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Abstract: In the statistics literature, recovering a signal observed under the Radon
transform is considered a mildly ill-posed inverse problem. In this paper, we ar-
gue that several statistical models that involve the Radon transform lead to an
observational design which strongly influences its degree of ill-posedness, and that
the Radon transform can actually become severely ill-posed. The main ingredient
here is a weight function λ on the angle. Extending results for the limited angle
situation, we compute the singular value decomposition of the Radon transform
as an operator between suitably weighted L2-spaces, and show how the singular
values relate to the eigenvalues of the sequence of Toeplitz matrices of λ. Further,
in the associated white noise sequence model, we give upper and lower bounds on
the rate of convergence, and in several special situations even obtain optimal rates
with precise minimax constants. For the severely ill-posed limited angle problem,
a simple projection estimator is adaptive in the exact minimax sense.

Key words and phrases: Efficient estimation, limited angle problem, minimax esti-
mation, nonparametric estimation, Radon transform.

1. Introduction

Recovering images (functions) observed under the Radon transform is one
of the most important and common inverse problems, with fundamental appli-
cations in tomography and other fields, see e.g., Natterer (1986) for an overview.
The statistics literature has devoted a significant amount of effort to the issue,
and considers the problem to be only mildly ill-posed. In this paper we show that
the ill-posedness of the Radon transform strongly depends on the observational
design, and that observational designs which lead to significantly more severe
ill-posedness arise naturally in statistical models involving the Radon transform.
We restrict attention to the two-dimensional case, in which the Radon transform
is said to be only mildly ill-posed of degree 1/2.

Let B1(0) = {x ∈ R2 : ∥x∥ ≤ 1} be the unit disc in R2 and let f : B1(0) → R
be integrable. Then its Radon transform is defined (for almost all (φ, s)) as

Rf(φ, s) =

∫
|t|≤

√
1−s2

f(s cosφ− t sinφ, s sinφ+ t cosφ) dt,

(φ, s) ∈ [−π

2
,
π

2
]× [−1, 1].
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We follow Johnstone and Silverman (1990) and call the domain [−π/2, π/2] ×
[−1, 1] of Rf the detector space, and B1(0) brain space. The aim is to estimate
f from noisy data on its Radon transform.

We argue that due to the observational design, the Radon transform needs
to be studied as an operator between weighted L2-spaces

R : L2(B1(0);µ2) −→ L2([−
π

2
,
π

2
]× [−1, 1];µ1),

dµ2(x, y) = w2(x, y) dx dy, dµ1(φ, s) = λ(φ)w1(s) dφds.
(1.1)

Here, the most striking feature is the weight function λ : [−π/2, π/2] →
[0,∞) on the angle in detector space. The case when λ has support [−η, η] for
some η < π/2 is called the limited angle Radon transform (cf. Davison (1983)).
However, it turns out that even if λ only has two zeros at the boundary points
±π/2, the degree of ill-posedness of R depends on λ. For the weight functions
w1 and w2, we consider the parametric families in γ > −1/2,

w1(s) =

√
πΓ(γ + 1/2)

γΓ(γ)
(1− s2)1/2−γ , −1 ≤ s ≤ 1,

w2(x, y) =
π

γ
(1− x2 − y2)1−γ , (x, y) ∈ B1(0).

(1.2)

The weight function w1 in detector space also corresponds to the measure-
ment design, the most important cases being γ = 1 (fan beam design) and
γ = 1/2 (parallel beam design). The weight w2 with corresponding γ is then
required, for technical reasons, to make the singular value decomposition (SVD)
of R analytically tractable. In particular, in the parallel beam design γ = 1/2,
the estimation error in brain space is measured with a weighted L2-norm. In the
following we discuss statistical models that involve the weight function λ, and
also indicate the appropriate values of the parameter γ in w1 and w2.

