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Abstract: This paper proposes a single-index varying coefficient hazards model to

identify biomarkers for risk stratification and treatment selection for individual

patients. Our model accommodates multiple predictive biomarkers and allows for

flexible nonlinear interactions between the multiple biomarkers and the treatment.

We propose a global partial likelihood to estimate the varying-coefficient functions

and the regression coefficients. The proposed estimators are shown to be consistent,

asymptotically normal and semiparametrically efficient. The proposed approach is

applied to a clinical trial on multiple myeloma patients for risk stratification and to

investigate whether biomarkers would interact with treatment for each individual

patient.
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1. Introduction

Biomarkers have emerged as promising tools for risk assessment and stratifi-

cation of patients (e.g. stage or subtype) with chronic diseases, such as cancer and

cardiovascular disorders, which is essential in guiding the management and treat-

ment of disease in order to achieve the optimal clinical outcome. For example,

Sargent et al. (2005) found that the effect of treatment on patient’s survival may

depend on the level of individual biomarkers, which cannot directly be detected

with the routinely used Cox proportional hazards model that ignores the inher-

ent nonlinear heterogeneities defined by biomarkers on the effect of treatment.

In a broader context, identifying nonlinear interactions between biomarkers and

treatment has become a topical area with the recent precision medicine initiative

(http://www.nih.gov/precisionmedicine/). Precision medicine seeks effec-

tive data-driven approaches for disease treatment and prevention that takes into

account individual variability in personal characteristics, including biomarkers.

There is an urgent need for statistical models that can facilitate the identification
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of biomarkers that affect patients response to treatment with an unknown form,

and lead to results that will be useful for further validations.

Such analyses were needed for a clinical trial conducted by the University

of Arkansas, where newly diagnosed multiple myeloma patients were randomized

to receive two treatments, total therapy II and total therapy III (Shaughnessy et

al. (2007)). Several biomarkers, including patients’ serum beta2-microglobulin

and albumin levels were collected to predict the disease status and response to

treatment. The marginal effect of the treatment was not significant as reported

by previous studies; however it was of substantial interest to investigate whether

the treatment would be effective for some subset of patients as defined by these

biomarkers, termed predictive biomarkers. Several existing methods are available

to assess the clinical utility of predictive biomarkers. An ad hoc approach is

to conduct survival comparisons across two biomarker-based groups. As the

method requires dichotomization of predictive biomarkers, it does not adequately

quantify the clinical utility of predictive biomarkers. Freidlin and Simon (2005)

proposed a design that combines prospective development of a gene expression-

based classifier to select sensitive patients with a properly powered test for overall

effect, but again requires dichotomization of the biomarker. Jiang, Freidlin, and

Simon (2007) extended Freidlin and Simon’s design to allow a continuous-scale

biomarker by introducing a biomarker-adaptive threshold.

There are two limitations of Freidlin and Simon (2005) and Jiang, Freidlin,

and Simon (2007). First, both methods assume that the effect of the interaction

between the biomarker and the treatment is a step-function with only one jump.

However, when the biomarker is continuous, it is most likely that the interaction

continuously varies with the value of the biomarker. Second, both methods

assume that the effect of treatment depends on only one specific biomarker. In

practice, as in our motivating dataset, there may exist more than one biomarker

that provides information for risk stratification and treatment selection. If the

effect of the treatment does continuously depend on multiple biomarkers, then it

is crucial to know how to combine the multiple biomarkers and how the effect of

treatment varies with the multiple biomarkers in order to predict the treatment

effect of a new subject with high accuracy.

To address these issues, we propose a single-index varying coefficients Cox

model,

λ(t) = λ0(t) exp
{ d∑

k=1

βk(α
′X)Zk

}
, (1.1)

whereX denotes the multiple biomarker vector, Z = (Z1, . . . , Zd)
′ is the exposure

variable, for example, treatment group indicator, β(·) = (β1(·), . . . , βd(·))′ is

the unknown varying-coefficient function and characterizes how the effect varies

with the biomarkers, and α is an unknown regression coefficient vector used to
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combine the multiple biomarkers that potentially define pathophysiology of a

chronic disease, for example, disease staging and subtyping. If β(·) is discrete,

the proposal models how each stage or subtype of disease interacts with the

treatment. When β(·) is continuous, as in our formulation, it evaluates the impact

of the disease stage or subtype on the efficacy of treatment on a continuous scale,

an extension from discretization to a continuous spectrum. There are several

additional advantages. First, α and β(·) can identify patients who are more likely

to benefit from a given treatment and hence provide a personalized treatment

strategy. Second, as the unknown functions λ0(·) and β(·) are one-dimensional,

the so-called curse of dimensionality is avoided. Finally, our model is general,

encompassing many well-known models as special cases, as follows.

(i) When β is a constant or linear, (1.1) is the Cox proportional hazards model

(Cox (1972)).

(ii) When Z = 1 and X is one-dimensional, the model is a nonparametric Cox

model. Statistical methods, such as nearest neighbor, spline, and local

polynomial smoothing methods have been developed for the nonparamet-

ric Cox model; see Tibshirani and Hastie (1987), O’Sullivan (1988), Hastie

and Tibshirani (1990), Gentleman and Crowley (1991), Kooperberg, Stone,

and Truong (1995), Fan, Gijbels, and King (1997), Chen and Zhou (2007),

and Chen et al. (2010), among others.

(iii)When X is time, (1.1) is the time-varying Cox model. The penalized method,

sieve method, and local linear method have been proposed to estimate the

time-varying Cox model; see Zucker and Karr (1990), Murphy and Sen

(1991), Gamerman (1991), Murphy (1993), Marzec and Marzec (1997), Mar-

tinussen et al. (2002), Valsecchi, Silvestri, and Sasieni (1996), Cai and Sun

(2003), and Tian, Zucker, and Wei (2005).

(iv)When X is a one-dimensional covariate, (1.1) reduces to the model studied

by Fan, Lin, and Zhou (2006), and Chen, Lin, and Zhou (2012).

(v) When Z1 = 1 and β2, · · · , βd are constants, the model reduces to the partially

linear Cox model. Spline and local linear smoothing have been proposed to

estimate the partially linear Cox model; see Huang (1999) and Chen et al.

(2010), among others.

As far as we know, there is no successful extension to the single-index varying

coefficients Cox model (1.1). The existing methods estimate either the unknown

β(·) or the index-vector α with the assumption that α or β(·) is known, re-

spectively. Particular, if β(·) is known, the index-vector α can be estimated by

maximizing the partial likelihood function (2.1) (Cox (1972)). If α is known, the

unknown β(·) can generally be estimated by using regression splines, penalized
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and local polynomial methods. The spline and penalized methods simultane-

ously estimate the unknown functions. This optimization problem can be rather

complex due to a large number of parameters, especially when the number of the

nonparametric functions, d, is medium or large. In addition, sampling properties

of the spline and penalized methods remain elusive. A useful alternative is the

local polynomial technique. However, a local partial likelihood method (Fan, Lin,

and Zhou (2006)) uses only local observations, incurring efficiency loss. Here, we

propose a global partial likelihood method to estimate the unknown functions

and the regression coefficients. The proposed estimators are shown to be consis-

tent and asymptotically normal. The utility of the proposed method is further

enhanced by its semiparametric efficiency for α and β(·).
The paper is organized as follows. Section 2 introduces the estimators of β(·)

and α, and Section 3 establishes the uniform consistency, asymptotic normality,

and semiparametric efficiency. The procedure is extended to a mixed model with

fixed and varying coefficients in Section 4. Numerical simulation and examples

are given in Sections 5 and 6. Technical proofs are relegated to the Appendix.

2. Partial Likelihood Estimation

Suppose that there is a random sample of size n from an underlying pop-

ulation. For the ith individual, let Ti denote the failure time, Ci the censoring

time, and Ti = min(Ti, Ci) the observed time, ∆i be an indicator that equals 1

if Ti is a failure time and 0 otherwise. Assume that Ti and Ci are independent

of each other given covariates Zi and Xi. The covariates Zi = (Zi1, . . . , Zid)
′ and

Xi are allowed to be time dependent. Following Fan, Lin, and Zhou (2006), we

drop the dependence of covariates on time t, with the understanding that the

methods and proofs in this paper are applicable to time dependent covariates.

The observed data structure is {Ti,∆i,Zi,Xi} for i = 1, · · · , n.
When all the observations are independent, the partial likelihood for (1.1) is

L(β, α) =

n∏
i=1

[ exp{β(X′
iα)

′Zi}∑
k∈R(Ti) exp{β(X

′
kα)

′Zk}

]∆i

, (2.1)

where R(t) = {i : Ti ≥ t} is the set of the individuals at risk just prior to time t. If

the unknown functions β(·) are parameterized, the parameters can be estimated

by maximizing (2.1).

