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In this supplement, we give actual data analyses and proofs of the theoretical results in the main

work in Aoshima and Yata (2016) together with additional simulations, additional theoretical

results and proofs of the additional results. We provide a method to distinguish between the

NSSE model defined by (1.4) and the SSE model defined by (1.6). We also give a method to

estimate the parameters required in the test procedure (5.5). The equation numbers and the

mathematical symbols used in the supplement are the same as those which are made reference

to in the main document.

S1 Additional Propositions

In this section, we give two propositions and proofs of the propositions.

S1.1 Proposition S1.1

Proposition S1.1. Let Θ be the set of positive definite matrices of dimension p. It holds that

argmax
A∈Θ

{ ∆(A)

{K2(A)}1/2

}
= c(Σ1/n1 + Σ2/n2)

−1

for any constant c > 0.

Proof. We assume A ∈ Θ. Let µ̇A = µA/||µA|| and ΣA⋆ = Σ1,A/n1 + Σ2,A/n2. Then, we

have that

2∆(A)/{K2(A)}1/2 = ||µA||/(µ̇T
AΣA⋆µ̇A)1/2.

The eigen-decomposition of ΣA⋆ is given by ΣA⋆ =HAΛAH
T
A, where ΛA = diag(λ1,A, ..., λp,A)

is a diagonal matrix of eigenvalues, λ1,A ≥ · · · ≥ λp,A > 0, and HA = [h1,A, ...,hp,A] is

an orthogonal matrix of the corresponding eigenvectors. There exist some constants c1, ..., cp

such that µ̇A =
∑p

j=1 cjhj,A and
∑p

j=1 c
2
j = 1. From Schwarz’s inequality, it holds that

(µ̇T
AΣA⋆µ̇A)(µ̇T

AΣ−1
A⋆
µ̇A) = (

∑p
j=1 c

2
jλj,A)(

∑p
j=1 c

2
jλ

−1
j,A) ≥ 1, so that

||µA||/(µ̇T
AΣA⋆µ̇A)1/2 ≤ (||µA||2µ̇T

AΣ−1
A⋆µ̇A)1/2 = {(µ1−µ2)

T (Σ1/n1+Σ2/n2)
−1(µ1−µ2)}

1/2.

Note that ||µA||/(µ̇T
AΣA⋆µ̇A)1/2 = {(µ1 − µ2)

T (Σ1/n1 + Σ2/n2)
−1(µ1 − µ2)}1/2 when A =

c(Σ1/n1 + Σ2/n2)
−1 for any constant c > 0. It concludes the result.
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S1.2 Proposition S1.2

Let us write that µA12
= A

1/2
1 µ1 − A1/2

2 µ2 and Σi,Ai
= A

1/2
i ΣiA

1/2
i , i = 1, 2. Let

∆(A1,A2) = ||µA12
||2 and K(A1,A2) = K1(A1,A2) + K2(A1,A2), where K1(A1,A2) =

2
∑2

i=1 tr(Σ2
i,Ai

)/{ni(ni−1)}+4tr(Σ1,Ai
Σ2,Ai

)/(n1n2) andK2(A1,A2) = 4
∑2

i=1 µ
T
A12

Σi,AµA12
/ni.

Note that E{T (A1,A2)} = ∆(A1,A2) and Var{T (A1,A2)} = K(A1,A2). Then, we have the

following result.

Proposition S1.2. Assume (A-i) and the following conditions:

(S-i)
{λmax(Σi,Ai

)}2

tr(Σ2
i,Ai

)
→ 0 as p→ ∞ for i = 1, 2;

(S-ii)
{∆(A1,A2)}2

K1(A1,A2)
→ 0 as m→ ∞ under H0.

Then, it holds that as m→ ∞

P
( T (A1,A2)

{K1(A1,A2)}1/2
> zα

)
= α+ o(1) under H0.

Proof. From Theorem 2 and Lemma 1, the result is obtained straightforwardly.

Note that (S-i) is naturally met when Ai = Σ−1
i , i = 1, 2, because Σi,Ai

= Ip when

Ai = Σ−1
i . However, (S-ii) is difficult to meet when Σ1 ̸= Σ2 and Ai = Σ−1

i , i = 1, 2. For

example, when Σ1 = cΣ2 = Ip (c > 1) and µ1 = µ2 = (1, ..., 1)T , it follows that ∆(Σ−1
1 ,Σ−1

2 ) =

(1 − c1/2)2p. Then, (S-ii) does not hold because K1(Σ
−1
1 ,Σ−1

2 ) = O(p/n2
min). Hence, we do

not recommend to choose Ai = Σ−1
i , i = 1, 2. In addition, it is difficult to estimate Σ−1

i s for

high-dimension, non-sparse data.

S2 How to Check SSE Models and Estimate Param-

eters

In this section, we provide a method to distinguish between the NSSE model defined by

(1.4) and the SSE model defined by (1.6). We also give a method to estimate the parameters

required in the test procedure (5.5).

S2.1 Checking Whether (1.4) Holds or Not

As discussed in Section 3, we recommend to use the test by (3.1) with A = Ip when (A-ii)

is met, otherwise the test by (5.5). It is crucial to check whether (1.4) holds or not (that is,

whether (1.6) holds).

Let η̂i = λ̃2
i1/Wini for i = 1, 2, where Winis are defined in Section 2.2 and λ̃ijs are defined

by (5.2). Then, we have the following result.
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Proposition S2.1. Assume (A-i). It holds that as m→ ∞

η̂i = oP (1) for i = 1, 2, under (1.4);

P (η̂i > c) → 1 with some fixed constant c ∈ (0, 1) for some i under (1.6).

By using Proposition S2.1, one can distinguish between (1.4) and (1.6). One may claim

(1.4) if both η̂1 and η̂2 are sufficiently small, otherwise (1.6). In addition, we have the following

result for η̂i.

Proposition S2.2. Assume (A-viii). Assume also λ2
i1/tr(Σ

2
i ) = O(n−c

i ) as m→ ∞ with some

fixed constant c > 1/2 for i = 1, 2. It holds as m→ ∞

P
(
η̂i < κ(ni)

)
→ 1 for i = 1, 2,

where κ(ni) is a function such that κ(ni) → 0 and n
1/2
i κ(ni) → ∞ as ni → ∞.

From Proposition S2.2 one may claim (1.4) if η̂i < κ(ni) both for i = 1, 2, otherwise (1.6).

One can choose κ(ni) such as (n−1
i logni)

1/2 or n−c
i with c ∈ (0, 1/2). In Section S3, we use

κ(ni) = (n−1
i logni)

1/2 in actual data analyses.

S2.2 Estimation of Ψi(j) and ki

Let ni(1) = ⌈ni/2⌉ and ni(2) = ni − ni(1). Let Xi1 = [xi1, ...,xini(1) ] and Xi2 =

[xini(1)+1, ...,xini ] for i = 1, 2. We define

SiD(1) = {(ni(1) − 1)(ni(2) − 1)}−1/2(Xi1 −Xi1)
T (Xi2 −Xi2)

for i = 1, 2, where Xij = [xini(j), ...,xini(j)] with xini(1) =
∑ni(1)

l=1 xil/ni(1) and xini(2) =∑ni
l=ni(1)+1 xil/ni(2). By using the cross-data-matrix (CDM) methodology by Yata and Aoshima

(2010), we estimate λij by the j-th singular value, λ́ij , of SiD(1), where λ́i1 ≥ · · · ≥ λ́ini(2)−1 ≥
0. Yata and Aoshima (2010, 2013) showed that λ́ij has several consistency properties for

high-dimensional non-Gaussian data. Aoshima and Yata (2011) applied the CDM methodol-

ogy to obtaining an unbiased estimator of tr(Σ2
i ) by tr(SiD(1)S

T
iD(1)), i = 1, 2. Note that

E{tr(SiD(1)S
T
iD(1))} = tr(Σ2

i ). Based on the CDM methodology, we consider estimating Ψi(j)

as follows: Let Ψ̂i(1) = tr(SiD(1)S
T
iD(1)) and

Ψ̂i(j) = tr(SiD(1)S
T
iD(1)) −

j−1∑
l=1

λ́2
il for i = 1, 2; j = 2, ..., ni(2). (S2.1)

Note that Ψ̂i(j) ≥ 0 w.p.1 for j = 1, ..., ni(2). Then, we have the following result.

Lemma S2.1. Assume (A-i) and (A-vi). Then, it holds that Ψ̂i(j)/Ψi(j) = 1+oP (1) as m→ ∞
for i = 1, 2; j = 1, ..., ki + 1.

Let τ̂i(j) = Ψ̂i(j+1)/Ψ̂i(j) (= 1 − λ́2
ij/Ψ̂i(j)) for i = 1, 2. Note that τ̂i(j) ∈ [0, 1) for λ́ij > 0.

Then, we have the following result.
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Proposition S2.3. Assume (A-i) and (A-vi). It holds for i = 1, 2 that as m→ ∞

P (τ̂i(j) < 1 − cj) → 1 with some fixed constant cj ∈ (0, 1) for j = 1, ..., ki;

τ̂i(ki+1) = 1 + oP (1).

From Proposition S2.3, one may choose ki as the first integer j such that 1 − τ̂i(j+1) is

sufficiently small. In addition, we have the following result for τ̂i(ki+1).

Proposition S2.4. Assume (A-vi), (A-viii) and (A-ix). Assume also λ2
iki+1/Ψi(ki+1) = O(n−c

i )

as m→ ∞ with some fixed constant c > 1/2 for i = 1, 2. It holds for i = 1, 2 that as m→ ∞

P
(
τ̂i(ki+1) > {1 + (ki + 1)κ(ni)}−1

)
→ 1,

where κ(ni) is defined in Proposition S2.2.

From Propositions S2.3 and S2.4, if one can assume the conditions in Proposition S2.4,

one may consider ki as the first integer j (= k̂oi, say) such that

τ̂i(j+1){1 + (j + 1)κ(ni)} > 1 (j ≥ 0). (S2.2)

Then, it holds that P (k̂oi = ki) → 1 as m → ∞. Note that Ψ̂i(ni(2))
= 0 from the fact that

rank(SiD(1)) ≤ ni(2) − 1. Thus one may choose ki as k̂i = min{k̂oi, ni(2) − 2} in actual data

analyses. For κ(ni) = (n−1
i logni)

1/2 in (S2.2), the test procedure by (5.5) with ki = k̂i, i = 1, 2,

gave preferable performances throughout our simulations in Sections 6 and S4.2. If k̂i = 0 (that

is, (S2.2) holds when j = 0), one may consider the test with Ai(ki) = Ip. In addition, if k̂i = 0

for i = 1, 2, we recommend to use the test by (3.1) with A = Ip.