Gaussian white noise
This is an idealized statistical model, in which we conduct our convergence

analysis. We observe

dY (φ, s) =
(
Rf

)
(φ, s) dµ1(φ, s) + ε dW (φ, s), (1.3)

which means that for any h(φ, s) ∈ L2([−π/2, π/2]× [−1, 1];µ1), we may observe

Y (h) =

∫ π/2

−π/2

∫ 1

−1
Rf(φ, s)h(φ, s)λ(φ)w1(s)dφds+ε

∫ π/2

−π/2

∫ 1

−1
h(φ, s)dW (φ, s)

= ⟨(Rf), h⟩µ1 + εW (h), (1.4)

where W (h) is a Gaussian field with mean zero and covariance

E
(
W (h1)W (h2)

)
= ⟨h1, h2⟩µ1 , h1, h2 ∈ L2([−

π

2
,
π

2
]× [−1, 1];µ1).
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Figure 1. Parametrization of the measurement design in computerized to-
mography: Measurements are performed uniformly distributed on [−π/2,
π/2]× [−1, 1] in parallel beam design.

For direct observations, regression as well as density estimation problems are

asymptotically equivalent to white noise models under fairly general conditions,

see Nussbaum (1996) and Reiß (2008). While no corresponding results are yet

available for our indirect models, the analysis in the technically less complicated

white noise model still provides valuable insight into the difficulty of the estima-

tion problem.

Regression

Suppose that we observe random variables (Y,Θ, S) from the model

Y = (Rf)(Θ, S) + ϵ, E(ϵ|Θ, S) = 0.

If (Θ, S) is distributed according to µ1, then given h(φ, s), E
(
Y h(Θ, S)

)
=

⟨(Rf), h⟩µ1 , which may be estimated unbiasedly from a sample of observations;

compare to (1.4) in the white noise model for analogy.

This model is the statistical framework for computerized tomography (Nat-

terer, 1986), and the measure µ1 is determined by the measurement design. The

case γ = 1 corresponds to the fan beam design, the case γ = 1/2 to the parallel

beam design, see Figures 1 and 2.

For the fan beam design, most statistical literature uses SVD or derived

methods (such as needlets), see Cavalier and Tsybakov (2002) or Klemelä and

Mammen (2010). In case of parallel beam, Cavalier (1998) uses estimates based

on the filtered back-projection algorithm.

No paper in the statistics literature seems to take into account a weight

function λ on the angle, which arises most naturally in the parallel beam design

in form of a limited angle, e.g., in digital breast tomosynthesis, dental tomography

or electron microscopy, where the measurement device may only be rotated over
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Figure 2. Parametrization of the measurement design in computerized to-
mography: Measurements are performed uniformly distributed on [−π/2,
π/2]2 in fan beam design.

a limited range. See Frikel (2013) for further references and also for a discussion

of the bias of the filtered back-projection algorithm in case of limited angle.

Density estimation

Johnstone and Silverman (1990) propose a model of Positron emission to-

mography in which the emission density f(x1, x2) on B1(0) needs to be estimated

from data (Θ, S) distributed according to Rf . Here E
(
g(Θ, S)

)
= ⟨(Rf), g⟩µ1

without weight functions (γ = 1/2 and λ = 1). In order to take advantage of the

simpler form of the singular value decomposition in case γ = 1, they insert the

weight w1 with γ = 1 into E
(
g(Θ, S)w1(Θ)

)
. As a consequence, the variance term

in the risk is difficult to handle, and therefore they resort to a surrogate mean

integrated squared error in order to measure the precision of their estimators.

Nonparametric random coefficient regression models

Nonparametric estimation in random coefficient regression models was first

studied in Beran, Feuerverger, and Hall (1996). These models have recently

become quite popular in econometrics, see Hoderlein, Klemelä, and Mammen

(2010). Suppose that we observe (Y,X) from the model Y = XTβ. Here X,β ∈
R2 are independent random vectors, and the unobserved β has a Lebesgue density

fβ supported in B1(0). The aim is to estimate fβ. If we standardize Z = Y/∥X∥,
X/∥X∥ = (cos(Φ), sin(Φ)), then fZ|Φ=φ(z) = (Rfβ)(φ, z). Given h(φ, s), if Φ has

a Lebesgue density fΦ we have

E
(
h(Φ, Z)

)
=

∫ π/2

−π/2

∫ 1

−1
h(φ, z)fZ|Φ=φ(z) fΦ(φ) dz dφ

=

∫ π/2

−π/2

∫ 1

−1
(Rfβ)(φ, z)h(φ, z) dµ(φ, z),
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Figure 3. Parametrization in the random coefficient model. The bold line is
the set of all β ∈ B1(0) for which β′X/∥X∥ = Z.

where dµ(φ, z) = fΦ(φ)dz dφ = 2−1 dµ1(φ, z) with λ(φ) = fΦ(φ) and γ = 1/2.