Since the forms of β(·) are not specified, we first consider the estimator of

β(·) given α. Suppose that each component of β(·) is smooth and admits a Taylor

expansions: for each given v and w around v,

β(w) ≈ β(v) + β̇(v)′(w − v) ≡ δ1 + δ′2(w − v), (2.2)
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where ḟ(v) = df(v)/dv for any function or vector of functions f(·). Given α,

(1.1) reduces to the model proposed by Fan, Lin, and Zhou (2006). Hence, we

can estimate β(·) by their local partial likelihood method: estimate δ = (δ′1, δ
′
2)

′

by solving the local partial score function,

n∑
i=1

∆iKi(v)

{
Vi(v)−

∑
k∈R(Ti)Kk(v) exp{Vk(v)

′δ}Vk(v)∑
k∈R(Ti)Kk(v) exp{Vk(v)′δ}

}
= 0, (2.3)

where Vi(v) = (Z′
i,Z

′
i(X

′
iα− v))′, Ki(v) = Kh(X

′
iα− v), Kh(x) = K(x/h)/h, K

is a one-dimensional kernel density function, and h represents the size of the local

neighborhood. The local partial score function (2.3) is a partial score based on

observations with X′
iα in a small neighborhood of v. The method is properly mo-

tivated and rather simple to implement and analyze. However, the localization of

(2.3) suffers a loss of efficiency since the observations outside of the neighborhood

of v, which carry information about β(v), are not used. Moreover, the intercept

of β(v) cannot be directly estimated as it is cancelled out of the local partial

likelihood. Although the intercept can be estimated by subsequently integrat-

ing the estimate of its derivative, the large sample property of this estimate is

not formally established and statistical inference is not immediately available.

Finally, the local partial likelihood approach cannot handle discrete Xi.

We propose a global partial likelihood method to estimate β(·). The moti-

vation of global partial likelihood is quite straightforward. For every fixed v in

the range of X′α, suppose β(·) is known outside a neighborhood of v, denoted

by Bn(v). Then, the partial likelihood function (2.1) can be written as

n∏
i=1

{
Ii exp(ψi) + (1− Ii) exp(ψi)∑

j∈R(Ti){Ij exp(ψj) + (1− Ij) exp(ψj)}

}∆i

, (2.4)

where ψi = {δ1 + δ2(X
′
iα− v)}′ Zi, ψi = β(X′

iα)
′Zi and Ii equals 1 if X′

iα ∈
Bn(v) and equals 0 otherwise. Since the true β(·) outside of a neighborhood of

v is unknown, (2.4) is not directly useful. A key idea of the proposed method is

replacing β(·) outside of a neighborhood of v by the estimators from the previous

step using a iteration algorithm. With the refinement of local linear smoothing

and some slight variation for computational convenience, we derive an iteration

algorithm. As β1(·) is identifiable up to a location shift and α is identifiable up

to a scale shift, we set β
(m)
1 (X′

nα) = 0 and α
(m)
1 = 1, the first element of α, for

all m ≥ 0 for identification as well as notational and computational convenience.

Step 0. Choose initial values of α(0) and function β(0)(v) for v = X′
1α

(0), . . .,

X′
n−1α

(0), for example, with the iterative method between the local partial like-

lihood estimate of β(·) (Fan, Lin, and Zhou (2006)) and the partial likelihood
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estimate of α. Using the proof of Fan, Lin, and Zhou (2006) and the uniform law

of large numbers (Pollard (1990)), it can be shown that these initial estimators

are consistent. More details are given in the Appendix.

The first step of Step m. For every given v = X′
1α

(m−1), . . . ,X′
n−1α

(m−1), maxi-

mizing (2.4) with respect to δ = (δ′1, δ
′
2)

′ and replacing Ii with a kernel function

Ki that decreases smoothly to zero, obtain the equations for δ:

n∑
i=1

∆i

[
V

(m−1)
i (v)K

(m−1)
i (v)

−
∑n

j=1 Yj(Ti)V
(m−1)
j (v)K

(m−1)
j (v) exp{V(m−1)

j (v)′δ}∑n
j=1 Yj(Ti) exp{β(m−1)(X′

jα
(m−1))′Zj}

]
= 0, (2.5)

where V
(m)
i (v) = (Z′

i,Z
′
i(X

′
iα

(m) − v))′, K
(m)
i (v) = Kh(X

′
iα

(m) − v), Yi(t) =

I(Ti ≥ t). Using the counting process notation, (2.5) can be expressed as

n∑
i=1

∫ τ

0

[
V

(m−1)
i (v)K

(m−1)
i (v)

−
∑n

j=1 Yj(t)V
(m−1)
j (v)K

(m−1)
j (v) exp{V(m−1)

j (v)′δ}∑n
j=1 Yj(t) exp{β(m−1)(X′

jα
(m−1))′Zj}

]
dNi(t) = 0, (2.6)

where Ni(t) = I(Ti ≤ t,∆i = 1). In this, τ is often assumed to be finite in the lit-

erature to avoid the tail problem. Let δ̂1(v) and δ̂2(v) be the solutions in δ1 and δ2.

Then β(m)(v) = δ̂1(v) and β̇
(m)(v) = δ̂2(v) for v = X′

1α
(m−1), . . . ,X′

n−1α
(m−1).

The second step of Step m. For given β(m) and β̇(m), estimate α by solving the

partial score function,

n∑
i=1

∆i

[
Xiβ̇

(m)(X′
iα

(m−1))′Zi

−
∑

k∈R(Ti)Xkβ̇
(m)(X′

kα
(m−1))′Zk exp{β(m)(X′

kα)
′Zk}∑

k∈R(Ti) exp{β
(m)(X′

kα)
′Zk}

]
= 0. (2.7)

Repeat this iteration procedure until convergence. Comparing the proposed

partial likelihood score (2.5) and the local partial likelihood function (2.3), we can

see that the local partial likelihood method is based on the estimating equation

of (δ1 + δ2(X
′
iα− v))

′
Zi with local data, while the partial likelihood method is

based on the estimating equation of Vi(v)Ki(v) using all the data. Moreover, the

denominator in (2.5) utilizes all the data. So does the estimate of β(v). Hence,

this is literally a global estimation compared to the local estimation in (2.3). The

semiparametric efficiency of the proposal is presented in Theorem 4 in Section 3.



ESTIMATING SINGLE-INDEX VARYING COEFFICIENT COX MODEL 785

3. Large Sample Properties

In this Section, we establish the uniform consistency and asymptotic nor-

mality of the proposed estimators. Without loss of generality, we fix β̂1(0) =

β1(0) = 0, where β1 is the first element of β(·), and assume that the support of

X′α is [0, 1]. Additional regularity conditions and proofs of Theorems 1–4 are

given in the Appendix.

Theorem 1. Under Conditions 1−7 stated in the Appendix, we have

sup
v∈[0,1]

∥β̂(v)− β(v)∥ → 0 and ∥α̂− α0∥ → 0 in probability,

where α0 is the true value of α.

Theorem 2. Under Conditions 1−7 stated in the Appendix, if nh4 → 0, we have

√
n (α̂− α0) → N(0,∆), (3.1)

where

∆=D−1
1

∫ τ

0
E
[
ξ2i (t)P (t|Zi,Xi) exp{β(X′

iα0)
′Zi}

]
λ0(t)dt(D

−1
1 )′,

ξi(t) =

∫ 1

0
g(v)

s10(t; v)

s00(t)
dv +

{∫ 1

0
g(v)D2(v)D

−1
1 dv − I

}{
XiWi −

r0(t)

s00(t)

}
−Zig(X

′
iα0),

D1, D2, P (t|z,x), g(·), s10(·), s00(·), r0(·) are defined in the Appendix, and

Wi = β̇(X′
iα0)

′Zi.

To estimate a parameter at the rate n−1/2, one must undersmooth the non-

parametric part. Undersmoothing to obtain usual parametric rates of conver-

gences is standard in the kernel literature and has analogs in the spline litera-

ture (Carroll et al. (1997)); Hastie and Tibshirani (1990)). This is achieved by

nh4 = o(1), and is required by Theorem 2 to estimate parameters α at the rate

n−1/2.