S3 Demonstration

In this section, we introduce two high-dimensional data sets that have the SSE model. We

demonstrate the proposed test procedure by (5.5) by using the microarray data sets. We set

α = 0.05.

We first analyzed leukemia data with 7129 (= p) genes consisting of π1 : acute lymphoblas-

tic leukemia (n1 = 47 samples) and π2 : acute myeloid leukemia (n2 = 25 samples) given by

Golub et al. (1999). We transformed each sample by xij − (x1n1 + x2n2)/2 for all i, j, so

that µ1 = µ2 = 0 under H0 : µ1 = µ2. Then, (A-vii) and (A-x) hold under H0. We cal-

culated that η̂1 = 0.697 and η̂2 = 0.602. Since η̂is are larger than (n−1
1 logn1)

1/2 = 0.286

or (n−1
2 logn2)

1/2 = 0.359, we concluded from Proposition S2.2 that (1.6) holds for i = 1, 2.

We used the test procedure by (5.5). We set κ(ni) = (n−1
i logni)

1/2 in (S2.2). Let τ̃i(j) =

τ̂i(j){1 + jκ(ni)} for all i, j. We calculated that (τ̃1(1), τ̃1(2), τ̃1(3)) = (0.407, 0.993, 1.302) and

(τ̃2(1), τ̃2(2), τ̃2(3), τ̃2(4)) = (0.579, 0.7, 0.902, 1.307), so that k̂1 = 2 and k̂1 = 3. Thus, we chose

k1 = 2 and k2 = 3. We calculated that T̂∗/K̂
1/2
1∗ = 46.866. By using (5.5), we rejected H0 with

size 0.05 according to the arguments in Section 5.2.
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Next, we analyzed prostate cancer data with 12625 (= p) genes consisting of π1 : normal

prostate (n1 = 50 samples) and π2 : prostate tumor (n2 = 52 samples) given by Singh et al.

(2002). We transformed each sample as before. We calculated that (η̂1, η̂2) = (1.01, 1.009) and

(k̂1, k̂2) = (4, 3) from (S2.2) with κ(ni) = (n−1
i logni)

1/2. Hence, we used the test procedure

by (5.5) with k1 = 4 and k2 = 3. Then, we calculated that T̂∗/K̂
1/2
1∗ = 27.497. Hence, we

rejected H0 by using (5.5). In addition, we considered two cases: (a) π1 : the first 25 samples

(n1 = 25) and π2 : the last 25 samples (n2 = 25) from the normal prostate; and (b) π1 : the first

26 samples (n1 = 26) and π2 : the last 26 samples (n2 = 26) from the prostate tumor. Note

that H0 is true for (a) and (b). We applied the test procedure by (5.5) to the cases. Then, we

accepted H0 both for (a) and (b). We also applied the test procedures by (3.1) with A = Ip

and (4.2) to the cases. Then, H0 was rejected by them both for (a) and (b).

S4 Additional Simulations

In this section, we give additional simulations for Sections 3.3 and 6 of the main work in

Aoshima and Yata (2016).

S4.1 Simulations for NSSE Model

In this section, we give additional simulations for Section 3.3 under the NSSE model.

We set α = 0.05, p = 2s, s = 4, ..., 10, n1 = ⌈p1/2⌉, n2 = 2n1 and µ1 = 0. When

considering the alternative hypothesis, we set µ2 = (1, ..., 1, 0, ..., 0,−1, ...,−1)T whose first 5

elements are 1 and last 5 elements are −1. We generated x̆ij , j = 1, 2, ..., (i = 1, 2) inde-

pendently from a multivariate skew normal (MSN) distribution, SNp(Ω,α), with correlation

matrix Ω = (0.3|i−j|1/2
) and shape parameter vector α. Note that E(x̆ij) = (2/π)1/2Ωα/(1 +

αT Ωα)1/2 (= µ̆, say) and Var(x̆ij) = Ω − µ̆µ̆T (= Σ̆, say). We set xij = c
1/2
i (x̆ij − µ̆) + µi

for all i, j, where (c1, c2) = (1, 1.5). Note that Σ1 = Σ̆ and Σ2 = 1.5Σ̆. We considered three

cases: (a) α = 1p; (b) α = 41p; and (c) α = 161p, where 1p = (1, ..., 1)T . See Azzalini and

Dalla Valle (1996) and Azzalini and Capitanio (1999) for the details of the MSN distribution.

Note that (1.4) is met. Also, note that (A-i) is met. See Remark S4.1. Similar to Section 3.3,

we calculated α and 1− β with 2000 replications for the test procedures given by (3.1) with (I)

A = Ip, (II) A = A⋆, (III) A = A⋆(d) and (IV) A = Â⋆(d). Note that (A-iv) is met for (I) to

(III). In Fig. S4.1, for (a) to (c), we plotted α in the left panel and 1 − β in the right panel.

We also plotted the asymptotic power, Φ(∆(A)/{K(A)}1/2 − zα{K1(A)/K(A)}1/2), for (I) to

(III) by using Theorem 3.

We observed that the plots become close to the theoretical value even for the skewed

distributions. The tests with (I) and (III) gave similar performances for (a) to (c). This is

probably because σi(j) → ci as p → ∞ for all i, j in those settings. Similar to Fig. 1, the test

with (I) gave better performances compared to (II) for (a) to (c). See Sections 3.2 and 3.3 for

the details.
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(a) SNp(Ω,α) with α = 1p.

(b) SNp(Ω, α) with α = 41p.

(c) SNp(Ω, α) with α = 161p.

Figure S4.1: Test procedures by (3.1) when (I) A = Ip, (II) A = A⋆, (III) A = A⋆(d)

and (IV) A = Â⋆(d) for p = 2s, s = 4, ..., 10, n1 = ⌈p1/2⌉ and n2 = 2n1. For (a) to (c),

the values of α are denoted by the dashed lines in the left panel and the values of 1 − β

are denoted by the dashed lines in the right panel. The asymptotic powers were given by

Φ(∆(A)/{K(A)}1/2 − zα{K1(A)/K(A)}1/2) for (I) to (III) which are denoted by the solid

lines in the right panels.

Remark S4.1. Let b1 = Ω1/2α/||Ω1/2α|| and b2, ..., bp be p-dimensional vectors such that

||bs|| = 1, bT
1 bs = 0 for s = 2, ..., p, and

∑p
s=1 bsb

T
s = Ip. Then, from Propositions 3 and 6

in Azzalini and Capitanio (1999), bT
1 Ω−1/2x̆ij , ..., b

T
p Ω−1/2x̆ij are independent. Hence, (A-i) is

met from the fact that xij − µi = c
1/2
i

∑p
s=1 Ω1/2bs{bT

s Ω−1/2(x̆ij − µ̆)}.
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S4.2 Simulations for SSE Model

In this section, we give additional simulations for Section 6 under the SSE model.

We set α = 0.05, µ1 = 0 and

Σi =

(
Σ(1) O2,p−2

Op−2,2 Σi(2)

)
with Σ(1) = diag(p2/3, p1/2) (S4.1)

for i = 1, 2. When considering the alternative hypothesis, we set µ2 = (0, ..., 0, 1, 1, 1, 1)T whose

last 4 elements are 1. We set κ(ni) = (n−1
i logni)

1/2 in (S2.2). We checked the performance

of five tests: (I) from (3.1) with A = Ip, (II) from (4.2), (III) from (5.5), (IV) from (5.5)

with ki = k̂i, i = 1, 2, and (V) from (6.1). Let us write that xij = (xi1(j), ..., xip(j))
T , µi =

(µi1, ..., µip)T , xij(2) = (xi3(j), ..., xip(j))
T and µi(2) = (µi3, ..., µip)T for all i, j. We supposed

that (xi1(j), xi2(j))
T s are i.i.d. as N2(0,Σ(1)).

First, we checked the performance of the test procedures for the MSN distribution. We set

p = 2s, n1 = 3⌈p1/2⌉ and n2 = 4⌈p1/2⌉ for s = 4, ..., 10. We generated x̆ij(2), j = 1, 2, ..., (i =

1, 2) independently from SNp−2(Ωi,α) with Ω1 = (0.3|i−j|1/2
) and Ω2 = (0.5|i−j|1/2

), where

(xi1(j), xi2(j))
T and x̆ij(2) are independent for each j. We considered two cases: (a) α = 41p−2;

and (b) α = 161p−2. Similar to Section S4.1, we set xij(2) = x̆ij(2)− µ̆i +µi(2) for all i, j, where

µ̆i = E(x̆ij(2)) = (2/π)1/2Ωiα/(1 + αT Ωiα)1/2, i = 1, 2. Then, we had Σi(2) = Ωi − µ̆iµ̆
T
i ,

i = 1, 2, in (S4.1). Note that (4.1) and (A-vi) with k1 = k2 = 2 are met. Similar to Remark

S4.1, we note that (A-i) is met. However, (A-viii) is not met. Similar to Section 6, we calculated

α and 1−β with 2000 replications for the five test procedures. In Fig. S4.2, for (a) and (b), we

plotted α in the left panel and 1 − β in the right panel. We observed the performances similar

to those in Fig. 2 (a).

Next, we checked the performance of the test procedures for the multivariate skew t (MST)

distribution. See Azzalini and Capitanio (2003) and Gupta (2003) for the details of the MST

distribution. We considered two cases: (i) (n1, n2) = (40, 60) and p = 50 + 100(s − 1) for

s = 1, ..., 7; and (ii) p = 500, n1 = 10s and n2 = 1.5n1 for s = 2, ..., 8. We generated x̌ij(2),

j = 1, 2, ..., (i = 1, 2) independently from a MST distribution, STp−2(Ωi,α, ν), with correlation

matrix Ωi, shape parameter vector α and degrees of freedom ν, where (xi1(j), xi2(j))
T and x̌ij(2)

are independent for each j. We set Ω1 = (0.3|i−j|1/2
), Ω2 = (0.5|i−j|1/2

) and α = 101p−2. We

considered two cases: (a) ν = 10 and (b) ν = 20. Note that E(x̌ij(2)) = (ν/π)1/2{Γ(ν/2 −
1/2)/Γ(ν/2)}Ωiα/(1 + αT Ωiα)1/2 (= µ̌i, say) and Var(x̌ij(2)) = νΩi/(ν − 2) − µ̌iµ̌

T
i (= Σ̌i,

say), where Γ(·) denotes the gamma function. We set xij(2) = x̌ij(2) − µ̌i + µi(2) for all i, j.

Then, we had Σi(2) = Σ̌i, i = 1, 2, in (S4.1). Note that (4.1) and (A-vi) with k1 = k2 = 2 are

met. However, (A-i) and (A-viii) are not met. Similar to Fig. S4.2, we plotted α in the left

panel and 1− β in the right panel for (i) in Fig. S4.3 and for (ii) in Fig. S4.4. We observed the

performances similar to those in Fig. 2 (b) and (c).