Thus,

E
(
h(Φ, Z)

)
= 2−1 ⟨(Rfβ), h⟩µ1

which, in analogy to the white noise model (1.4) may be unbiasedly estimated

from a sample in this model.

If X = (1, X1) includes an intercept as well as an additional covariate, the

support of X1 determines the support of Φ, and in case of full support of X1

with density fX1 , the tails of X1 determine the rate of decay of fΦ at ±π/2

since fΦ(φ) = fX1(tanφ)(1 + (tanφ)2). Thus, only for quite heavy tails of X1

(Cauchy-type tails) is fΦ bounded away from 0. See Figure 3 for an illustration.

Our results show that for lighter tails, the Radon transform R on the weighted

L2-spaces is in fact more ill-posed.

Main results and structure of the paper

As a first main result, we determine the singular value decomposition of

the Radon transform R as an operator between the weighted L2-spaces in (1.1),

and show how the singular values relate to the eigenvalues of certain Toeplitz

matrices associated with the function λ. If we evaluate the white noise model

(1.3) at the singular functions, we obtain a doubly-indexed sequence model. As

a next major result, for the limited angle situation, λ = 1[−η,η] for an η < π/2,

we show that the optimal rate of estimation over ellipsoidal smoothness classes

is only logarithmic, and that a simple projection estimator achieves the optimal

rate together with the optimal constant. If the weight function has an isolated

zero, we give polynomial upper and lower bounds on the rate of convergence,

the order of which depends on the degree of the zero. Finally, for functions λ

with finite Fourier expansion, we even obtain optimal rates with precise minimax

constants in case of the fan-beam design.
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The paper is structured as follows. We start Section 2 by reviewing efficient

estimation in general white noise sequence models, and in Section 2.2 we intro-

duce the doubly indexed sequence model for the Radon transform. We discuss

ellipsoidal smoothness assumptions, and how the Pinsker estimator applies in

this model. In Section 2.3 we present the singular values, while the full deriva-

tion of the SVD of the weighted angle Radon transform, together with explicit

expressions for the singular functions, is given in the supplementary Appendix

B.1. Section 3 turns to nonparametric estimation in the sequence model for the

Radon transform. We start in Section 3.1 with the severely ill-posed limited angle

problem, in which a simple projection estimator is even sharp minimax adaptive.

In Section 3.2 we give upper and lower bounds on the rate of convergence in case

of polynomial decay of the singular values, and in Section 3.3 we obtain pre-

cise rates with asymptotic minimax constants for the fan-beam design (γ = 1).

Section 4 concludes. Proofs are deferred to the supplementary Appendix A in

Hohmann and Holzmann (2015). The derivation of the SVD, discussion of the

ellipsoidal smoothness assumptions, as well as some further results can be found

in the supplementary Appendix B in Hohmann and Holzmann (2015).

2. Gaussian White Noise Sequence Models

2.1. Review of general infinite white noise sequence models

We start by briefly reviewing some general facts about minimax estimation

in infinite white noise sequence models from Cavalier and Tsybakov (2002). Con-

sider observing

Yk = θk + εσ−1
k ξk, k = 0, 1, 2, . . . , (2.1)

with (ξk)k an i.i.d.Gaussian white noise, ε > 0 the noise level, and (σk)k a

known sequence of strictly positive weights. The goal is to estimate the parameter

θ = (θ0, θ1, . . .) from the noisy observations Yk. Certainly, estimating θ gets more

involved the smaller the weights σk are. Asymptotics in this infinite sequence

model are w.r.t. ε → 0.

A linear estimator θ̂ = θ̂(h) of θ is defined as θ̂k = hkYk for some given real

sequence h = (h0, h1, . . .), not depending on the Yk. The class of linear estimators

thus corresponds to the class of real, countably infinite sequences h. The mean

squared risk of an estimator θ̂ is defined as

Rε(θ̂, θ) = E∥θ̂ − θ∥2 =
∞∑
k=0

E
[
(θ̂k − θk)

2
]
.