Theorem 3. Under Conditions 1−7 stated in the Appendix, if nh5 = O(1), for

v ∈ (0, 1),

(nh)1/2
{
β̂(v)− β(v)− 1

2
h2µ2(I −A)−1(β̈)(v)

}
D→ N(0,V(v)), (3.2)

where I is the identity operator and A is the linear operator satisfying A(ϕ)(v)

= Σ−1(v)
∫
w Ψ(w; v)ϕ(w)dw for any function ϕ, Σ(v) and Ψ(w; v) are defined

in the Appendix, β̈(v) = d2β(v)/dv2, V(v) = ν0[(I − A)−1(Σ−1/2)(v)][(I −
A)−1(Σ−1/2)(v)]′, and ν0 =

∫
vK

2(v)dv.
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Theorem 3 states that β̂(v)−β(v) is asymptotically normal, the order of the

asymptotic bias of β̂(v)− β(v) is h2, and the order of the asymptotic covariance

is (nh)−1. As a consequence, the theoretically optimal bandwidth O(n−1/5) in

the nonparametric method can be taken.

When α is known, our model is the varying-coefficient Cox model considered

by Fan, Lin, and Zhou (2006) and Chen, Lin, and Zhou (2012), and Theorem 3

is Theorem 2 of Chen, Lin, and Zhou (2012). The difference between the pro-

posed single-index varying coefficient Cox proportional model and the varying

coefficient Cox model of Chen, Lin, and Zhou (2012) is the same as that be-

tween the single-index model and the simple nonparametric regression model.

The proposed single-index varying coefficient Cox model is a key tool to handle

multiple predictive biomarkers and allows the exposure variable to interact non-

linearly with multiple covariates. However, due to the presence of α, we need

to investigate the asymptotic relationship between α̂ and β̂(·) when establishing

asymptotic properties; this is not trivial when the asymptotic expansion of β̂(·)
is expressed as an integral equation and not in a closed form.

Theorem 2 shows that α̂ is a n1/2−consistent and asymptotically normal

estimator of α, while the next result shows that α̂ also is an efficient estimator

of α. For any function ϕ(w) = (ϕ′1, ϕ2(w)
′)′, with a continuous second derivative

on (0, 1), let ϕ′1α̂+
∫ 1
0 ϕ

′
2(w)β̂(w)dw be an estimator of ϕ′1α0 +

∫ 1
0 ϕ

′
2(w)β(w)dw.

Theorem 4. Under the conditions of Theorem 1, if nh4 → 0 and nh2 → ∞,

then

ϕ′1α̂+

∫ 1

0
ϕ′2(w)β̂(w)dw is an efficient estimator of ϕ′1α0 +

∫ 1

0
ϕ′2(w)β(w)dw.

By taking ϕ2(t) = 0, we have that α̂ is an efficient estimator of α0; taking

ϕ1(t) = 0,
∫ τ
0 ϕ

′
2(t)β̂(t)dt is an efficient estimator of

∫ τ
0 ϕ

′
2(t)β(t)dt.

With estimators of β and α, we can use kernel smoothing (Fan, Lin, and Zhou

(2006)) to estimate the baseline hazard function by λ̂0(t) =
∫
Kb(t − u)dΛ̂0(u),

where b is a given bandwidth and

Λ̂0(t) =
1

n

n∑
i=1

∫ t

0

dNi(u)

n−1
∑n

j=1 Yj(u) exp{β̂(α̂′Xj)′Zj}
. (3.3)

Using Theorem 2 and Corollary 1 and the proof of Fan, Lin, and Zhou (2006),

we can show that λ̂0(t) and Λ̂0(t) are uniformly consistent on (0, τ).

Though the estimators of the variances of α̂ and β̂(v) are available, the

computation involves the unknown functions s00(t), s10(t; v), s20(t; v), r0(t), and

g(·), that are related to the unknown function β(·) and its derivative; theses

estimates are difficult to obtain. Since g(·) is defined by the integral equation:
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D3(w) = g(w)Σ(w)−
∫ 1
0 g(v)Ψ(w; v)dv, its computation even more difficult. An

effective remedy is to leverage a resampling scheme to approximate the vari-
ances or covariance matrices. Simulations have indicated good performance of a
bootstrap approach.

4. Estimation of the Fixed and Varying Regression Coefficients

As the effects of some covariates may be constant, a mixed model with both
fixed and varying coefficients is desirable. The mixed model is less restrictive
than the standard proportional hazards model and simpler than model (1.1).
Moreover, it is possible to obtain a n1/2-consistent estimator for the fixed coef-
ficient in the mixed model. Martinussen et al. (2002), Tian, Zucker, and Wei
(2005) and Chen, Lin, and Zhou (2012) examined a mixed model in the setting
of the traditional varying coefficient Cox model where β(·) is a function of the
time t or a exposure variable, and McKeague and Sasieni (1994) studied a similar
mixed model in the setting of an additive hazard model. We consider the mixed
model

λ(t) = λ0(t) exp{θ′Z1 + β(X′α)′Z2}. (4.1)

For identifiability, we set β
(m)
1 (X′

nα) = 0 and α
(m)
1 = 1 for all m ≥ 0. Based

on the idea of the global partial likelihood, we estimate θ, α, and β(·) using an
iterative algorithm.

Step 0. Choose initial values of θ(0), α(0), and β(0)(w) for w=X′
1α

(0), . . . ,X′
n−1α

(0).

The first step of Step m. For every given v = X′
1α

(m−1), . . . ,X′
n−1α

(m−1), obtain
the equations for δ = (δ′1, δ

′
2)

′:
n∑

i=1

∆i

[
V

(m−1)
i (v)K

(m−1)
i (v)

−
∑n

j=1 Yj(Ti)V
(m−1)
j (v)K

(m−1)
j (v) exp{θ(m−1)′Z1j +V

(m−1)
j (v)′δ}∑n

j=1 Yj(Ti) exp{θ(m−1)′Z1j + β(m−1)(X′
jα

(m−1))′Z2j}

]
= 0, (4.2)

where V
(m)
i (v) = (Z′

2i,Z
′
2i(X

′
iα

(m) − v))′, K
(m)
i (v) = Kh(X

′
iα

(m) − v), Yi(t) =

I(Ti ≥ t). Let δ̂1(v) and δ̂2(v) be the solutions of δ1 and δ2. Then β
(m)(v) = δ̂1(v)

and β̇(m)(v) = δ̂2(v) for v = X′
1α

(m−1), . . . ,X′
n−1α

(m−1).

The second step of Step m. For given β(m) and β̇(m), estimate θ and α by solving
the partial score function
n∑

i=1

∆i

[
Xiβ̇

(m)(X′
iα

(m−1))′Z2i

−
∑

k∈R(Ti)Xkβ̇
(m)(X′

kα
(m−1))′Z2k exp{θ(m−1)′Z1k + β(m)(X′

kα)
′Z2k}∑

k∈R(Ti) exp{θ
(m−1)′Z1k + β(m)(X′

kα)
′Z2k}

]
= 0.
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n∑
i=1

∆i

[
Z1i −

∑
k∈R(Ti) Z1k exp{θ′Z1k + β(m)(X′

kα
(m−1))′Z2k}∑

k∈R(Ti) exp{θ
′Z1k + β(m)(X′

kα
(m−1))′Z2k}

]
= 0. (4.3)

Repeat the above steps for m = 1, 2, . . . until θ(m), α(m) and β(m)(X′
iα

(m))

(i = 1, . . . , n) converge. Following arguments similar to those for Theorems 1–4,

we can establish the uniform consistency, asymptotic normality and semipara-

metric efficiency of the resulting estimators for θ, α, and β(·); these are displayed
in Theorems 5–8 of the Supplementary Material. The proofs of Theorem 5–8 are

analogous to those of Theorems 1–4 and are omitted here.

5. Simulation Studies

In this section, we investigate the performance of the proposed global partial

likelihood estimator (GPLE). The performance of the estimator β̂(·) is assessed

via the weighted mean squared errors, WMSE = n−1
g

∑p
j=1

∑ng

k=1 aj{β̂j(wk) −
βj(wk)}2, where aj is reciprocal to the sample variance of βj(wk), wk (k =

1, . . . , ng) are the grid points at which the functions β(·) are estimated. We

assess α̂ by bias, standard deviation (SD) and the root of mean square errors

(RMSE). In the following examples, the Epanechnikov kernel is used, ng = 60.

We adopt a similar setting as Fan, Lin, and Zhou (2006) and consider a

varying-coefficient model, λ(t) = 4t3 exp[b{Z1(t), Z2,W}], with b{Z1(t), Z2,W} =

0.5W (1.5−W )Z1(t)+sin(2W )Z2+0.5{exp(W−1.5)−exp(−1.5)}, where the co-
variate Z1(t) = Z1I(t ≤ 1)/4+Z1I(t > 1) is time-dependent, and Z1 and Z2 are

jointly normal with correlation 0.5, each with mean 0 and standard deviation 5;

W = X′α, X = (X1, X2, X3)
′ and α = (1, 1, 1)′, X1, X2, and X3 are independent,

X1 and X2 are binary covariates that take the value 1 for one half of the subjects

and 0 for the other half, and X3 is uniformly distributed on [0, 1]. The censoring

variable C given (Z1, Z2,W ) is distributed uniformly on [0, a(Z1, Z2,W )], where

a(Z1, Z2,W ) = c1I(b(Z1, Z2,W ) > b0)+c2I(b(Z1, Z2,W ) ≤ b0) with b0 the mean

function of b(Z1, Z2,W ). The constants c1 = 0.8 and c2 = 20 were chosen so that

about 30%-40% of the data are censored in each region of the function a(·). We

conducted 200 simulations with a sample size of 400. To investigate the efficiency

of the proposed method, we also examined its performance in comparison with

the local partial likelihood estimator (LPLE), in which the varying-coefficient

functions are estimated by maximizing the local partial likelihood function (2.3).