Throughout, the test procedure by (5.5) with ki = k̂i, i = 1, 2, gave adequate performances

for high-dimensional cases even for the skewed and heavy tailed distributions.
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(a) SNp−2(Ωi, α) with α = 41p−2.

(b) SNp−2(Ωi,α) with α = 161p−2.

Figure S4.2: When p = 2s, n1 = 3⌈p1/2⌉ and n2 = 4⌈p1/2⌉ for s = 4, ..., 10, the performances

of five tests: (I) from (3.1) with A = Ip, (II) from (4.2), (III) from (5.5), (IV) from (5.5) with

ki = k̂i, i = 1, 2, and (V) from (6.1). For (a) and (b), the values of α are denoted by the dashed

lines in the left panel and the values of 1−β are denoted by the dashed lines in the right panel.

The asymptotic power of (III) was given by Φ(∆∗/K
1/2
∗ − zα(K1∗/K∗)

1/2) which is denoted by

the solid line in the right panels. When p is small, α for (V) was too high to describe in the left

panels.

S5 Appendix A

In this appendix, we give proofs of the theoretical results in Sections 2 and 3 of the main

work in Aoshima and Yata (2016).

We simply write T = T (A), ∆ = ∆(A), K = K(A), K1 = K1(A), K̂1 = K̂1(A) and

K2 = K2(A).

Proof of Theorem 1. We note that for i = 1, 2

µT
AΣi,AµA ≤ ∆λmax(Σi,A) ≤ ∆tr(Σ2

i,A)1/2. (S5.1)

Hence, from the fact that tr(Σ2
i,A)/n2

i ≤ K1 for i = 1, 2, it holds that K2 = O(∆K
1/2
1 ), so that

Var(T/∆) = (K1 +K2)/∆
2 = K1/∆

2 +O(K
1/2
1 /∆). (S5.2)
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(a) STp−2(Ωi, α, ν) with ν = 10.

(b) STp−2(Ωi, α, ν) with ν = 20.

Figure S4.3: When (i) (n1, n2) = (40, 60) and p = 50+100(s−1) for s = 1, ..., 7, the performances

of five tests: (I) from (3.1) with A = Ip, (II) from (4.2), (III) from (5.5), (IV) from (5.5) with

ki = k̂i, i = 1, 2, and (V) from (6.1).

Thus, under (A-iii), from Chebyshev’s inequality, we can claim the result.

Proof of Theorem 2. We first consider the case when (A-iv) is met. From (S5.1), under (A-ii),

it holds that µT
AΣi,AµA/ni = o(∆tr(Σ2

i,A)1/2/ni) = o(∆K
1/2
1 ) as m→ ∞, so that

K2/K1 = O{K2/(∆K
1/2
1 )} → 0 (S5.3)

under (A-ii) and (A-iv). Let xij,A = A1/2xij (j = 1, ..., ni), µi,A = A1/2µi and Γi,A = A1/2Γi

for i = 1, 2. We write that

xij,A = Γi,Awij + µi,A for all i, j. (S5.4)

Note that Var(xij,A) = Σi,A for i = 1, 2. Then, from (S5.3), by using Theorem 5 given in

Aoshima and Yata (2015), we can obtain the result when (A-iv) is met.

Next, we consider the case when (A-v) is met. Let µ12 = µ1 − µ2. Under (A-v), it holds

that

T − ∆ = 2µT
12A(x1n1 − x2n2 − µ12) + oP (K

1/2
2 ) (S5.5)

from the fact that Var{(x1n1−x2n2−µ12)
TA(x1n1−x2n2−µ12)−tr(S1n1A)/n1−tr(S2n2A)/n2} =

K1. Let ωj = 2µT
12A(x1j − µ1)/n1 for j = 1, ..., n1, and ωj+n1 = −2µT

12A(x2j − µ2)/n2 for
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(a) STp−2(Ωi, α, ν) with ν = 10.

(b) STp−2(Ωi, α, ν) with ν = 20.

Figure S4.4: When (ii) p = 500, n1 = 10s and n2 = 1.5n1 for s = 2, ..., 8, the performances of

five tests: (I) from (3.1) with A = Ip, (II) from (4.2), (III) from (5.5), (IV) from (5.5) with

ki = k̂i, i = 1, 2, and (V) from (6.1).

j = 1, ..., n2. Note that
∑n1+n2

j=1 ωj = 2µT
12A(x1n1 − x2n2 − µ12) and Var(

∑n1+n2
j=1 ωj) = K2.

Note that E(w4
j ) = O{(µT

AΣ1,AµA)2/n4
1} for j = 1, ..., n1, and E(w4

j ) = O{(µT
AΣ2,AµA)2/n4

2}
for j = n1 + 1, ..., n1 + n2, under (A-i). Then, for Lyapunov’s condition, it holds that as

nmin → ∞∑n1+n2
j=1 E(w4

j )

K2
2

=
O{(µT

AΣ1,AµA)2/n3
1 + (µT

AΣ2,AµA)2/n3
2}

K2
2

= O(n−1
min) → 0.

Hence, by using Lyapunov’s central limit theorem, we have that
∑n1+n2

j=1 ωj/K
1/2
2 ⇒ N(0, 1).

In view of (S5.5) and K2/K = 1 + o(1) as m→ ∞ under (A-v), we can obtain the result when

(A-v) is met.

Proof of Proposition 1. From (S5.1) and the fact that tr(Σ2
i,A)/n2

i ≤ K1, i = 1, 2, it holds that

K1/K2 ≥ K
1/2
1 /(8∆). Thus, (A-v) implies (A-iii). It concludes the result.

Proof of Lemma 1. From (S5.3), the result is obtained straightforwardly.

Proofs of Lemma 2 and Corollary 1. From (2.3), (S5.4) and the equation (23) given in Aoshima

and Yata (2015), we have that K̂1/K1 = 1 + oP (1) as m → ∞ under (A-i). It concludes the
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result of Lemma 2. By using Lemmas 1 and 2, it holds that K̂1/K = 1 + oP (1) under (A-i), so

that the result of Corollary 1 is obtained from Theorem 2.

Proofs of Theorem 3 and Corollary 2. First, we consider Corollary 2. From Theorem 1, under

(A-i) and (A-iii), we have that as m→ ∞

P (T/K̂
1/2
1 > zα) = P (T/∆ > zαK̂

1/2
1 /∆) = P{1 + oP (1) > oP (1)} → 1

from the fact that K̂
1/2
1 /∆ = K

1/2
1 {1 + oP (1)}/∆ = oP (1) under (A-i) and (A-iii). It concludes

the result of Corollary 2 when (A-iii) is met. From Theorem 2, Lemmas 1 and 2, under (A-i),

(A-ii) and (A-iv), we have that

P (T/K̂
1/2
1 > zα) = P{(T − ∆)/K1/2 > (zαK

1/2
1 − ∆)/K1/2 + oP (1)} (S5.6)

= Φ{(∆ − zαK
1/2
1 )/K1/2} + o(1) = Φ(∆/K

1/2
1 − zα) + o(1).

It concludes the result of Corollary 2 when (A-ii) and (A-iv) are met. We note that K/K2 → 1

as m→ ∞ under (A-v). Then, by combining (S5.6) and Theorem 2, we can conclude the result

of Corollary 2 when (A-v) is met.

Next, we consider Theorem 3. By combining (S5.6) and Theorem 2, we can conclude the

results about size and power in Theorem 3 when (A-iv) is met. From (S5.2) we note that

K/∆2 → 0 under (A-iii). It holds that Φ{(∆− zαK
1/2
1 )/K1/2} → 1 under (A-iii), so that from

Corollary 2 we obtain the result about power when (A-iii) is met. Hence, by considering a

convergent subsequence of ∆/K
1/2
1 , we can conclude the result about power in Theorem 3.

S6 Appendix B

In this appendix, we give proofs of the theoretical results in Sections 4 and 5 of the main

work in Aoshima and Yata (2016). Also, we give two lemmas and proofs of the lemmas.

Let z̄ij =
∑ni

l=1 zijl/ni and vi(j) =
∑ni

l=1(zijl − z̄ij)
2/(ni − 1) for all i, j. Let uij =

(zij1, ..., zijni)
T /(ni − 1)1/2, uoij = P niuij = (zij1 − z̄ij , ..., zijni − z̄ij)

T /(ni − 1)1/2 and u̇ij =

||uij ||−1uij for all i, j. Let ζi be an arbitrary unit random ni-dimensional vector for i = 1, 2. Let

yij =
∑ki

s=1 λ
1/2
is hiszisj and vij =

∑p
s=ki+1 λ

1/2
is hiszisj for all i, j. Note that xij = yij +vij +µi

for all i, j. Let ψij = tr(Σ2
i )/λij + niµ

T
i Σiµi/λij for i = 1, 2; j = 1, ..., ki. Let hst = hT

1sh2t

for all s, t. We also let M i = µi1
T
ni

for i = 1, 2.

Proof of Theorem 4. We assume µ1 = µ2 = 0 and hT
11h21 ≥ 0 without loss of generality. Let

Hi1 = hi1h
T
i1, Hi2 = Ip −Hi1, Σi1 = λi1Hi1 and Σi2 =

∑p
j=2 λijhijh

T
ij for i = 1, 2. Note

that Σi = Σi1 + Σi2 for i = 1, 2. We write that

TI = T (H11,H21) + T (H12,H22) − 2xT
1n1(H11H22 +H12H21)x2n2 .

