zl Aijhijhg; for i = 1,2. We can evaluate that

21*22*)’61"(21*22*)) _ O()\11>\21tr(2%*)1/2tr(25*)1/2),

E[{tr(51<yu)52(yv))}2] :O(tr( ning

ninz

2 \1/2 2 \1/2
E[{tr(sl(yv)SQ(vy))}ﬂ :O<t1‘(21*22*)t1‘(21*22*)) _ O()\u)\zltr(zl*) tI‘(ZQ*) );

ning ninz
. ) 27 tr(EZ*E]*EI*E]*) tr(Ei*Ej*)tr(El*E2*)
and - B{tr(Sin Si)}’] =0 - )+0o( v )
:O()\iltr(E?*)l/%r(E?*))
n;
for i = 1,2 (j #i). Then, we have that
tI’{(Slnl — Sl(yy))(Sin — Sg(yy))} — tr(51(vv)52(vv)) = Op(n1n2K1*). (8649)

With the help of (23) in[Aoshima and Yatal (2015]), we claim that tr(S'(ye) S2(vv)) /tT(B1xB2x) =
1+ op(1). Hence, from (56.48)) and ([S6.49) we have that

tr(S1ny A (ky) 2z Al (ky))/ (n172) = tr(21.2.)/(n1n2) + 0p (K1),
By using Lemma S2.1, we can conclude the result. O

Proof of Theorem 6. Similar to the proof of Theorem 3, by combining Theorem 5 and Lemma

3, we can conclude the result. O

S7 Appendix C

In this appendix, we give proofs of the theoretical results in Section S2.

Proofs of Propositions S2.1 and S2.2. We omit the subscript with regard to the population for
the sake of simplicity. First, we consider Proposition S2.1. By using Lemmas 1 and 5 in|Yata and
Aoshimal (2013), under (A-i) and (1.4), we can obtain ¢ {3"_, Asusul —tr(2)I,/(n—1)}¢ =
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op{tr(X?)Y2} as mo — o0, so that A\; = tr(2)/(n—1)+op{tr(32?)!/?} because A\; —tr(X)/(n—
1) = af {37, Asusu? —I,tr(2)/(n—1)}4;. Then, by noting tr(Sp)—tr(X) = op{tr(X?)'/?}
under (A-i), we can claim A;/tr(3?)Y? = op(1) under (A-i) and (1.4). Thus, from (2.3) we
conclude the first result of Proposition S2.1. Under (1,6) there exists a fixed integer j. such
that \j, /A1 — 0. Note that (3°7_; AD)/AT < A2 tr(2%)/A1 = o(1). Then, by using Lemma
1 and Corollary 4.1 in [Yata and Aoshimal (2013]), we can claim that A1/A1 = 1+ op(1) under
(A-i) and (1.6). It concludes the results of Proposition S2.1.

Next, we consider Proposition S2.2. Let ¢(n) be any function such that ¢(n) — 0 and
n/4p(n) — oo as n — oco. Let A = ¢(n)tr(X?)/2. Assume that \}/tr(Z?) = O(n™°) as
mg — oo with some fixed constant ¢ > 1/2. Then, there is at least one positive integer ¢t (> 2)
satisfying c(t/2—1) > t/4, so that tr(3?) /A" < X:72/(¢(n)'tr(2?)*/21) = o(1). Then, by using
Lemmas 1 and 5 in [Yata and Aoshimal (2013), we can obtain

M/A =4l Spin /) = tr(2)/{(n — 1)A} + op(1)

under (A-viii). Then, by noting that tr(Sp) — tr(X) = op{tr(X?)*/2} under (A-viii), we can
claim that A?/tr(2?) = op[{¢(n)}?] under (A-viii). Thus from (2.3) we conclude the result of
Proposition S2.2. O

Proofs of Lemma S2.1, Propositions S2.3 and S2.4. We assume (A-i) and (A-vi). We omit the
subscript with regard to the population for the sake of simplicity. Let V1 = 2?21 /\juj(l)ujr@)
and Vo = 3%, Ajujyuj sy, where wjy = (zjl,....,zjn(l))T/(n(l) — Y2 and uje =
(Zingy+1s - 2in) T/ (n2) = D2, Let Vo = Py ViPr, and Vo = Py VaPy, . Note
that SD(l) = P"(l) (V1+V2)P

of Spay as Spa) = E?fl)_l )’\jﬁj(l)ﬁf(Q)7 where (1) (or 1(2)) denotes a unit left- (or right-)

ey = Vo1 + V2. Let us write the singular value decomposition

singular vector corresponding to )\] First, we consider Lemma S2.1. By using Lemma 1 and
Corollary 5.1 in [Yata and Aoshimal (2013)), we can claim for j = 1,..., k that as mo — oo