Figure 5.1 depicts the distribution of the weighted mean squared errors over the

200 replications.

The minimum weighted mean squared error of the GPLE likelihood estimator

is smaller than that of the LPLE. The optimal bandwidth for the GPLE is smaller

than that for the LPLE, because the amount of data used by the GPLE is

more than that used by the LPLE with the same bandwith, the local partial
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Figure 1. Boxplots of the weighted mean squared errors over 200 replica-
tions using the global partial likelihood estimator (GPLE) with the optimal
bandwidth h = 0.3, and the local partial likelihood estimator (LPLE) with
the optimal bandwidth h = 0.6.

Table 1. Standard deviations of the global partial likelihood estimator
(GPLE) and the local partial likelihood estimator (LPLE) with bandwidth
0.5.

Function Method w =0.3 0.75 1.5 2.25 2.70
β1 GPLE 0.0854 0.1030 0.1481 0.1934 0.2347

LPLE 0.1462 0.1557 0.4348 0.6590 0.7331
β2 GPLE 0.0530 0.0478 0.0310 0.1147 0.1958

LPLE 0.0825 0.0969 0.0773 0.2856 0.5375
β3 GPLE 0.0639 0.0942 0.0377 0.0926 0.0895

LPLE 0.1821 0.2427 0.2085 0.2233 0.2487

likelihood estimator needing to compensate for its lower data usage by enlarging

the included range of data. In support of this conclusion, Table 5.1 presents

the empirical standard deviations of 200 estimated values of β̂1(w), β̂2(w), and

β̂3(w) using the global partial likelihood estimator and the local partial likelihood

estimator with h = 0.5. We took w = 0.3, 0.75, 1.5, 2.25, and 2.7, corresponding

to the 10th, 25th, 50th, 75th, and 90th percentiles of the distribution ofW . Table

5.1 reveals that the estimated variance of the GPLE is smaller than that of the

LPLE in all cases.

To estimate the regression coefficient α, we took the bandwidth 0.8h, h the

bandwidth to estimate the coefficient functions. Table 5.2 presents bias, SD, and

RMSE over the 200 replications, using the proposed global partial likelihood esti-

mator with bandwidth h = 0.2, 0.3, 0.5 and the local partial likelihood estimator



790 HUAZHEN LIN, MING T. TAN AND YI LI

Table 2. The GPLE and LPLE for the regression coefficients.

GPLE LPLE
h = 0.2 h = 0.3 h = 0.5 h = 0.5 h = 0.6 h = 0.7 h = 0.9

α2 Bias -0.0047 -0.0027 -0.0026 -0.0035 -0.0064 -0.0119 -0.0239
SD 0.0224 0.0198 0.0204 0.0458 0.0423 0.0392 0.0417

RMSE 0.0229 0.0200 0.0205 0.0459 0.0428 0.0410 0.0481
α3 Bias 0.0281 0.0285 0.0387 -0.0015 -0.0057 -0.0268 -0.0849

SD 0.0577 0.0478 0.0410 0.1250 0.0729 0.0937 0.0839
RMSE 0.0641 0.0556 0.0564 0.1251 0.0731 0.0974 0.1194

with bandwidth h = 0.5, 0.6, 0.7, 0.9. Table 5.2 shows that the GPLE for the

regression coefficient is not sensitive to the selection of the bandwidth, while the

LPLE of the regression coefficient is moderately sensitive to the selection of the

bandwidth. Hence the LPLE may require an accurate estimator of the band-

width to estimate the regression coefficients. In addition, both the RMSE and

the SD of the global partial likelihood estimator are smaller than those of the

local partial likelihood estimator in all of the presented cases, suggesting that the

global partial likelihood estimator for the regression coefficient is indeed better.

We also noted that the GPLE method has a discrepancy between SD and RMSE,

especially when h is large, suggesting that the bandwidth to estimate α3 at rate

n−1/2 may be less than 0.3.

6. Analysis of A Multiple Myeloma Trial

We applied the proposed method to analyze a clinical trial on newly diag-

nosed multiple myeloma patients who were randomized to receive two treatments,

total therapy II and total therapy III, respectively (Shaughnessy et al. (2007)).

Survival times were collected for 307 patients in the total therapy II (tt2) arm

(Z = 1), where 189 deaths were observed (38.4% censoring) with a median

follow-up time of 56 months, and for 170 patients in the total therapy III (tt3)

arm (Z = 0), where 136 deaths were observed (20% censoring) with a median

follow-up time of 37 months. A number of clinical and laboratory features that

may provide prognostic information, including beta2-microglobulin (b2m), albu-

min (alb), hemoglobin level (hgb), antigen-presenting cells (apcs), bone marrow

plasma cells (bmpc), magnetic resonance imaging (mri), and cytokines (cyto),

were collected in the study. The goals of the analysis were to investigate whether

these biomarkers would be predictive of patients’ survival and how the effect of

the treatment varies with the biomarkers if it does. The results may provide

some clinical guidance for treatment selection as in general tt3 is more intensive

than tt2 and could incur more toxicities.

In order to evaluate the prognostic significance of biomarkers, we set X =

(b2m, alb, hgb, aspc, bmpc, mri, cyto) in patients treated with tt2 and tt3, and
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Table 3. The estimators of α1 and α2 in the model (6.2) when X is the first
three principle components (PC) for Multiple Myeloma data. ∥α1∥ = 1 and
∥α2∥ = 1 for the identification of the model (6.2).

X = first three PCs
α1 0.1847 -0.9705 -0.1550
α2 0.2577 -0.9554 -0.1445

fit the model

λ(t) = λ0(t) exp{β1(α′X) + β2(α
′X)Z}. (6.1)

We assumed the same index α′X for different therapies in the model (6.1). To

check the reasonableness of the assumption, we considered the model

λ(t) = λ0(t) exp{β1(α′
1X) + β2(α

′
2X)Z}. (6.2)

We approximated βk(·), k = 1, 2 by B−splines and then estimated αk and βk(·)
by maximizing the partial likelihood function. If the given model (6.1) fits the

data, α1 and α2 should agree well. Perhaps due to the relatively large number

of parameters to estimate, we did not obtain convergent estimates based on the

model (6.2) even when β1(·) and β2(·) were approximated by B-splines with

few knots. As a remedy, we reduced the dimension of X using the principle

components. As the standard deviations of the first seven principle components

for X were 32.87, 14.54, 13.50, 4.80, 1.53, 0.52, 0.46, we took the first three as the

covariates in the model (6.2). We then used the B-spline of order 3 and 8 equally

spaced knots along the direction of α′
1X for estimating β1(·) and α′

2X for β2(·).
The resulting estimates for α1 and α2 are displayed in Table 6.3. Table 6.3 shows

that α1 and α2 basically agree, suggesting that model (6.1). Developing a formal

test is out of the scope of this project; we plan to report on it elsewhere.

We estimated the regression coefficients and functions using the proposed

method with bandwidth h = 3.5, the bandwidth h = 3.5 chosen by K-fold

cross-validation (Tian, Zucker, and Wei (2005); Fan, Lin, and Zhou (2006)) to

minimize the prediction error PE(h) =
∫ τ
0

[
Ni(t)− Ê{Ni(t)}

]2
d{

∑n
k=1Nk(t)},

where Ê{Ni(t)} =
∫ t
0 Yi(u) exp{β̂(α̂

′Xi)
′Zi}dΛ̂0(u) is the estimate of the ex-

pected number of failures up to time t. We used K = 30. To find the optimal

bandwidth, we first specified a sequence of points of h, and at each point we

computed PE(h). Figure 6.2(a) shows the plot of PE vs h. With h = 3.5, we

then obtained regression coefficients, coefficient functions, and their 95% confi-

dence bands as shown in Table 6.4 and Figure 6.2, respectively. The calculation

of the standard errors was carried out using 300 bootstrap resampled datasets,

in which each subject was treated as a resampling unit in order to preserve the



792 HUAZHEN LIN, MING T. TAN AND YI LI

Table 4. The regression coefficients estimators for Multiple Myeloma data.