We have that Var{T (H11,H21)} = K1(H11,H21) = 2
∑2

i=1 λ
2
i1/{ni(ni−1)}+4λ11λ21(h

T
11h21)

2

/(n1n2) and Var{T (H12,H22)} = K1(H12,H22) = 2
∑2

i=1 tr(Σ2
i2)/{ni(ni −1)}+4tr(Σ12Σ22)
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/(n1n2), where K1(· , ·) is defined in Section S1.2. Let ψ = (λ11/n1 + λ21/n2). Then, under

(4.1) it holds that as m→ ∞

K1(H11,H21) = 2ψ2{1 + o(1)} and K1(H12,H22) = o(ψ2)

because tr(Σ12Σ22) ≤ {tr(Σ2
12)tr(Σ

2
22)}1/2 = (Ψ1(2)Ψ2(2))

1/2. Also, under (4.1) it follows that

Var{xT
1n1(H11H22 +H12H21)x2n2} =

tr(Σ11Σ22) + tr(Σ12Σ21)

n1n2
= o(ψ2)

because tr(Σ11Σ22) ≤ λ11tr(Σ
2
22)

1/2 and tr(Σ12Σ21) ≤ λ21tr(Σ
2
12)

1/2. Hence, under (4.1) we

have that K1(I) = 2ψ2{1 + o(1)} and

TI =

2∑
i=1

λi1(z̄
2
i1 − vi(1)/ni) − 2(λ11λ21)

1/2z̄11z̄21(h
T
11h21) + oP (ψ)

= (λ
1/2
11 z̄11 − λ

1/2
21 z̄21)

2 − ψ + oP (ψ)

from the fact that vi(1) = 1 + oP (1), i = 1, 2. By noting that E(z4
i1l)’s are bounded, for

Lyapunov’s condition, it holds that
∑2

i=1

∑ni
l=1(λ

1/2
i1 zi1l/ni)

4 = o(ψ2). Hence, by using Lya-

punov’s central limit theorem, we have that ψ−1/2(λ
1/2
11 z̄11 − λ

1/2
21 z̄21) ⇒ N(0, 1). Thus, from

ψ−1TI = ψ−1(λ
1/2
11 z̄11 − λ

1/2
21 z̄21)

2 − 1 + oP (1) and K1(I) = 2ψ2{1 + o(1)} under (4.1), we have

that TI/(K1(I)/2)1/2 + 1 ⇒ χ2
1. From Lemma 2, it concludes the result.

Proof of Corollary 3. From Theorem 2, the result is obtained straightforwardly.

Throughout the proofs of Propositions 2 to 5, Lemmas B.1, B.2, 3 and Theorem 5, we

assume (A-vi) and (A-viii). Throughout the proofs of Propositions 2 to 5 and Lemma B.1, we

omit the subscript with regard to the population.

Proof of Proposition 2. Let us write that U1 =
∑k

s=1 λsuosu
T
os and U2 =

∑p
s=k+1 λsusu

T
s .

Note that SD = U1 + P nU2P n. Also, note that P nûj = ûj and λ̂j = ûT
j SDûj = ûT

j (U1 +

U2)ûj when λ̂j > 0. From Lemma 5 in Yata and Aoshima (2013) we can claim that as m0 → ∞

λ̂j/λj − δj = (ûT
j U1ûj)/λj + oP (1) for j = 1, ..., k.

Also, similar to the proofs of Lemmas 3 and 4 in Yata and Aoshima (2012), we have that

uT
j (U2 − δIn)uj′ = OP (Ψ

1/2

(k+1)/n) and uT
j (U2 − δIn)ζ = OP (Ψ

1/2

(k+1)/n
1/2) for j, j′ = 1, ..., k,

where δ =
∑p

s=k+1 λs/(n − 1). Then, by noting that uT
ojuoj′ = OP (n−1/2) (j ̸= j′) and

||uoj ||2 = ||uj ||2 +OP (n−1) = 1 +OP (n−1/2) as n→ ∞, we can claim that

λ̂j/λj = ||uj ||2 + δj +OP (n−1) = 1 + δj +OP (n−1/2)

and ûT
j u̇j = 1 +OP (n−1) for j = 1, ..., k; (S6.1)

ûT
j′uj = OP (n−1/2λj′/λj) for j < j′ ≤ k (S6.2)
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in a way similar to the proof of Lemma 5 in Yata and Aoshima (2012) and the proof of Lemma

9 in Yata and Aoshima (2013). By noting that (X −X)ûj = (X −M)ûj when λ̂j > 0, we

write that

(hT
j ĥj)

2 = {hT
j (X −X)ûj}2/{(n− 1)λ̂j} = ||uj ||2(ûT

j u̇j)
2(λj/λ̂j)

when λ̂j > 0. Thus, from (S6.1) we can conclude the results.

Proof of Proposition 3. We can claim that as m0 → ∞

{λj(n− 1 − j)}−1
(
tr(SD) −

j∑
l=1

λ̂l

)
− δj = OP (n−1) for j = 1, ..., k

in a way similar to the proof of Lemma 11 in Yata and Aoshima (2013). Then, it follows from

(S6.1) that

λ̃j/λj = ||uj ||2 +OP (n−1) = 1 +OP (n−1/2) for j = 1, ..., k. (S6.3)

Note that (hT
j h̃j)

2 = ||uj ||2(ûT
j u̇j)

2(λj/λ̃j). Then, from (S6.1) and (S6.3) we can conclude the

results.

Proofs of Propositions 4 and 5. First, we consider Proposition 4. From (S6.1) there exists a

unit random vector εj = (εj1, ..., εjn)T such that u̇T
j εj = 0 and

ûj = {1 +OP (n−1)}u̇j + εj ×OP (n−1/2) for j = 1, ..., k (S6.4)

as m0 → ∞. By noting that u̇j = uj{1 + oP (1)} and uT
j uj′ = Op(n−1/2) (j ̸= j′) as n → ∞,

it follows from (S6.4) that

ûT
j′uj = OP (n−1/2) for j′ < j ≤ k. (S6.5)

Then, from (S6.1) to (S6.3) and (S6.5) it holds that for j = 1, ..., k (l = 1, ..., n)

h̃
T

j yl

λ
1/2
j

=
ûT

j (X −M)Tyl

{(n− 1)λ̃jλj}1/2
=

k∑
s=1

λszslû
T
j us

(λ̃jλj)1/2
= zjl +OP (n−1/2) (S6.6)

because zsl = OP (1) for s = 1, ..., k. Let us write that

uj(l) = (zj1, ..., zjl−1, 0, zjl+1, ..., zjn)T /(n− 1)1/2 for all j, l.

We have that E{(
∑p

s=k+1 λszslu
T
j(l)us(l)/λj)

2} = O{Ψ(k+1)/(nλ
2
j )} = O(n−1) and E(||

∑p
s=k+1

λszslus(l)/λj ||2) = O(Ψ(k+1)/λ
2
j ) = O(1) for j = 1, ..., k. It follows that

p∑
s=k+1

λszslu
T
j(l)us(l)

λj
= OP (n−1/2) and ζT

p∑
s=k+1

λszslus(l)

λj
= OP (1) (S6.7)

from the fact that |ζT ∑p
s=k+1 λszslus(l)/λj | ≤ ||ζ|| · ||

∑p
s=k+1 λszslus(l)/λj || and Markov’s

inequality. Let dn = (n− 1)/(n− 2). Here, from (S6.4) we write that for j = 1, ..., k

dnûj(l) = {1 +OP (n−1)}uj(l)/||uj || + εj(l) ×OP (n−1/2) + (n− 2)−1ûjl1n(l), (S6.8)
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where εj(l) = (εj1, ..., εjl−1, 0, εjl+1, ..., εjn)T . Note that ||(n− 2)−1ûjl1n(l)|| = OP (n−1/2) since

|ûjl| ≤ 1. Then, it follows from (S6.3), (S6.7) and (S6.8) that for j = 1, ..., k

h̃
T

jlvl

λ
1/2
j

= dn

ûT
j(l)(X −M)Tvl

{(n− 1)λ̃jλj}1/2
= dn

p∑
s=k+1

λszslû
T
j(l)us(l)

(λ̃jλj)1/2
= OP (n−1/2). (S6.9)

We note that Var(
∑p

s=k+1 λsz
2
sl/λj) = O(Ψ(k+1)/λ

2
j ), so that (n − 1)−1/2 ∑p

s=k+1 λsz
2
sl/λj =

(n − 1)1/2δj + OP (n−1/2) for j = 1, ..., k, because E(
∑p

s=k+1 λsz
2
sl/λj) = (n − 1)δj . Then, it

follows from (S6.3) and (S6.7) that for j = 1, ..., k

(dnh̃j − h̃jl)
Tvl

λ
1/2
j

= dn
(ûj − ûj(l))

T (X −M)Tvl

{(n− 1)λ̃jλj}1/2

= dnûjl

p∑
s=k+1

λsz
2
sl

{(n− 1)λ̃jλj)}1/2
−
ûjl1

T
n(l)

n− 2

p∑
s=k+1

λszslus(l)

(λ̃jλj)1/2

= dnûjl(n− 1)1/2δj{1 + oP (1)} +OP (n−1/2). (S6.10)

By combining (S6.6) and (S6.9) with (S6.10), we can conclude the result of h̃j in Proposition

4. As for ĥj , by noting that ĥj = (λ̃j/λ̂j)
1/2h̃j , ||uj ||2 = 1 +OP (n−1/2), (S6.1) and (S6.3), we

can conclude the result.

Next, we consider Proposition 5. From (S6.3) we have that for j = 1, ..., k

(dnh̃j − h̃jl)
Tyl

λ
1/2
j

= dnûjl

k∑
s=1

λsz
2
sl

{(n− 1)λ̃jλj)}1/2
−
ûjl1

T
n(l)

n− 2

k∑
s=1

λszslus(l)

(λ̃jλj)1/2

= dnûjl ×OP {(n1/2λj)
−1λ1} (S6.11)

from the fact that 1T
n(l)us(l) = OP (1) and zsl = OP (1), s = 1, ..., k. Then, by combining (S6.6)

and (S6.9) with (S6.11), we can conclude the result.

Lemma B.1. Assume (A-vi) and (A-viii). It holds for j = 1, ..., k that as m0 → ∞

n∑
l=1

x̃jl − xjl

n
= OP (ψ

1/2
j /n) and

n∑
l=1

(x̃jl − xjl)
2

n
= OP (ψj/n).