Ni/A =14 o0p(1). (S7.1)

By noting that tr(23)/tr(22)? < A7 1/¥(x+1) = o(1) under (A-vi) and by using Lemmas 1 and
4 in [Yata and Aoshimal (2013), we can claim that C{l)Pnu)V2Pn(z)c(2)/q’§;éi1) =op(1), where

¢ (1) 1s an arbitrary unit random n;)-dimensional vector for ¢ = 1,2. Hence, we have that

C(Tl)SD(1)<(2)/‘I’<11£J2rl) = C(T1)V01C(2)/‘Ifz,iil) +op(1). (S7.2)

Then, in a way similar to (A.10) in [Yata and Aoshimal (2013]), we have that \i/<k+1>/\ll(k+1) =
1+ op(1). In view of (SZI), we can claim that ¥(;) /Wy = 1+ op(1) for j = 1,..,k. Tt
concludes the result of Lemma S2.1.

Next, we consider Proposition S2.3. By noting (SZ.2) and rank(V,1) < k, we have that
/’\j/\Ilbéil) = op(1) for j > k. Then, by combining Lemma S2.1 with (SZ.I)), we can conclude
the result of Proposition S2.3.
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Finally, we consider Proposition S2.4. We assume (A-viii) and (A-ix). Let A, = gb(n)\llbﬁw
where ¢(n) is defined in the proofs of Propositions $2.1 and S2.2. Assume that A{ /¥ (x41) =
O(n™°) as moy — oo with some fixed constant ¢ > 1/2. Then, there is at least one positive

integer ¢ (> 2) satisfying c(t/2 — 1) > t/4, so that tr(3%1)/AL < A2/ (p(n) W21 = o(1).

k+1 (k+1)
Hence, similar to (SZ.2), we have that
¢S/ = €1y Vorl (/A +op(1). (57.3)

Let Vo1 = Vo _Z§:1 ;\jﬂj(1>12]~T(2>. From (SZ.3)), it holds that Ca)volc(m/)\* = op(1), so that
all the singular values of V'1 /A, are of the order op(1). Then, from the fact that rank(V 1) < 2k,
it holds that

1 (Vor Vo) /¥ usn) = k x op[{¢(n)}?]. (S7.4)

Here, in view of (A-viii), we have that Var(ujT(l)Voguj(g)) = O(V(y41)/n°) for j = 1,...,k, so
that ujTU)Voguj(g) = Op(‘l’béil)/n) for j =1,...,k. In view of (A-ix), it holds that

tr(Vor ViR) /W) = tr(ViV ) /Wiy = k x op(n™/?). (S7.5)

On the other hand, we have that E(\|uf(1)V02||2) = O(¥(k41)/n) and E(||ujT(2)V22H2) =
O(W(ky1y/n) for j = 1,..,k, so that wj, Vo2l = op(quﬁn/nl/z) and ¢(yVoou;2) =
Op(\I/<l,£L>/n1/2) for j = 1,...,k. Then, in a way similar to the proof of Lemma 12 in [Yata and]
[Aoshimal (2013), we have that @;q) = || ||~ wj {1 + Op(n™"?)} + €5 x Op(n~'/?) with
some unit random vector €5 for j = 1,....k; | = 1,2. Hence, from (S7.1)) and Ca)VOQC(2) =
OP(\I/EIGH)), we have that tr(Z?zl )’\jd]-(l)ﬁ]-T(Q)VSQ)/\I/(kH) = k x op(n~'/?). Hence, from

(SL3H), it holds that
(Vo V5) /W) =k x op(n'/?). (S7.6)

Note that E{tr(V,2V %)} = ¥(x41) and Var{tr(Ve2V2) /¥ 41y} = O(n™"). Then, by noting
that Wy 1) = tr{(Vo1 + Vo2)(Vo1 + Vo2)T}, from (SZF) and (ST.6), we obtain that

V1) /P er1y = t1(Voa V5a) /W (i) + kX 0p[{¢(n)}°] = 1+ k x op[{(n)}7]. (87.7)

Similarly, by noting that Ap11/A. = op(1) from (SZ.3), we can claim that

Vo) /Wirn) = {1+ 0(n ) Wiain) /Tiurzy = L+ (k + 1) x op[{6(n)}?). (S7.8)
By combining (S7.7)) and (SZ.8)), we can conclude the result of Proposition S2.4. O
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