Estimated SD p−value
b2m 0.1143 0.0299 0.0001
alb -0.4866 0.1591 0.0022
hgb 0.0228 0.0564 0.6860
aspc 0.0020 0.0065 0.7583
bmpc 0.0014 0.0056 0.8026
mri 0.0167 0.0081 0.0392
cyto 0.8657 0.1015 0.0000

Figure 2. The estimated curves and their 95% pointwise confidence bands
with h = 3.5.

inherent features of the data. The choice of 300 was determined by monitoring

the stability of the standard errors.

The results can be summarized as follows. First, Figure 6.2(c) shows that

β2(·) is not significantly different from the zero function, suggesting that the

treatments, tt2 and tt3, are not significantly different, and hence, the selected

biomarkers do not interact with the treatment significantly. This is an important

finding as it reveals that, with the given biomarkers, the more intensive and

potentially more toxic therapy (tt3) may not offer survival advantages compared

to the less intensive therapy (tt2). To confirm the conclusion, we also analyzed
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the data using the standard Cox proportional hazard model with only treatment

covariate and without any interaction; the resulting coefficient estimate was 0.241

with SE= 0.204 and p−value 0.24.

The estimates of hgb, aspc, and bmpc are not significant, suggesting that

they may not be predictive biomarkers. The positive estimates of the coefficients

of b2m, mri, and cyto, and the negative estimate of the coefficient of alb in Table

6.4, along with the monotone increasing function of β1(·) across zero at around

W = 0 as depicted in Figure 6.2(b), show that the biomarkers b2m, alb, mri,

and cyto are significantly related to patients’ survival. Specifically, larger values

of b2m, mri, and cyto, and lower values of alb increase the risk of death, while

lower values of b2m, mri, and cyto, and larger values of alb reduce the risk of

death. The results have confirmed the hypotheses proposed in Shaughnessy et

al. (2007), and could lead to more precise risk classifications.

7. Final Remarks

To properly identify biomarkers for risk stratification and treatment selection

for individual patients, we have proposed a single-index varying coefficients haz-

ards model. Our model accommodates multiple predictive biomarkers and allows

nonparametric interactions between the multiple biomarkers and the treatment.

To increase efficiency, we have proposed to apply a global partial likelihood

for inference, and have obtained appealing statistical properties, including con-

sistency, asymptotic normality, and semiparametric efficiency. Simulation stud-

ies have verified the finite sample performance; we have applied the proposed

method to study a clinical trial on multiple myeloma and have gained some bi-

ological insight. In our numerical experiments, we used the LPLE estimates

as the initial values for the Newton-Raphson algorithm and the convergence was

often achieved within 3−5 step. The added computational burden is relatively

small.

There are several opportunities for future research. We have focused on

only a small number of biomarkers and did not discuss the case of thousands of

genomic expression profiles in the dataset. Including genomic information in the

construct of predictive biomarkers could potentially be useful for personalized

medicine and efficient for risk stratification. However, major effort is needed

to extend our proposed work to high dimensional settings with treatment and

biomarker interactions. The proposed model requires the same single index to

be included in all of the regression coefficient function. It is necessary to extend

our work to accommodate multiple indices, especially in the presence of high-

dimensional markers. Sliced inverse regression (SIR) could potentially be a useful

approach and we are currently investigating its usage in our setting.
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Supplementary Materials

The online supplementary material includes Theorems 5-8 and related nota-

tions.
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Appendix: Notations, Conditions and Proofs for Theorems 1-4

Let C0 = {δ(v) = (δ1(v), . . . , δp(v)): v ∈ [0, 1], δ1(0) = 0, δ(v) is continuous

on [0, 1]}, Θ be the support of α, and f(v;α) be the conditional density function

of X′α. Let

W (α, δ2) = δ2(X
′α)′Z, µi =

∫
xiK(x)dx, νi =

∫
xiK2(x)dx,

P (t | z,x) = Pr(T ≥ t | Z = z,X = x),

Γ(z,x) =

∫ τ

0
P (t | z,x)λ0(t)dt,

s00(t;α, δ1) = E
[
P (t | Z,X) exp{δ1(X′α)′Z}

]
,

s10(t;α, δ1, v) = E
[
ZP (t | Z,X) exp{δ1(v)′Z} | X′α = v

]
f(v;α),

s20(t;α, δ1, v) = E
[
ZZ′P (t | Z,X) exp{δ1(v)′Z} | X′α = v

]
f(v;α),

s11(t;α, δ1, v) = E
[
ZX′P (t | Z,X) exp{δ1(v)′Z} | X′α = v

]
f(v;α),

r0(t;α1, α2, δ1, δ2) = E
[
P (t | Z,X)XW (α1, δ2) exp{δ1(X′α2)

′Z}
]
,

r1(t;α1, α2, δ1, δ2, v) = E
[
P (t | Z,X)XW (α1, δ2) exp{δ1(v)′Z}Z′ | X′α2 = v

]
×f(v;α2),

m1(t) = E
[
P (t | Z,X) exp{β(X′α0)

′Z}β̇(X′α0)
′ZX

]
,

m2(t) = E
[
P (t | Z,X)XX′ exp{β(X′α0)

′Z}{β̇(X′α0)
′Z}2

]
,

κ(t, v) = E
[
P (t | Z,X)ZX′ exp{Z′β(v)}Z′β̇(v) | X′α0=v

]
f(v;α0),

D1 =

∫ τ

0

{
r0(t)m1(t)

′

s00(t)
−m2(t)

}
λ0(t)dt,

D2(v) =

∫ τ

0

{
s10(t; v)m1(t)

′

s00(t)
− κ(t, v)

}
λ0(t)dt,



ESTIMATING SINGLE-INDEX VARYING COEFFICIENT COX MODEL 795

D3(v) =

∫ τ

0

{
r0(t)s10(t; v)

′

s00(t)
− r1(t; v)

}
λ0(t)dt,

Σ(v) =

∫ τ

0
s20(t; v)λ0(t)dt,

Ψ(w; v) =

∫ τ

0

{
s10(t; v)s10(t;w)

′

s00(t)
−D2(v)D

−1
1

[r0(t)s10(t;w)′
s00(t)

−r1(t;w)
]}
λ0(t)dt,

r0(t) = r0(t;α0, α0, β, β̇), r1(t; v) = r1(t;α0, α0, β, β̇, v), s00(t) = s00(t;α0, β),

s10(t; v)=s10(t;α0, β, v), s20(t; v)=s20(t;α0, β, v), and s11(t; v)=s11(t;α0, β, v).

Let g satisfy the integral equation in C0: D3(w) = g(w)Σ(w)−
∫ 1
0 g(v)Ψ(w; v)

dv.

Conditions:
(C1) The kernel function K(x) is a symmetric density function with compact

support [−1, 1] and continuous derivative.

(C2) τ is finite, Pr(T > τ) > 0, and Pr(C = τ) > 0.

(C3) Z and X are bounded with compact support, and P (C = 0 | Z = z,X =
x) < 1.

(C4) α ∈ Θ, where Θ is a bounded compact set.

(C5) The density function f(x;α) of X′α is bounded away from zero and has
a continuous second-order derivative for any α ∈ Θ. The function β(v),
s00(t;α, δ1), s10(t;α, δ1, v), s11(t;α, δ1, v), s20(t;α, δ1, v), r0(t;α, α, δ1, δ2),
r1(t;α, α, δ1, δ2, v), and κ(t, v) are twice continuously differentiable for v ∈
[0, τ ] for any t ∈ [0, τ ], α ∈ Θ, δ1 ∈ C0, and bounded δ2.

(C6) There exists a unique root (α, δ1) to∫ τ

0
r0(t;α, α0, β, δ2)λ0(t)dt−

∫ τ

0
r0(t;α, α, δ1, δ2)

s00(t)

s00(t;α, δ1)
λ0(t)dt = 0,∫ τ

0
s10(t; v)λ0(t)dt−

∫ τ

0
s10(t;α, δ1, v)

s00(t)

s00(t;α, δ1)
λ0(t)dt = 0,

in δ1 ∈ C0 and α ∈ Θ for any bounded δ2.

(C7) h2 log(n) → 0 and nh3 → ∞.