Proof. First, we consider the first result. Let ηsj(l) = λszslus(l)/λ
1/2
j , ξsj(l) = λ

1/2
s µ(s)us(l)/λ

1/2
j

and ωsj(l) = ηsj(l) + ξsj(l) for all j, l, s, where us(l) is given in the proofs of Propositions 4 and

5. Then, we write that when λ̂j > 0,

x̃jl = dn

ûT
j(l)(X −M)Txl

{(n− 1)λ̃j}1/2
= dn

λ
1/2
j

λ̃
1/2
j

ûT
j(l)

p∑
s=1

ωsj(l), (S6.12)

where dn = (n − 1)/(n − 2). Let e1 = (1, 0, ..., 0)T ,..., en = (0, ..., 0, 1)T be the standard basis

vectors of dimension n. In view of (S6.3) and (S6.8), by noting that ||uj ||2 = 1 + OP (n−1/2),
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||(n − 2)−1ûjl1n(l)|| = OP (n−1/2) as n → ∞ and ûj − ûj(l) = ûjlel − (n − 1)−1ûjl1n(l) for

l = 1, ..., n, we have that as m0 → ∞

dnûj(l)(λj/λ̃j)
1/2 =uj(l)/||uj ||2 + (n− 2)−1ûjl1n(l) + (εj − εjlel) ×OP (n−1/2)

+ ζjl ×OP (n−1) for all l and j = 1, ..., k, (S6.13)

where εj and εjl are given in the proofs of Propositions 4 and 5 and ζjl is a random unit vector

depending on j and l. Note that OP (n−1/2) and OP (n−1) in (S6.13) do not depend on l. In

view of (A-viii), we have that for j = 1, ..., k

E
{( n∑

l=1

uT
j(l)

p∑
s=1( ̸=j)

ηsj(l)

)2}
=

n∑
l ̸=l′

p∑
s,s′( ̸=j)

λsλs′E(zjlzslzs′lzjl′zsl′zs′l′)

(n− 1)2λj

+O{tr(Σ2)/λj} = O{tr(Σ2)/λj}. (S6.14)

On the other hand, we have that for j = 1, ..., k

E
{( n∑

l=1

uT
j(l)

p∑
s=1( ̸=j)

ξsj(l)

)2}
= O

(
n

p∑
s=1( ̸=j)

λsµ
2
(s)

λj

)
= O(nµT Σµ/λj). (S6.15)

Then, by using Markov’s inequality, it follows from (S6.14) and (S6.15) that

n∑
l=1

uT
j(l)

p∑
s=1( ̸=j)

ωsj(l)/||uj ||2 = OP (ψ
1/2
j ). (S6.16)

Also, we have that E{
∑n

l=1(1
T
n(l)

∑p
s=1 ωsj(l))

2} = O(nψj), E(∥
∑n

l=1

∑p
s=1 ωsj(l)∥2) = O(nψj)

and E(
∑n

l=1 ∥
∑p

s=1 ωsj(l)∥2) = O(nψj) for j = 1, ..., k. Thus, it holds that

∣∣∣ n∑
l=1

ûjl1
T
n(l)

p∑
s=1

ωsj(l)

∣∣∣ ≤ ( n∑
l=1

û2
jl

)1/2{ n∑
l=1

(
1T

n(l)

p∑
s=1

ωsj(l)

)2}1/2

= OP (n1/2ψ
1/2
j ),

∣∣∣εT
j

n∑
l=1

p∑
s=1

ωsj(l)

∣∣∣ ≤ ||εj || ·
∥∥∥ n∑

l=1

p∑
s=1

ωsj(l)

∥∥∥ = OP (n1/2ψ
1/2
j ) and

∣∣∣ n∑
l=1

ζT
jl

p∑
s=1

ωsj(l)

∣∣∣ ≤ ( n∑
l=1

||ζjl||
2
)1/2( n∑

l=1

∥∥∥ p∑
s=1

ωsj(l)

∥∥∥2)1/2

= OP (nψ
1/2
j ) (S6.17)

by using Markov’s inequality and Schwarz’s inequality. Then, by noting that eT
l ωsj(l) = 0 for

all l, s, we have from (S6.12), (S6.13), (S6.16) and (S6.17) that for j = 1, ..., k

n∑
l=1

x̃jl − xjl

n
=

n∑
l=1

xjl

n

( ||uj(l)||2 − ||uj ||2

||uj ||2
)

+OP (n−1ψ
1/2
j )

= −
n∑

l=1

xjlz
2
jl

n(n− 1)||uj ||2
+OP (n−1ψ

1/2
j ) = OP (n−1ψ

1/2
j ) (S6.18)

because it holds that |
∑n

l=1 xjlz
2
jl| ≤ (

∑n
l=1 x

2
jl

∑n
l′=1 z

4
jl′)

1/2, E(
∑n

l=1 x
2
jl) = n(λj + µ2

(j)),

E(
∑n

l=1 z
4
jl) = O(n), λj ≤ tr(Σ2)/λj and µ2

(j) ≤ µT Σµ/λj . Thus, we can conclude the first

result.
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Next, we consider the second result. From (S6.12) and (S6.13) we have that

n∑
l=1

(x̃jl − xjl)
2

n
=OP

( n∑
l=1

x2
jlz

4
jl

n3

)
+OP

{ n∑
l=1

(
uT

j(l)

p∑
s=1( ̸=j)

ωsj(l)

)2

/n
}

+OP

{ n∑
l=1

û2
jl

(
1T

n(l)

p∑
s=1

ωsj(l)

)2

/n3
}

+OP

{
εT

j

n∑
l=1

( p∑
s=1

ωsj(l)

)( p∑
s=1

ωsj(l)

)T

εj/n
2
}

+OP

{ n∑
l=1

ζT
jl

( p∑
s=1

ωsj(l)

)( p∑
s=1

ωsj(l)

)T

ζjl/n
3
}
. (S6.19)

By using Markov’s inequality, for any τ > 0, it holds that P (
∑n

l=1 x
2
jl ≥ τnψj) = O(τ−1) and∑n

l=1 P (z4
jl ≥ τn) = O(τ−1) for j = 1, ..., k, so that

n∑
l=1

x2
jlz

4
jl = OP

(
nψj max

l=1,...,n
z4

jl

)
= OP (n2ψj). (S6.20)

We have that for j = 1, ..., k

n∑
l=1

(
uT

j(l)

p∑
s=1( ̸=j)

ωsj(l)

)2

= OP (ψj),

n∑
l=1

û2
jl

(
1T

n(l)

p∑
s=1

ωsj(l)

)2

≤
n∑

l=1

(
1T

n(l)

p∑
s=1

ωsj(l)

)2

= OP (nψj),

εT
j

n∑
l=1

( p∑
s=1

ωsj(l)

)( p∑
s=1

ωsj(l)

)T

εj ≤
n∑

l=1

∥∥∥ p∑
s=1

ωsj(l)

∥∥∥2

= OP (nψj) and

n∑
l=1

ζT
jl

( p∑
s=1

ωsj(l)

)( p∑
s=1

ωsj(l)

)T

ζjl ≤
n∑

l=1

∥∥∥ p∑
s=1

ωsj(l)

∥∥∥2

= OP (nψj) (S6.21)

because it holds that E{
∑n

l=1(u
T
j(l)

∑p
s=1( ̸=j) ωsj(l))

2} = O(ψj), E{
∑n

l=1(1
T
n(l)

∑p
s=1 ωsj(l))

2} =

O(nψj), E(
∑n

l=1 ∥
∑p

s=1 ωsj(l)∥2) = O(nψj) and û2
jl ≤ 1 for all l. Then, by combining (S6.20)

and (S6.21) with (S6.19), we can conclude the second result.

Lemma B.2. Assume (A-vi) and (A-viii). It holds that as m→ ∞

h̃
T

1jh2j′ = hjj′ +OP (n
−1/2
1 ) and hT

1jh̃2j′ = hjj′ +OP (n
−1/2
2 );

h̃
T

1jh̃2j′ − hjj′ = h̃
T

1jh2j′ − hjj′ + hT
1jh̃2j′ − hjj′ +OP {(n1n2)

−1/2}

for j = 1, ..., k1 and j′ = 1, ..., k2.

Proof. First, we consider the first result. We note that (Xi −Xi)ûij = (Xi −M i)ûij when
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λ̂ij > 0. From (S6.1) to (S6.5) we have that as m→ ∞

h̃
T

1jh2j′ =
ûT

1j(X1 −M1)
Th2j′

{(ni − 1)λ̃1j}1/2
=
ûT

1j

∑p
s=1 λ

1/2
1s hsj′u1s

λ̃
1/2
1j

= hjj′ +
ûT

1j

∑p
s=k1+1 λ

1/2
1s hsj′u1s

λ
1/2
1j {1 + oP (1)}

+OP (n
−1/2
1 ) (S6.22)

for j = 1, ..., k1 and j′ = 1, ..., k2. It holds that for j = 1, ..., k1 and j′ = 1, ..., k2

E
{(
uT

1j

p∑
s=k1+1

λ
1/2
1s hsj′u1s

)2}
= O

( p∑
s=k1+1

λ1sh
2
sj′/n1

)
= O(λ1k1+1/n1);

E
(∥∥∥ p∑

s=k1+1

λ
1/2
1s hsj′u1s

∥∥∥2)
= O

( p∑
s=k1+1

λ1sh
2
sj′

)
= O(λ1k1+1)

because
∑p

s=k1+1 h
2
sj′ ≤ 1. Then, by using Markov’s inequality, it follows from (S6.4) that for

j = 1, ..., k1 and j′ = 1, ..., k2

ûT
1j

∑p
s=k1+1 λ

1/2
1s hsj′u1s

λ
1/2
1j

= OP {n−1/2
1 (λ1k1+1/λ1j)

1/2}. (S6.23)

Thus, by combining (S6.22) with (S6.23), we can conclude the result for h̃
T

1jh2j′ . As for hT
1jh̃2j′ ,

we obtain the result similarly.

Next, we consider the second result. From (S6.2), (S6.5) and (S6.23) we have that for

j ̸= l = 1, ..., k1 and j′ ̸= l′ = 1, ..., k2

ûT
1j(
∑p

s=k1+1 λ
1/2
1s λ

1/2

2l′ hsl′u1su
T
2l′)û2j′

λ
1/2
1j λ

1/2

2j′

= OP

( ûT
1j

∑p
s=k1+1 λ

1/2
1s hsl′u1s

n
1/2
2 λ

1/2
1j

)
= OP [{λ1k1+1/(n1n2λ1j)}1/2] and

ûT
1j(λ

1/2
1l u1l

∑p
s′=k2+1 λ

1/2

2s′ hls′u
T
2s′)û2j′

λ
1/2
1j λ

1/2

2j′

= OP [{λ2k2+1/(n1n2λ2j′)}1/2]. (S6.24)

From (S6.1), (S6.3) and (S6.23) we have that for j = 1, ..., k1 and j′ = 1, ..., k2

ûT
1j(
∑p

s=k1+1 λ
1/2
1s λ

1/2

2j′ hsj′u1su
T
2j′)û2j′

λ̃
1/2
1j λ̃

1/2

2j′

=
ûT

1j

∑p
s=k1+1 λ

1/2
1s hsj′u1s

λ̃
1/2
1j

{1 +OP (n−1
2 )}

=
ûT

1j

∑p
s=k1+1 λ

1/2
1s hsj′u1s

λ̃
1/2
1j

+OP {(n1n2)
−1/2} and

ûT
1j(λ

1/2
1j u1j

∑p
s′=k2+1 λ

1/2

2s′ hjs′u
T
2s′)û2j′

λ̃
1/2
1j λ̃

1/2

2j′

=

∑p
s′=k2+1 λ

1/2

2s′ hjs′u
T
2s′ û2j′

λ̃
1/2
2j

+OP {(n1n2)
−1/2}.