Define the linear minimax risk and the minimax risk on a class Θ by

rLε (Θ) = inf
h∈RN

sup
θ∈Θ

Rε(θ̂(h), θ), rε(Θ) = inf
θ̂
sup
θ∈Θ

Rε(θ̂, θ),
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where inf θ̂ is the infimum over all possible estimators. An estimator θ̂ is said to

be rate optimal on Θ if

sup
θ∈Θ

Rε(θ̂, θ) ≍ rε(Θ) as ε → 0.

It is said to be asymptotically minimax or asymptotically efficient on Θ if

sup
θ∈Θ

Rε(θ̂, θ) ∼ rε(Θ) as ε → 0.

The class Θ is typically chosen to be an l2-ellipsoid: given a constant L > 0 and

a sequence a = (a0, a1, . . .) of real ellipsoid weights, set

Θ = Θ(a, L) =
{
θ :

∞∑
k=0

a2kθ
2
k ≤ L

}
. (2.2)

Now let Θ = Θ(a, L) be an ellipsoid according to (2.2), and assume that for

all ε > 0 there exists a solution cε to the equation

ε2
∞∑
k=0

σ−2
k ak(1− cεak)+ = cεL, (2.3)

where the subscript + denotes positive part, x+ = max{x, 0}. Then, the Pinsker
estimator is defined as the linear estimator θ̂(h∗) with weights h∗k = (1− cεak)+,

k = 0, 1, . . . .

Theorem 1 (Pinsker (1980)).

a. The Pinsker estimator θ̂(h∗) is linear minimax on Θ(a, L), supθ∈ΘRε(θ̂(h
∗), θ)

= rLε (Θ) for all ε > 0, where the linear minimax risk is given by

rLε (Θ) = ε2
∞∑
k=0

σ−2
k (1− cεak)+. (2.4)

b. If
maxk:ak<T σ−2

k∑
k:ak<T σ−2

k

−→ 0 (2.5)

as T → ∞, then rε(Θ) ∼ rLε (Θ) as ε → 0.

The condition (2.5) is from Cavalier and Tsybakov (2002). As we shall see

below, the Pinsker estimator may also be efficient if this condition is not satisfied.

Remark 1. If the sequence a is monotonically non-decreasing, then there always

exists a solution cε to (2.3) so that the Pinsker estimator is well-defined and
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Theorem 1 applies. Even more, in this case cε is unique and known to be given

by

cε =

∑Nε
k=0 σ

−2
k ak

L/ε2 +
∑Nε

k=0 σ
−2
k a2k

,

where

Nε = max{k : ak ≤ c−1
ε } = max

{
n : ε2

n∑
k=0

σ−2
k ak(an − ak) ≤ L

}
, (2.6)

and the minimax risk is attained at (θ̂(h∗), θ∗) with

θ∗k =
ε

σk

√
(1− cεak)+

cεak
. (2.7)

2.2. The sequence model for the Radon transform

Suppose now that we observe the Radon transform Rf of a function f ∈
L2(B1(0);µ2) in the white noise model (1.3).

We require the singular value decomposition of the operator R in (1.1). It

consists of triples {
Ψm,l,Φm,l, σm,l

}
m≥l≥0

, (2.8)

where the (Ψm,l)m≥l≥0 form an orthonormal basis of L2(B1(0);µ2), the

{Φm,l}m≥l≥0 are orthonormal in L2([−π/2, π/2] × [−1, 1];µ1) and complete in

range(R), σm,l > 0 for all m ≥ l ≥ 0 and RΨm,l = σm,l Φm,l and R∗Φm,l =

σm,l Ψm,l, where R∗ is the adjoint operator of R, see Proposition B.2. The

(Ψm,l)m≥l≥0 and (Φm,l)m≥l≥0 are called the singular functions, the (σm,l)m≥l≥0

the singular values. The singular values are presented in the next section, while

the derivation of the SVD together with explicit forms of the singular functions

in terms of orthogonal polynomials, is given in the supplementary Appendix B.1.

Evaluating (1.4) at the singular functions Φm,l, we obtain the doubly indexed

sequence of observations

Y
(
Φm,l

)
= ⟨Rf,Φm,l⟩µ1 + ϵW (Φm,l) = σm,l θm,l + ϵξm,l,

where θm,l = ⟨f,Ψm,l⟩µ2 are the Fourier coefficients of f w.r.t. the basis (Ψm,l),

and ξm,l = W (Φm,l) are independent standard-normal random variables. Now

rescale Ym,l = σ−1
m,lY (Φm,l), so that

Ym,l = θm,l + εσ−1
m,lξm,l, m ≥ l ≥ 0. (2.9)

Thus, in the doubly indexed sequence model (2.9), ellipsoidal smoothness

assumptions on f correspond to the decay of the Fourier coefficients θm,l w.r.t. the
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basis (Ψm,l)m≥l≥0, while rates of convergence depend on the decay of the singular

values σm,l.