The regularity condition (C5) requires the density function of X′α to be
bounded away from zero and have a continuous second-order derivative for any
α. The proposed framework does not deal with discrete components of X.
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Proof of Theorem 1. For any vector functions δ1(v) and δ2(v), set

Un(α, δ1, δ2; v) =
{
Un1(α, δ1, δ2)

′, Un2(α, δ1, δ2, v)
′}′
,

where

Un1(α, δ1, δ2) = n−1
n∑

i=1

∫ τ

0

[
XiWi(α, δ2)−

Rn0(t;α, δ1, δ2)

Sn0(t;α, δ1)

]
dNi(t),

Un2(α, δ1, δ2, v) = n−1
n∑

i=1

∫ τ

0

[
Vi(v;α)Ki(v;α)−

Sn1(t;α, δ, v)

Sn0(t;α, δ1)

]
dNi(t),

Wi(α, δ2) = δ2(X
′
iα)

′Zi, Vi(v;α) =
(
Z′
i,
Z′
i(X

′
iα− v)

h

)′
,

Ki(v;α) =Kh(X
′
iα− v), δ = (δ′1, hδ

′
2)

′,

Sn0(t;α, δ1) = n−1
n∑

j=1

Yj(t) exp{δ1(X′
jα)

′Zj},

Sn1(t;α, δ, v) = n−1
n∑

j=1

Yj(t)Vj(v;α)Kj(v;α) exp{Vj(v;α)
′δ(v)},

Rn0(t;α, δ1, δ2) = n−1
n∑

j=1

Yj(t)XjWj(α, δ2) exp{δ1(X′
jα)

′Zj}.

Under the varying coefficient Cox model (1.1), we have

Un(α, δ1, δ2; v) = u(α, δ1, δ2; v) + op(1) ≡
{
u1(α, δ1, δ2)

′, u2(α, δ1, v)
′, 0

}′
+op(1),

where

u1(α, δ1, δ2)=

∫ τ

0
r0(t;α, α0, β, δ2)λ0(t)dt−

∫ τ

0
r0(t;α, α, δ1, δ2)

s00(t)

s00(t;α, δ1)
λ0(t)dt,

u2(α, δ1, v)=

∫ τ

0
s10(t; v)λ0(t)dt−

∫ τ

0
s10(t;α, δ1, v)

s00(t)

s00(t;α, δ1)
λ0(t)dt.

It follows that Un(α̂, β̂,
̂̇
β; v) = 0 and u(α0, β, δ2; v) = 0 for any bounded

function δ2. By Condition (C6), (α0, β) is a unique root to u(α, δ1, δ2; v) = 0 in

δ1 ∈ C0 and α ∈ Θ for any bounded δ2.

Define Bn = {δ1 : ∥δ1∥ ≤ D, ∥δ1(v1) − δ1(v2)∥ ≤ d[|v1 − v2| + bn], v1, v2 ∈
[0, 1]} for some constants D > 0 and d > 0, where bn = h2 + (nh)−1/2(log n)1/2.

To show the uniform consistency of β̂ and α̂, it suffices to prove the following:

(i) for each continuous function vector δ1 and any bounded function vector δ2,

sup0≤v≤1 ∥Un(α, δ1, δ2; v)− u(α, δ1, δ2; v)∥ = op(1);

(ii) sup0≤v≤1,α∈Θ,δ1∈Bn,δ2∈R ∥Un(α, δ1, δ2; v)−u(α, δ1, δ2; v)∥ = op(1), where R is

the set of functions on [0, 1], which are bounded uniformly;
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(iii)P{β̂ ∈ Bn} → 1.

Once (i)−(iii) are established, similar to the Arzela-Ascoli Theorem, we can

show that for any subsequence of {(α̂, β̂)}, there exists a further convergent

subsequence {(α̂n, β̂n)} such that β̂n(v) → β∗(v) in probability uniformly over

[0, 1] and α̂n → α∗. It is seen that β∗ ∈ C0. Observe that u(α∗, β∗,
̂̇
β; v) =

Un(α̂, β̂,
̂̇
β; v) − {Un(α̂, β̂,

̂̇
β; v) − u(α̂, β̂,

̂̇
β; v)} − {u(α̂, β̂, ̂̇β; v) − u(α∗, β∗,

̂̇
β; v)}

and Un(α̂, β̂,
̂̇
β; v) = 0, where

̂̇
β(·) is the estimator of β̇(·), the derivative of β(·).

It follows from (ii) and (iii) that u(α∗, β∗,
̂̇
β; v) = 0. Since for any bounded

function δ2, u(α, δ1, δ2; v) = 0 has a unique root at (α0, β), we have α∗ = α0 and

β∗ = β. The uniform consistency of (α̂, β̂) is proved.

Proofs of (i) and (ii). Observe that Z and X are bounded. The proofs of (i)

and (ii) can be obtained by using kernel theory (Fan and Gijbels (1996); Fan,

Lin, and Zhou (2006)) and following the arguments in Chen et al. (2010).

Proof of (iii). Let p be the dimension of Z. Denote Ŝn1(t; v)=Sn1(t; α̂, β̂, h
̂̇
β, v),

Ŝn1,1, and Un2,1 to be the first p-elements of Ŝn1 and Un2, respectively. Given

any v1 ∈ [0, 1] and v2 ∈ [0, 1] with |v1 − v2| < h, since Un2(α̂, β̂,
̂̇
β; v1) = 0 and

Un2(α̂, β̂,
̂̇
β; v2)=0, we have

0 = Un2,1(α̂, β̂,
̂̇
β; v1)− Un2,1(α̂, β̂,

̂̇
β; v2)

= d1(v1)− d1(v2)−
∫ τ

0

Ŝn1,1(t; v1)− Ŝn1,1(t; v2)

Sn0(t; α̂, β̂)
dN(t) +Op(bn), (A.1)

where d1(v) = E [ZΓ(Z,X) exp{β(X′α0)
′Z} | X′α̂ = v] f(v; α̂) and

N(t) = n−1
∑n

i=1Ni(t).

Using a Taylor expansion and kernel theory (Horowitz (1996)), we have

Ŝn1,1(t; v1)− Ŝn1,1(t; v2)

= n−1
n∑

i=1

ZiKi(v1; α̂)Yi(t) exp{β̂(v1)′Zi}Z′
i

[
β̂(v1)− β̂(v2)

]
+n−1

n∑
i=1

Zi
K̇ {(X′

iα̂− v1)/h}
h2

Yi(t) exp{β̂(v1)′Zi}(v2 − v1)

+Op(bn + (v2 − v1)
2)

= s20(t; α̂, β̂, v1)
{
β̂(v1)− β̂(v2)

}
− ∂s10(t; α̂, β̂, v1)

∂v
(v2 − v1)

+Op(bn + (v2 − v1)
2), (A.2)
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uniformly in t ∈ [0, τ ] and v1, v2 ∈ [0, 1] such that |v1 − v2| < h. Substituting

(A.2) into (A.1) and using Un2(α̂, β̂, h
̂̇
β; v1)− Un2(α̂, β̂, h

̂̇
β; v2) = 0, we have∫ τ

0
s20(t; α̂, β̂, v1)

s00(t)

s00(t; α̂, β̂)
λ0(t)dt

{
β̂(v1)− β̂(v2)

}
= d1(v1)− d1(v2) +

∫ τ

0

∂s10(t; α̂, β̂, v1)

∂v

s00(t)

s00(t; α̂, β̂)
λ0(t)dt(v2 − v1)

+Op(bn + (v2 − v1)
2).

Then (iii) holds by the conditions on Z, X, s10(t;α, δ1, v), and f(v;α).

Proofs of Theorems 2 and 3. Let an = ∥α̂−α0∥, cn = supv∈[0,1] ∥β̂(v)−β(v)∥,

dn = supv∈[0,1] ∥h
̂̇
β(v) − hβ̇(v)∥, and en = h2 + (nh)−1/2. Let Mi(t) = Ni(t) −∫ t

0 P (t | Zi,Xi) exp{β(X′
iα0)

′Zi}λ0(t)dt. The proof consists of four steps.