(S6.25)
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It holds that for j = 1, ..., k1 and j′ = 1, ..., k2

E
{( p∑

s=k1+1

p∑
s′=k2+1

λ
1/2
1s λ

1/2

2s′ hss′u
T
1ju1su

T
2s′u2j′

)2}
= O

( tr(Σ1∗Σ2∗)

n1n2

)
;

E
(∥∥∥ p∑

s=k1+1

p∑
s′=k2+1

λ
1/2
1s λ

1/2

2s′ hss′u
T
1ju1su2s′

∥∥∥2)
= O{tr(Σ1∗Σ2∗)/n1};

E
(∥∥∥ p∑

s=k1+1

p∑
s′=k2+1

λ
1/2
1s λ

1/2

2s′ hss′u1su
T
2s′u2j′

∥∥∥2)
= O{tr(Σ1∗Σ2∗)/n2}; and

E
(∥∥∥ p∑

s=k1+1

p∑
s′=k2+1

λ
1/2
1s λ

1/2

2s′ hss′u1su
T
2s′

∥∥∥2

F

)
= O{tr(Σ1∗Σ2∗)},

where ||·||F is the Frobenius norm. Then, by noting that tr(Σ1∗Σ2∗) ≤ {tr(Σ2
1∗)tr(Σ

2
2∗)}1/2 and

|ζT
1 (
∑p

s=k1+1

∑p
s′=k2+1 λ

1/2
1s λ

1/2

2s′ hss′u1su
T
2s′)ζ2| ≤ ||

∑p
s=k1+1

∑p
s′=k2+1 λ

1/2
1s λ

1/2

2s′ hss′u1su
T
2s′ ||F ,

it follows from (S6.4) that for j = 1, ..., k1 and j′ = 1, ..., k2

ûT
1j(
∑p

s=k1+1

∑p
s′=k2+1 λ

1/2
1s λ

1/2

2s′ hss′u1su
T
2s′)û2j′

λ
1/2
1j λ

1/2

2j′

= OP

{( tr(Σ1∗Σ2∗)

n1n2λ1jλ2j′

)1/2}
= OP {(n1n2)

−1/2}.

(S6.26)

Then, from (S6.1) to (S6.5), (S6.24), (S6.25) and (S6.26) we have that for j = 1, ..., k1 and

j′ = 1, ..., k2

h̃
T

1jh̃2j′ =
ûT

1j(
∑p

s,s′ λ
1/2
1s λ

1/2

2s′ hss′u1su
T
2s′)û2j′

λ̃
1/2
1j λ̃

1/2

2j′

=
ûT

1j(
∑k1

s=1

∑k2
s′=1 λ

1/2
1s λ

1/2

2s′ hss′u1su
T
2s′)û2j′

λ̃
1/2
1j λ̃

1/2

2j′

+OP {(n1n2)
−1/2}

+
ûT

1j

∑p
s=k1+1 λ

1/2
1s hsj′u1s

λ̃
1/2
1j

+

∑p
s′=k2+1 λ

1/2

2s′ hjs′u
T
2s′ û2j′

λ̃
1/2

2j′

=hjj′

(λ1/2
1j λ

1/2

2j′ û
T
1ju1ju

T
2j′ û2j′

λ̃
1/2
1j λ̃

1/2

2j′

−
λ

1/2
1j û

T
1ju1j

λ̃
1/2
1j

−
λ

1/2

2j′ û
T
2j′u2j′

λ̃
1/2

2j′

)
+ h̃

T

1jh2j′ + hT
1jh̃2j′ +OP {(n1n2)

−1/2}

=hjj′

(λ1/2
1j û

T
1ju1j

λ̃
1/2
1j

− 1
)(λ1/2

2j′ û
T
2j′u2j′

λ̃
1/2

2j′

− 1
)

+ h̃
T

1jh2j′ + hT
1jh̃2j′ − hjj′ +OP {(n1n2)

−1/2}

=h̃
T

1jh2j′ + hT
1jh̃2j′ − hjj′ +OP {(n1n2)

−1/2}

from the facts that h̃
T

1jh2j′ = ûT
1j

∑p
s=1 λ

1/2
1s hsj′u1s/λ̃

1/2
1j and hT

1jh̃2j′ =
∑p

s′=1 λ
1/2

2s′ hjs′u
T
2s′ û2j′/λ̃

1/2

2j′ .

It concludes the second result.

Proof of Theorem 5. We assume (A-ix) and (A-x). Let x̄ij =
∑ni

l=1 xijl/ni for i = 1, 2; j =
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1, ..., ki. For i = 1, 2 and j = 1, ..., ki, we have that as m→ ∞

x̄ij − µi(j) = OP (λ
1/2
ij /n

1/2
i ) and

n∑
l=1

(xijl − µi(j))
2

ni
= OP (λij) (S6.27)

from the facts that Var(
∑n

l=1 xijl/ni) = O(λij/ni) and P (
∑n

l=1(xijl − µi(j))
2 ≥ τniλij) =

O(τ−1) for any τ > 0. Let x̄ij⋆ =
∑ni

l=1(x̃ijl − xijl)/ni for i = 1, 2; j = 1, ..., ki. Note that for

i = 1, 2; j = 1, ..., ki

ψij

n2
iK

1/2
1∗

= O
( λ2

i1

nitr(Σ
2
i∗)

+
µT

i∗Σi∗µi∗ +
∑ki

s=1 λisµ
2
i(s)

tr(Σ2
i∗)

)
+ o(1) → 0

from the facts that tr(Σ2
i ) ≤ kiλ

2
i1+tr(Σ2

i∗), tr(Σ2
i∗)

1/2/(niK
1/2
1∗ ) = O(1), µT

i Σiµi = µT
i∗Σi∗µi∗+∑ki

s=1 λisµ
2
i(s) and µ2

i(s) = O(λis/ni) for s = 1, ..., ki. Also, note that ψ
1/2
ij λ

1/2
ij /(n

3/2
i K

1/2
1∗ ) → 0

for i = 1, 2; j = 1, ..., ki. Then, with the help of Lemma B.1, we have that for i = 1, 2; j =

1, ..., ki

2

ni∑
l<l′

x̃ijlx̃ijl′ − xijlxijl′

n2
i

=

ni∑
l,l′

x̃ijlx̃ijl′ − xijlxijl′

n2
i

−
ni∑
l=1

x̃2
ijl − x2

ijl

n2
i

= x̄ij⋆

ni∑
l=1

x̃ijl + xijl

ni
−

ni∑
l=1

(x̃ijl + xijl)(x̃ijl − xijl)

n2
i

=

ni∑
l=1

(x̃ijl − xijl) + 2(xijl − µi(j)) + 2µi(j)

ni

(
x̄ij⋆ − x̃ijl − xijl

ni

)
= OP {(ψ1/2

ij /ni)(ψ
1/2
ij /ni + λ

1/2
ij /n

1/2
i + µi(j))} = oP (K

1/2
1∗ ) (S6.28)

from the fact that
∑ni

l=1 |(xijl − µi(j))(x̃ijl − xijl)| ≤ {
∑ni

l=1(xijl − µi(j))
2}1/2{

∑ni
l=1 (x̃ijl −

xijl)
2}1/2. From Lemma B.2 it holds that for j = 1, ..., k1 and j′ = 1, ..., k2

h̃
T

1jh̃2j′ = hjj′ +OP (n
−1/2
min ), h̃

T

1j(h̃2j′ − h2j′) = OP (n
−1/2
2 ),

h̃
T

2j′(h̃1j − h1j) = OP (n
−1/2
1 ) and (h̃1j − h1j)

T (h̃2j′ − h2j′) = OP {(n1n2)
−1/2}. (S6.29)

Then, it follows from Lemma B.1, (S6.27) and (S6.29) that for j = 1, ..., k1 and j′ = 1, ..., k2∑n1
l=1(x̃1jlh̃1j − x1jlh1j)

T ∑n2
l′=1(x̃2j′l′ h̃2j′ − x2j′l′h2j′)

n1n2

= {x̄1j⋆h̃1j + x̄1j(h̃1j − h1j)}T {x̄2j′⋆h̃2j + x̄2j′(h̃2j′ − h2j′)}

= OP {(ψ1/2
1j ψ

1/2

2j′ /(n1n2)} +OP {(ψ1/2
1j /n1)(λ

1/2

2j′ /n
1/2
2 + µ2(j′))/n

1/2
2 }

+OP {(ψ1/2

2j′ /n2)(λ
1/2
1j /n

1/2
1 + µ1(j))/n

1/2
1 }

+OP {(λ1/2
1j /n

1/2
1 + µ1(j))(λ

1/2

2j′ /n
1/2
2 + µ2(j′))/(n1n2)

1/2}

= oP (K
1/2
1∗ ) (S6.30)
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from the fact that λij/(n
2
iK

1/2
1∗ ) = O{λij/(nitr(Σ

2
i∗)

1/2)} = o(1) for i = 1, 2; j = 1, ..., ki. Note

that µi∗ = Ai(ki)µi =
∑p

s=ki+1 µi(s)his for i = 1, 2. We write that when λ̂1j > 0,

h̃
T

1j

( n2∑
l=1

v2l

n2
+ µ2∗

)
=
ûT

1j(X1 −M1)(
∑n2

l=1 v2l/n2 + µ2∗)

(n1 − 1)1/2λ̃
1/2
1j

= ûT
1j

p∑
s=1

p∑
s′=k2+1

λ
1/2
1s hss′u1s(λ

1/2

2s′ z̄2s′ + µ2(s′))

λ̃
1/2
1j

. (S6.31)

It holds that

E
{(
uT

1j

p∑
s=k1+1

p∑
s′=k2+1

λ
1/2
1s hss′u1s(λ

1/2

2s′ z̄2s′ + µ2(s′))
)2}

= O
{

(

p∑
s=k1+1

λ1sh
T
1s(Σ2∗/n2 + µ2∗µ

T
2∗)h1s

)
/n1

}
= O{tr(Σ1∗Σ2∗)/(n1n2) + µT

2∗Σ1∗µ2∗/n1} for j = 1, ..., k1;

E
(∥∥∥ p∑

s=k1+1

p∑
s′=k2+1

λ
1/2
1s hss′u1s(λ

1/2

2s′ z̄2s′ + µ2(s′))
∥∥∥2)

= O{tr(Σ1∗Σ2∗)/n2 + µT
2∗Σ1∗µ2∗}; and

E
{( p∑

s′=k2+1

hjs′(λ
1/2

2s′ z̄2s′ + µ2(s′))
)2}

= O(hT
1j(Σ2∗/n2 + µ2∗µ

T
2∗)h1j) = O{λ2k2+1/n2 + (hT

1jµ2∗)
2} for j = 1, ..., k1.