Step (i). Consider the asymptotic expression

Un1(α̂, β̂,
̂̇
β)− Un1(α0, β, β̇) =D1 (α̂− α0) +

∫ 1

0
D3(w)

{
β̂(w)− β(w)

}
dw

+Op((an+cn+
dn
h
)(an+cn))+op(n

−1/2). (A.3)

If Ŵj = Wj(α̂,
̂̇
β), Wj = Wj(α0, β̇), R̂n0(t;α, δ1) = (1/n)

∑n
j=1 Yj(t)XjŴj

exp{δ1(X′
jα)

′Zj},
and Rn0(t;α, δ1) = n−1

∑n
j=1 Yj(t)XjWj exp{δ1(X′

jα)
′Zj}, we have

Un1(α̂, β̂,
̂̇
β)− Un1(α0, β, β̇)

= n−1
n∑

i=1

∫ τ

0

[
XiŴi −XiWi −

R̂n0(t;α0, β)

Sn0(t;α0, β)
+
Rn0(t;α0, β)

Sn0(t;α0, β)

]
dMi(t)

+

∫ τ

0

r0(t)

s00(t)

{
Sn0(t; α̂, β̂)− Sn0(t;α0, β)

}
λ0(t)dt

−
∫ τ

0

{
R̂n0(t; α̂, β̂)− R̂n0(t;α0, β)

}
λ0(t)dt+Op((an + cn)

2). (A.4)

By large number theory, kernel theory, and Taylor series expansions,

Sn0(t; α̂, β̂)− Sn0(t;α0, β)

=m1(t)
′ (α̂− α0) +

∫ 1

0
s10(t;w)

′
[
β̂(w)− β(w)

]
dw +Op((an + cn)

2),

R̂n0(t; α̂, β̂)− R̂n0(t;α0, β)
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=m2(t) (α̂−α0)+

∫ 1

0
r1(t;w)

′
[
β̂(w)−β(w)

]
dw

+Op{(an + cn)(an + cn +
dn
h
)}. (A.5)

Similar to the proof of Theorem 1, we can show that supw∈(0,1) ∥
̂̇
β(w) − β̇(w)∥

→ 0. Together with ∥α̂− α0∥ → 0, (A.5), and (A.4), we get (A.3). vskip .1cm

Step (ii). Denote ζn(v) = [β̂(v)′−β(v)′, h{̂̇β(v)−β̇(v)}′]′. Consider the expression
Un2(α̂, β̂,

̂̇
β, v)− Un2(α0, β, β̇, v)

=D2(v) (α̂− α0) (1, 0)
′ −

(
Σ(v) 0

0 µ2Σ(v)

)
ζn(v)

+

∫ 1

0

∫ τ

0

s10(t; v)s10(t;w)
′

s00(t)
λ0(t)dt

[
β̂(w)− β(w)

]
dw(1, 0)′

+Op

(a2n
h

+ c2n + d2n +
ancn
h

+
andn
h

+ cndn +
anen
h

+ cnbn + dnbn

)
. (A.6)

By large number theory, kernel theory, and a Taylor series expansion, we get

Un2(α̂, β̂,
̂̇
β, v)− Un2(α0, β, β̇, v)

= −
∫ τ

0

∂s11(t; v)

∂v
λ0(t)dt (α̂− α0) (1, 0)

′

+

∫ τ

0
s10(t; v)

[
Sn0(t; α̂, β̂)− Sn0(t;α0, β)

s00(t)

]
λ0(t)dt(1, 0)

′

−
∫ τ

0

[
Sn1(t; α̂, β̂, h

̂̇
β, v)− Sn1(t;α0, β, hβ̇, v)

]
λ0(t)dt

+Op

[
(an + h2)

{
an + cn + dn + h+ (nh3)−1/2

}]
+Op

{
(an + cn + dn)n

−1/2
}
, (A.7)

where
Sn1(t; α̂, β̂, h

̂̇
β, v)− Sn1(t;α0, β, hβ̇, v)

=

{
κ(t, v)− ∂s11(t; v)

∂v

}
(α̂− α0)(1, 0)

′ +

(
s20(t; v) 0

0 µ2s20(t; v)

)
ζn(v)

+Op

{an(an + cn + dn + en)

h

}
+Op {(cn + dn)(bn + cn + dn)} . (A.8)

Substituting (A.8) and (A.5) into (A.7), we get (A.6).

Step (iii). Consider asymptotic expressions of

Un1(α0, β, β̇) = n−1
n∑

i=1

∫ τ

0

[
XiWi −

r0(t)

s00(t)

]
dMi(t) + op(n

−1/2), (A.9)
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Un2,1(α0, β, β̇, v) = An(v) + Vn(v), (A.10)

where

An(v) = n−1
n∑

i=1

∫ τ

0

[
ZiKi(v;α0)−

Sn1,1(t;α0, β, hβ̇, v)

Sn0(t;α0, β)

]
dMi(t),

Vn(v) = n−1
n∑

i=1

∫ τ

0

[
ZiKi(v;α0)−

Sn1,1(t;α0, β, hβ̇, v)

Sn0(t;α0, β)

]
×Yi(t) exp{Z′

iβ(X
′
iα0)}λ0(t)dt.

With

Vn(v) = n−1
n∑

i=1

∫ τ

0
ZiKi(v;α0)Yi(t)

[
exp{Z′

iβ(X
′
iα0)}

− exp{Z′
iβ(v) + Z′

iβ̇(v)(X
′
iα0 − v)}

]
λ0(t)dt,

it can be shown that,

Vn(v) =
1

2
h2µ2Σ(v)β̈(v) + op(h

2), (A.11)

(nh)1/2An(v) = n−1/2h1/2
n∑

i=1

∫ τ

0

[
ZiKi(v;α0)−

s10(t; v)

s00(t)

]
dMi(t)+op(en).(A.12)

The Martingale Central Limit Theorem implies that (nh)1/2An(w) is asymptot-

ically normal with mean zero and covariance matrix ν0Σ(v).

Step (iv). Consider the asymptotic expression

D1 (α̂− α0) = n−1
n∑

i=1

∫ τ

0
ξi(t)dMi(t) + op(n

−1/2), (A.13)

where

ξi(t) =

∫ 1

0
g(v)

s10(t; v)

s00(t)
dv +

{∫ 1

0
g(v)D2(v)D

−1
1 dv − I

}{
XiWi −

r0(t)

s00(t)

}
−Zig(X

′
iα0).

By (A.3), (A.9), and Un1(α̂, β̂,
̂̇
β) = 0, we get

α̂− α0 = −D−1
1 n−1

n∑
i=1

∫ τ

0

[
XiWi −

r0(t)

s00(t)

]
dMi(t)

−D−1
1

∫ 1

0
D3(w)

{
β̂(w)− β(w)

}
dw

+Op((an + cn +
dn
h
)(an + cn)) + op(n

−1/2). (A.14)
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Substituting this into (A.6), with Un2,1(α̂, β̂,
̂̇
β; v) = 0 and (A.10), we have

n−1
n∑

i=1

∫ τ

0

[{
ZiKi(v;α0)−

s10(t; v)

s00(t)

}
−D2(v)D

−1
1

{
XiWi −

r0(t)

s00(t)

}]
dMi(t)

= −
∫ 1

0
Ψ(w; v)

{
β̂(w)− β(w)

}
dw +Σ(v)

{
β̂(v)− β(v)

}
− 1

2
h2µ2Σ(v)β̈(v)

+op(n
−1/2+h2)

+Op

(a2n
h
+c2n+d

2
n+

ancn
h

+
andn
h

+cndn+
anen
h

+cnbn+dnbn

)
. (A.15)

By (A.15), we have,

cn = sup
v∈[0,1]

∥β̂(v)− β(v)∥

= Op

{
(nh)−1/2 + h2 +

a2n
h

+
ancn
h

+
andn
h

+
anen
h

}
. (A.16)

Similarly,

sup
v∈[0,1]

h∥̂̇β(v)− β̇(v)∥

= Op{(nh)−1/2 +
a2n
h

+
ancn
h

+
andn
h

+
anen
h

}+ op(h
2). (A.17)

Further using (A.15), we get∫ 1

0
D3(w)

{
β̂(w)− β(w)

}
dw

=
1

2
h2µ2

∫ 1

0
g(v)Σ(v)β̈(v)dv + n−1

n∑
i=1

∫ τ

0

∫ 1

0
g(v)

[{
ZiKi(v;α0)−

s10(t; v)

s00(t)

}
−D2(v)D

−1
1

{
XiWi −

r0(t)

s00(t)

}]
dvdMi(t) + op(n

−1/2 + h2)

+Op

(a2n
h

+ c2n + d2n +
ancn
h

+
andn
h

+ cndn +
anen
h

+ cnbn + dnbn

)
. (A.18)

Substituting (A.18) into (A.14), noting that
∫ 1
0 g(v)ZiKi(v;α0)dv = Zig(X

′
iα0)+

Op(h
2), the condition nh4 → 0, (A.16) and (A.17), we obtain (A.13). Hence, the

proof of Theorem 2 is completed. Noting that

n−1
n∑

i=1

∫ τ

0

[{
−s10(t; v)

s00(t)

}
−D2(v)D

−1
1

{
XiWi −

r0(t)

s00(t)

}]
dMi(t) = Op(n

−1/2),

the proof of Theorem 3 is finished by (A.15), (A.16), and (A.17).
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Proof of Theorem 4. Let Ki(v) = Ki(v;α0) and η(v) = (η′1, η2(v)
′)′ satisfy

the following integral equation in η2 ∈ C0:

ϕ′1 = η′1D1 +

∫ 1

0
η2(w)

′D2(w)dw, (A.19)

ϕ2(w)
′ = η′1D3(w) +

∫ τ

0

∫ 1
0 η2(v)

′s10(t; v)dvs10(t;w)
′

s00(t)
λ0(t)dt− η2(w)

′Σ(w).