In view of (S6.1) to (S6.5) and (S6.31), by using Markov’s inequality, we have that for j = 1, ..., k1

h̃
T

1j

( n2∑
l=1

v2l

n2
+ µ2∗

)
=

p∑
s′=k2+1

hjs′(λ
1/2

2s′ z̄2s′ + µ2(s′))

+OP [{tr(Σ1∗Σ2∗)/(λ1jn1n2)}1/2 + λ
1/2
2k2+1/(n1n2)

1/2]

+OP

[{
µT

2∗Σ1∗µ2∗/(λ1jn1) +

k1∑
j′=1

(hT
1j′µ2∗)

2/n1

}1/2]
. (S6.32)

Note that hT
1j(
∑n2

l=1 v2l/n2+µ2∗) =
∑p

s′=k2+1 hjs′(λ
1/2

2s′ z̄2s′+µ2(s′)) and
∑p

s′=k2+1 hjs′(λ
1/2

2s′ z̄2s′+

µ2(s′)) = OP (λ
1/2
2k2+1/n

1/2
2 +hT

1jµ2∗). Also, note that λiki+1 = o{tr(Σ2
i∗)

1/2} for i = 1, 2. Then,

it follows from Lemma B.1, (S6.27) and (S6.32) that for j = 1, ..., k1

{x̄1j⋆h̃1j + x̄1j(h̃1j − h1j)}T
( n2∑

l=1

v2l

n2
+ µ2∗

)
= oP (K

1/2
1∗ ). (S6.33)

Similarly, it follows that for j = 1, ..., k2

( n1∑
l=1

v1l

n1
+ µ1∗

)T

{x̄2j⋆h̃2j + x̄2j(h̃2j − h2j)} = oP (K
1/2
1∗ ). (S6.34)
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In view of (S6.30), (S6.33) and (S6.34), we have that∑n1
l=1(x1l −

∑k1
j=1 x̃1jlh̃1j)

T ∑n2
l′=1(x2l′ −

∑k2
j′=1 x̃2j′l′ h̃2j′)

n1n2

=

∑n1
l=1(v1l + µ1∗)

T ∑n2
l′=1(v2l′ + µ2∗)

n1n2
+ oP (K

1/2
1∗ ). (S6.35)

Then, by combining (S6.28) with (S6.35), we have that T̂∗ − T∗ = oP (K
1/2
1∗ ), so that from

Corollary 3, (T̂∗ − ∆∗)/K
1/2
∗ ⇒ N(0, 1) under lim supm→∞ ∆2

∗/K1∗ < ∞. It concludes the

results.

Proof of Lemma 3. We assume (A-ix). Let Si(yy) = (ni − 1)−1∑ni
j=1(yij − yi)(yij − yi)

T ,

Si(yv) = (ni−1)−1∑ni
j=1(yij−yi)(vij−vi)

T , Si(vy) = ST
i(yv) and Si(vv) = (ni−1)−1∑ni

j=1(vij−
vi)(vij − vi)

T for i = 1, 2, where yi =
∑ni

j=1 yij/ni and vi =
∑ni

j=1 vij/ni. Note that Sini =

Si(yy) +Si(yv) +Si(vy) +Si(vv) for i = 1, 2. Also, note that Si(yy) =
∑ki

j=1 λij ||uoij ||2hijh
T
ij +∑ki

j ̸=j′ λ
1/2
ij λ

1/2

ij′ u
T
oijuoij′hijh

T
ij′ for i = 1, 2. We write that for i = 1, 2

Sini

ki∑
j=1

ĥijĥ
T

ij =

ki∑
j=1

λ̂ijĥijĥ
T

ij =

ki∑
j=1

λ̃ijh̃ijh̃
T

ij (= Ŝi(yy), say).

Then, by noting that ||uoij ||2 = ||uij ||2 + OP (n−1
i ) and uT

oijuoij′ = OP (n
−1/2
i ) (j ̸= j′) as

ni → ∞, it follows from (S6.3) that as m→ ∞

Si(yy) − Ŝi(yy) =

ki∑
j=1

λ̃ij(hijh
T
ij − h̃ijh̃

T

ij) +

ki∑
j ̸=j′

λ
1/2
ij λ

1/2

ij′ u
T
oijuoij′hijh

T
ij′ +OP (n−1

i )

ki∑
j=1

λijhijh
T
ij

=

ki∑
j=1

λ̃ij{(hij − h̃ij)h
T
ij − h̃ij(h̃ij − hij)

T }

+OP (n−1
i )

ki∑
j=1

λijhijh
T
ij +OP (n

−1/2
i )

ki∑
j ̸=j′

λ
1/2
ij λ

1/2

ij′ hijh
T
ij′ (S6.36)

for i = 1, 2. From Lemma B.2, (S6.29) and (S6.36) we have that

tr{(S1(yy) − Ŝ1(yy))(S2(yy) − Ŝ2(yy))} = OP {λ11λ21(n1n2)
−1/2},

so that

tr{(S1(yy) − Ŝ1(yy))(S2(yy) − Ŝ2(yy))}/(n1n2) = oP (K1∗) (S6.37)

from the facts that λ11λ21(n1n2)
−3/2 ≤ λ2

11/n
3
1+λ2

21/n
3
1 and λi1 = o(n

1/2
i tr(Σ2

i∗)
1/2). Note that

Si(yv) =
∑ki

j=1

∑p
s=ki+1 λ

1/2
ij λ

1/2
is u

T
oijuoishijh

T
is for i = 1, 2. Here, we write that when λ̂1j > 0,

h̃
T

1jS2(yv)h1j =

k2∑
j′=1

λ
1/2

2j′

ûT
1j(X1 −M1)

T (
∑p

s′=k2+1 λ
1/2

2s′ u
T
o2j′uo2s′h2j′h

T
2s′)

(n1 − 1)1/2λ̃
1/2
1j

h1j

=

k2∑
j′=1

λ
1/2

2j′ û
T
1j

p∑
s=1

p∑
s′=k2+1

λ
1/2
1s hsj′hjs′u1sλ

1/2

2s′ u
T
o2j′uo2s′

λ̃
1/2
1j

. (S6.38)
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It holds that for j′ = 1, ..., k2

E
{(
uT

1j

p∑
s=k1+1

p∑
s′=k2+1

λ
1/2
1s hsj′hjs′u1sλ

1/2

2s′ u
T
o2j′uo2s′

)2}

= O
(hT

1jΣ2∗h1jh
T
2j′Σ1∗h2j′

n1n2

)
= O

(λ1k1+1λ2k2+1

n1n2

)
for j = 1, ..., k1,

E
(∥∥∥ p∑

s=k1+1

p∑
s′=k2+1

λ
1/2
1s hsj′hjs′u1sλ

1/2

2s′ u
T
o2j′uo2s′

∥∥∥2)
= O

(λ1k1+1λ2k2+1

n2

)

and E
{( p∑

s′=k2+1

hsj′hjs′λ
1/2

2s′ u
T
o2j′uo2s′

)2}
= O(λ2k2+1/n2) for j, s = 1, ..., k1. (S6.39)

In view of (S6.1) to (S6.5) and (S6.38), by using Markov’s inequality, we have that for j = 1, ..., k1

λ1jh̃
T

1jS2(yv)h1j = λ1j

k2∑
j′=1

λ
1/2

2j′

p∑
s′=k2+1

hjj′hjs′λ
1/2

2s′ u
T
o2j′uo2s′ + oP (n1n2K1∗) (S6.40)

because λiki+1 = o{tr(Σ2
i∗)

1/2} for i = 1, 2. Similarly, it follows that

λ1jh
T
1jS2(yv)h̃1j = λ1j

k2∑
j′=1

λ
1/2

2j′

p∑
s′=k2+1

hjj′hjs′λ
1/2

2s′ u
T
o2j′uo2s′ + oP (n1n2K1∗). (S6.41)

We write that

h̃
T

1jS2(yv)h̃1j =

k2∑
j′=1

λ
1/2

2j′ û
T
1j

p∑
s,t

p∑
s′=k2+1

λ
1/2
1s λ

1/2
1t hsj′hts′u1sλ

1/2

2s′ u
T
o2j′uo2s′u

T
1t

λ̃1j

û1j . (S6.42)

It holds that for j′ = 1, ..., k2

E
{∥∥∥ p∑

s,t≥k1+1

p∑
s′=k2+1

λ
1/2
1s λ

1/2
1t hsj′hts′u1sλ

1/2

2s′ u
T
o2j′uo2s′u

T
1t

∥∥∥2

F

}
= O{tr(Σ1∗Σ2∗)h

T
2j′Σ1∗h2j′/n2 + hT

2j′Σ1∗Σ2∗Σ1∗h2j′/(n1n2)}

= O{tr(Σ1∗Σ2∗)λ1k1+1/n2 + λ2
1k1+1λ2k2+1/(n1n2)}. (S6.43)

Then, in a way similar to (S6.26), by combing (S6.39) and (S6.43) with (S6.42), we have that

for j = 1, ..., k1

λ1jh̃
T

1jS2(yv)h̃1j = λ1j

k2∑
j′=1

λ
1/2

2j′

p∑
s′=k2+1

hjj′hjs′λ
1/2

2s′ u
T
o2j′uo2s′ + oP (n1n2K1∗). (S6.44)

Also, from (S6.39) we have that for j, j′ = 1, ..., k1

λ
1/2
1j λ

1/2

1j′ h
T
1jS2(yv)h1j′ = λ

1/2
1j λ

1/2

1j′

k2∑
s=1

λ
1/2
2s

p∑
s′=k2+1

hjshj′s′λ
1/2

2s′ u
T
o2suo2s′ = oP (n

3/2
1 n2K1∗).

(S6.45)
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Then, it follows from (S6.36), (S6.40), (S6.41), (S6.44) and (S6.45) that

tr{(S1(yy) − Ŝ1(yy))S2(yv)} = tr{(S1(yy) − Ŝ1(yy))S2(vy)} = oP (n1n2K1∗). (S6.46)

Similarly, it follows that tr{(S2(yy) − Ŝ2(yy))S1(yv)} = tr{(S2(yy) − Ŝ2(yy))S1(vy)} = oP (n1n2K1∗).