Obviously,

η′1Un1(α0, β, β̇) = n−1
n∑

i=1

∫ τ

0
η′1

[
XiWi −

r0(t)

s00(t)

]
dMi(t) + op(n

−1/2),

and ∫ 1

0
η2(w)

′Un2,1(α0, β, β̇, w)dw

=
1

n

n∑
i=1

∫ τ

0

[
η2(X

′
iα0)

′Zi −
Sη2(t)

Sn0(t;α0, β)

]
dMi(t) +Op(h

2),

where Sη2(t) = (1/n)
∑n

i=1 η2(X
′
iα0)

′ZiYi(t) exp{β(X′
iα0)

′Zi}. Denote Υ(α, δ1,
δ2, v) = (Un1(α, δ1, δ2)

′, Un2,1(α, δ1, δ2, v)
′)′. Using the Martingale Central Limit

Theorem we have that

n1/2
∫ 1

0
η(w)′Υ(α0, β, β̇, w)dw → N(0, σ2), (A.20)

where

σ2 = E

{∫ τ

0

[
η′1

{
XW − r0(t)

s00(t)

}
+

{
η2(X

′α0)
′Z− η2(t)

}]2
P (t|X,Z)

× exp(β(X′α0)
′Z)λ0(t)dt

}
and

η2(t) =
E {P (t|X,Z)η2(X′α0)

′Z exp{β(X′α0)
′Z}}

s00(t)
.

On the other hand, by (A.3), (A.6) and the condition nh4 → 0, we have

η′1

(
Un1(α̂, β̂,

̂̇
β)− Un1(α0, β, β̇)

)
=η′1D1 (α̂− α0)+

∫ 1

0
η′1D3(w)

{
β̂(w)−β(w)

}
dw + op(n

−1/2),∫ 1

0
η2(w)

′
(
Un2,1(α̂, β̂,

̂̇
β,w)− Un2,1(α0, β, β̇, w)

)
dw

=

∫ 1

0

{∫ τ

0

∫ 1
0 η2(v)

′s10(t; v)dvs10(t;w)
′

s00(t)
λ0(t)dt− η2(w)

′Σ(w)

}
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×
[
β̂(w)−β(w)

]
dw +

∫ 1

0
η2(w)

′D2(w)dw (α̂− α0) + op(n
−1/2).

Then by (A.19), we have,∫ 1

0
η(w)′

[
Υ(α̂, β̂,

̂̇
β,w)−Υ(α0, β, β̇, w)

]
dw

= ϕ′1 (α̂− α0) +

∫ 1

0
ϕ2(w)

′
{
β̂(w)− β(w)

}
dw + op(n

−1/2).

Note that

−
∫ 1

0
η(w)′Υ(α0, β, β̇, w)dw =

∫ 1

0
η(w)′

[
Υ(α̂, β̂,

̂̇
β,w)−Υ(α0, β, β̇, w)

]
dw,

by (A.20), we have

n1/2
[
ϕ′1 (α̂− α0) +

∫ 1

0
ϕ2(w)

′
{
β̂(w)− β(w)

}
dw

]
→ N(0, σ2). (A.21)

Consider the parametric sub-model

α = α0 + ϱη1 and β(w; ϱ) = β(w) + ϱη2(w), (A.22)

where ϱ is an unknown parameter, and α0, β(w), η1, and η2(w) are fixed parame-

ters or functions. The parameter ϱ can be consistently estimated by the solution

ϱ̂ to Cox’s partial likelihood score function

n−1
n∑

i=1

∫ τ

0

[
ςi(ϱ)−

∑n
j=1 Yj(t)ςj(ϱ) exp{ϖj(ϱ)}∑n

j=1 Yj(t) exp{ϖj(ϱ)}

]
dNi(t) = 0,

where ϖj(ϱ) = β(X′
jα0 + ϱX′

jη1)
′Zj + ϱη2(X

′
jα0 + ϱX′

jη1)
′Zj , and

ςi(ϱ) = X′
iη1

{
β̇(X′

iα0 + ϱX′
iη1) + ϱη̇2(X

′
iα0 + ϱX′

iη1)
}′

Zi+η2(X
′
iα0+ϱX

′
iη1)

′Zi.

Obviously, ϱ0 = 0 is the true value of ϱ. It follows from Andersen and Gill (1982)

that

ϱ̂−ϱ0 = σ−2n−1
n∑

i=1

∫ τ

0

[
X′

iη1β̇(X
′
iα0)

′Zi + η2(X
′
iα0)

′Zi

−

n∑
j=1

Yj(t)
{
X′

jη1β̇(X
′
jα0)

′Zj + η2(X
′
jα0)

′Zj

}
exp{β(X′

jα0)
′Zj}∑n

j=1 Yj(t) exp{β(X
′
jα0)′Zj}

]
dMi(t)

+op(n
−1/2).
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Under the model (A.22), we have that

ϕ′1 (α̂− α0) +

∫ 1

0
ϕ2(w)

′ {β(w; ϱ̂)− β(w; ϱ0)} dw

= (ϱ̂− ϱ0)

[
ϕ′1η1 +

∫ 1

0
ϕ2(w)

′η2(w)dw

]
,

and, using (A.19), we get

ϕ′1η1 +

∫ 1

0
ϕ2(w)

′η2(w)dw

=

∫ τ

0

{
(E [P (t | Z,X) exp{β(X′α0)

′Z} {Wη′1X+ η2(X
′α0)

′Z}])2

s00(t;α0, β)

−E
[
P (t | Z,X) exp{β(X′α0)

′Z}
(
η′1XW + η2(X

′α0)
′Z
)2]}

λ0(t)dt = −σ2.

Thus

ϕ′1 (α̂− α0) +

∫ 1

0
ϕ2(w)

′ {β(w; ϱ̂)− β(w; ϱ0)} dw

= −n−1
n∑

i=1

∫ τ

0

[
X′

iη1β̇(X
′
iα0)

′Zi + η2(X
′
iα0)

′Zi

−

∑n
j=1 Yj(t)

{
X′

jη1β̇(X
′
jα0)

′Zj + η2(X
′
jα0)

′Zj

}
exp{β(X′

jα0)
′Zj}∑n

j=1 Yj(t) exp{β(X
′
jα0)′Zj}

]
dMi(t)

+op(n
−1/2).

This gives

n1/2ϕ′1 (α̂− α0) +

∫ 1

0
ϕ2(w)

′ {β(w; ϱ̂)− β(w; ϱ0)} dw → N(0, σ2),

which is the same as that of n1/2
[
ϕ′1 (α̂− α0) +

∫ 1
0 ϕ2(w)

′
{
β̂(w)− β(w)

}
dw

]
by

(A.21). As explained by Bickel et al. (1993), ϕ′1α̂+
∫ 1
0 ϕ2(w)

′β̂(w)dw is an efficient

estimator of ϕ′1α+
∫ 1
0 ϕ2(w)

′β(w)dw. The proof of Theorem 4 is completed.

An outline for proving the consistency of the initial estimators for α

and β(·).

Firstly, for given α ∈ Θ, the model (1.2) reduces to the model proposed by

Fan, Lin, and Zhou (2006). Hence we can estimate β(·) and β̇(·) as does Fan,

Lin, and Zhou (2006), denoted β̂(·|α) and
̂̇
β(·|α), respectively. To estimate α,

we use the partial score Un(α), which is (2.7) with β(·) and β̇(·) replaced by
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their estimators β̂(·|α) and
̂̇
β(·|α). Denote the solution of Un(α) = 0 as α̂. By

Fan, Lin, and Zhou (2006) and the Uniform Law of Large Numbers (Pollard

(1990)), for any given α ∈ Θ we can show that β̂(v|α) and
̂̇
β(v|α) converge in

probability to nonrandom functions β(v|α) and β̇(v|α) with β(v|α0) = β(v) and

β̇(v|α0) = β̇(v), uniformly in v ∈ [0, 1] and α ∈ Θ. Furthermore, we also can

show that Σn(α) = ∂Un(α)/∂α converges in probability to a nonrandom function

Σ(α) uniformly in α ∈ Θ and obtain Σ(α) is continuous at α ∈ Θ. Coupled with

the assumption of a positive definite matrix Σ(α0), we can conclude that there

exists a small neighborhood of α0 inside of which the eigenvalues of Σn(α) are

bounded away from zero for large n and α ∈ Θ. By the Uniform Law of Large

Numbers, Un(α0) → 0 in probability. Then by the Inverse Function Theorem,

we have that inside a small neighborhood of α0, there exists a unique solution

α̂ to Un(α) = 0 for all sufficiently large n. This also implies that α̂ is consistent

and β̂(v|α̂) → β(v|α0) = β(v).
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