Note that Si(vv) =
∑p

s,s′≥ki+1 λ
1/2
is λ

1/2

is′ u
T
oisuois′hish

T
is′ for i = 1, 2. Then, in a way similar to

Si(yv), we can claim that for i = 1, 2 (j ̸= i)

tr{(Si(yy) − Ŝi(yy))Sj(vv)} = oP (n1n2K1∗). (S6.47)

Then, by combining (S6.46) and (S6.47) with (S6.37), we have that

tr(S1n1Â1(k1)S2n2Â2(k2)) = tr{(S1n1 − S1(yy))(S2n1 − S2(yy))} + oP (n1n2K1∗). (S6.48)

Let Σi⋆ =
∑ki

j=1 λijhijh
T
ij for i = 1, 2. We can evaluate that

E[{tr(S1(yv)S2(yv))}2] =O
( tr(Σ1⋆Σ2∗)tr(Σ1∗Σ2⋆)

n1n2

)
= O

(λ11λ21tr(Σ
2
1∗)

1/2tr(Σ2
2∗)

1/2

n1n2

)
;

E[{tr(S1(yv)S2(vy))}2] =O
( tr(Σ1⋆Σ2⋆)tr(Σ1∗Σ2∗)

n1n2

)
= O

(λ11λ21tr(Σ
2
1∗)

1/2tr(Σ2
2∗)

1/2

n1n2

)
;

and E[{tr(Si(yv)Sj(vv))}2] =O
( tr(Σi⋆Σj∗Σi∗Σj∗)

ni

)
+O

( tr(Σi⋆Σj∗)tr(Σ1∗Σ2∗)

n1n2

)
=o
(λi1tr(Σ

2
i∗)

1/2tr(Σ2
j∗)

ni

)
for i = 1, 2 (j ̸= i). Then, we have that

tr{(S1n1 − S1(yy))(S2n1 − S2(yy))} − tr(S1(vv)S2(vv)) = oP (n1n2K1∗). (S6.49)

With the help of (23) in Aoshima and Yata (2015), we claim that tr(S1(vv)S2(vv))/tr(Σ1∗Σ2∗) =

1 + oP (1). Hence, from (S6.48) and (S6.49) we have that

tr(S1n1Â1(k1)S2n2Â1(k2))/(n1n2) = tr(Σ1∗Σ2∗)/(n1n2) + oP (K1∗).

By using Lemma S2.1, we can conclude the result.

Proof of Theorem 6. Similar to the proof of Theorem 3, by combining Theorem 5 and Lemma

3, we can conclude the result.

S7 Appendix C

In this appendix, we give proofs of the theoretical results in Section S2.

Proofs of Propositions S2.1 and S2.2. We omit the subscript with regard to the population for

the sake of simplicity. First, we consider Proposition S2.1. By using Lemmas 1 and 5 in Yata and

Aoshima (2013), under (A-i) and (1.4), we can obtain ζT {
∑p

s=1 λsusu
T
s − tr(Σ)In/(n−1)}ζ =
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oP {tr(Σ2)1/2} as m0 → ∞, so that λ̂1 = tr(Σ)/(n−1)+oP {tr(Σ2)1/2} because λ̂1−tr(Σ)/(n−
1) = ûT

1 {
∑p

s=1 λsusu
T
s −Intr(Σ)/(n−1)}û1. Then, by noting tr(SD)−tr(Σ) = oP {tr(Σ2)1/2}

under (A-i), we can claim λ̃1/tr(Σ
2)1/2 = oP (1) under (A-i) and (1.4). Thus, from (2.3) we

conclude the first result of Proposition S2.1. Under (1,6) there exists a fixed integer j⋆ such

that λj⋆/λ1 → 0. Note that (
∑p

i=j⋆
λ4

i )/λ
4
1 ≤ λ2

j⋆
tr(Σ2)/λ4

1 = o(1). Then, by using Lemma

1 and Corollary 4.1 in Yata and Aoshima (2013), we can claim that λ̃1/λ1 = 1 + oP (1) under

(A-i) and (1.6). It concludes the results of Proposition S2.1.

Next, we consider Proposition S2.2. Let ϕ(n) be any function such that ϕ(n) → 0 and

n1/4ϕ(n) → ∞ as n → ∞. Let λ = ϕ(n)tr(Σ2)1/2. Assume that λ2
1/tr(Σ

2) = O(n−c) as

m0 → ∞ with some fixed constant c > 1/2. Then, there is at least one positive integer t (> 2)

satisfying c(t/2−1) > t/4, so that tr(Σt)/λt ≤ λt−2
1 /(ϕ(n)ttr(Σ2)t/2−1) = o(1). Then, by using

Lemmas 1 and 5 in Yata and Aoshima (2013), we can obtain

λ̂1/λ = ûT
1 SDû1/λ = tr(Σ)/{(n− 1)λ} + oP (1)

under (A-viii). Then, by noting that tr(SD) − tr(Σ) = oP {tr(Σ2)1/2} under (A-viii), we can

claim that λ̃2
1/tr(Σ

2) = oP [{ϕ(n)}2] under (A-viii). Thus from (2.3) we conclude the result of

Proposition S2.2.

Proofs of Lemma S2.1, Propositions S2.3 and S2.4. We assume (A-i) and (A-vi). We omit the

subscript with regard to the population for the sake of simplicity. Let V 1 =
∑k

j=1 λjuj(1)u
T
j(2)

and V 2 =
∑p

j=k+1 λjuj(1)u
T
j(2), where uj(1) = (zj1, ...., zjn(1))

T /(n(1) − 1)1/2 and uj(2) =

(zjn(1)+1, ...., zjn)T /(n(2) − 1)1/2. Let V o1 = P n(1)V 1P n(2) and V o2 = P n(1)V 2P n(2) . Note

that SD(1) = P n(1)(V 1+V 2)P n(2) = V o1+V o2. Let us write the singular value decomposition

of SD(1) as SD(1) =
∑n(2)−1

j=1 λ́júj(1)ú
T
j(2), where új(1) (or új(2)) denotes a unit left- (or right-)

singular vector corresponding to λ́j . First, we consider Lemma S2.1. By using Lemma 1 and

Corollary 5.1 in Yata and Aoshima (2013), we can claim for j = 1, ..., k that as m0 → ∞

λ́j/λj = 1 + oP (1). (S7.1)

By noting that tr(Σ4
∗)/tr(Σ

2
∗)

2 ≤ λ2
k+1/Ψ(k+1) = o(1) under (A-vi) and by using Lemmas 1 and

4 in Yata and Aoshima (2013), we can claim that ζT
(1)P n(1)V 2P n(2)ζ(2)/Ψ

1/2

(k+1) = oP (1), where

ζ(i) is an arbitrary unit random n(i)-dimensional vector for i = 1, 2. Hence, we have that

ζT
(1)SD(1)ζ(2)/Ψ

1/2

(k+1) = ζT
(1)V o1ζ(2)/Ψ

1/2

(k+1) + oP (1). (S7.2)

Then, in a way similar to (A.10) in Yata and Aoshima (2013), we have that Ψ̂(k+1)/Ψ(k+1) =

1 + oP (1). In view of (S7.1), we can claim that Ψ̂(j)/Ψ(j) = 1 + oP (1) for j = 1, ..., k. It

concludes the result of Lemma S2.1.

Next, we consider Proposition S2.3. By noting (S7.2) and rank(V o1) ≤ k, we have that

λ́j/Ψ
1/2

(k+1) = oP (1) for j > k. Then, by combining Lemma S2.1 with (S7.1), we can conclude

the result of Proposition S2.3.



SUPPLEMENT

Finally, we consider Proposition S2.4. We assume (A-viii) and (A-ix). Let λ∗ = ϕ(n)Ψ
1/2

(k+1),

where ϕ(n) is defined in the proofs of Propositions S2.1 and S2.2. Assume that λ2
k+1/Ψ(k+1) =

O(n−c) as m0 → ∞ with some fixed constant c > 1/2. Then, there is at least one positive

integer t (> 2) satisfying c(t/2 − 1) > t/4, so that tr(Σt
∗)/λ

t
∗ ≤ λt−2

k+1/(ϕ(n)tΨ
t/2−1

(k+1) ) = o(1).

Hence, similar to (S7.2), we have that

ζT
(1)SD(1)ζ(2)/λ∗ = ζT

(1)V o1ζ(2)/λ∗ + oP (1). (S7.3)

Let V́ o1 = V o1−
∑k

j=1 λ́júj(1)ú
T
j(2). From (S7.3), it holds that ζT

(1)V́ o1ζ(2)/λ∗ = oP (1), so that

all the singular values of V́ 1/λ∗ are of the order oP (1). Then, from the fact that rank(V́ o1) ≤ 2k,

it holds that

tr(V́ o1V́
T

o1)/Ψ(k+1) = k × oP [{ϕ(n)}2]. (S7.4)

Here, in view of (A-viii), we have that Var(uT
j(1)V o2uj(2)) = O(Ψ(k+1)/n

2) for j = 1, ..., k, so

that uT
j(1)V o2uj(2) = OP (Ψ

1/2

(k+1)/n) for j = 1, ..., k. In view of (A-ix), it holds that

tr(V o1V
T
o2)/Ψ(k+1) = tr(V 1V

T
o2)/Ψ(k+1) = k × oP (n−1/2). (S7.5)

On the other hand, we have that E(||uT
j(1)V o2||2) = O(Ψ(k+1)/n) and E(||uT

j(2)V
T
o2||2) =

O(Ψ(k+1)/n) for j = 1, ..., k, so that uT
j(1)V o2ζ(2) = OP (Ψ

1/2

(k+1)/n
1/2) and ζT

(1)V o2uj(2) =

OP (Ψ
1/2

(k+1)/n
1/2) for j = 1, ..., k. Then, in a way similar to the proof of Lemma 12 in Yata and

Aoshima (2013), we have that új(l) = ||uj(l)||−1uj(l){1 + OP (n−1/2)} + εjl × OP (n−1/2) with

some unit random vector εjl for j = 1, ..., k; l = 1, 2. Hence, from (S7.1) and ζT
(1)V o2ζ(2) =

oP (Ψ
1/2

(k+1)), we have that tr(
∑k

j=1 λ́júj(1)ú
T
j(2)V

T
o2)/Ψ(k+1) = k × oP (n−1/2). Hence, from

(S7.5), it holds that

tr(V́ o1V
T
o2)/Ψ(k+1) = k × oP (n−1/2). (S7.6)

Note that E{tr(V o2V
T
o2)} = Ψ(k+1) and Var{tr(V o2V

T
o2)/Ψ(k+1)} = O(n−1). Then, by noting

that Ψ̂(k+1) = tr{(V́ o1 + V o2)(V́ o1 + V o2)
T }, from (S7.4) and (S7.6), we obtain that

Ψ̂(k+1)/Ψ(k+1) = tr(V o2V
T
o2)/Ψ(k+1) + k × oP [{ϕ(n)}2] = 1 + k × oP [{ϕ(n)}2]. (S7.7)

Similarly, by noting that λ́k+1/λ∗ = oP (1) from (S7.3), we can claim that

Ψ̂(k+2)/Ψ(k+1) = {1 + o(n−1/2)}Ψ̂(k+2)/Ψ(k+2) = 1 + (k + 1) × oP [{ϕ(n)}2]. (S7.8)

By combining (S7.7) and (S7.8), we can conclude the result of Proposition S2.4.
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