We investigate estimation of θ over the ellipsoids

Θ1 = Θ1(κ,L) =
{
θ :

∑
m≥l≥0

(m+ 1)2κθ2m,l ≤ L
}
,

Θ2 = Θ2(κ,L) =
{
θ :

∑
m≥l≥0

(m− l + 1)2κ(l + 1)2κθ2m,l ≤ L
}
.

Compared to (2.2), where a is a full sequence of weights, here we use a slightly

different notation in which the parameter κ determines the whole weighting se-

quence.

Since m+ 1 ≤ (m− l + 1)(l + 1) ≤ (m+ 1)2 for any 0 ≤ l ≤ m,

Θ1(2κ,L) ⊂ Θ2(κ,L) ⊂ Θ1(κ,L). (2.10)

The ellipsoid Θ2 was proposed by Johnstone and Silverman (1990) in the

context of density estimation. Johnstone (1989) shows that in case of γ = 1

and λ = 1 it corresponds to a class of functions having 2κ weak derivatives in a

weighted L2-space, see also Proposition B.6 for a more general result. A simpler

yet natural choice is the ellipsoid Θ1.

Remark 2 (Pinsker estimator for the Radon sequence model). In order to apply

Pinkser’s Theorem 1 to these ellipsoids in the doubly-indexed sequence model,

we require total orderings ≺i, i = 1, 2, of the index set {(m, l), m ≥ l ≥ 0},
for which the weights in Θi are non-decreasing: For Θ1, we let (m, l) ≺1 (m̃, l̃)

if m < m̃ or if m = m̃ and l < l̃. Similarly, for Θ2 we let (m, l) ≺2 (m̃, l̃) if

(l + 1)(m− l + 1) < (l̃ + 1)(m̃− l̃ + 1) or if there is equality and l < l̃.

2.3. The singular values

In this subsection we present the singular values σm,l in the SVD (2.8) of the

Radon transform, see Section B in the supplement for the proofs. Let

Cm = diag(cm,0, . . . , cm,m), cm,j =

(
m

j

)
Γ(2γ)Γ(j + γ)Γ(m− j + γ)

Γ(m+ 2γ)Γ(γ)2
, (2.11)

Am =
(
dj−k

)
j,k=0,...,m

, m = 0, 1, 2, . . . , (2.12)

which is the Toeplitz matrix determined by the sequence

dz =
1

2π

∫ π

−π
e−izφ′

λ(
φ′

2
) dφ′ =

1

π

∫ π/2

−π/2
e−i2zφ′

λ(φ′) dφ′, z ∈ Z.
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The Toeplitz matrix Am is Hermitian and positive semidefinite, and it is well

known that it is even positive definite whenever λ is not essentially zero (which

we always assume), see for instance Tilli (2003) for universal lower bounds on the

smallest eigenvalues of sequences of Toeplitz matrices. We denote its (positive)

eigenvalues by αm,0 ≥ . . . ≥ αm,m > 0 . The matrix Bm := CmAm is then also

diagonizable, with strictly positive eigenvalues (see Section B), which we denote

by βm,0 ≥ . . . ≥ βm,m > 0. The singular values of R are given by

σm,l =
√

πβm,l, m ≥ l ≥ 0. (2.13)

The case γ = 1 (Fan beam design)

In this case the weights cm,l have the simple form cm,l = (m + 1)−1 for all

m, so, given the eigenvalues αm,l of Am, it follows that βm,l = αm,l/(m+1), and

thus the singular values of the operator R are

σm,l =

√
παm,l

m+ 1
, m ≥ l ≥ 0. (2.14)

Thus, for γ = 1 the decay of σm,l is determined by the decay of the singular values

of the the sequence of Toeplitz matrices Am generated by the function λ. The

asymptotic behavior of the eigenvalues of such sequences of Toeplitz matrices

has been intensively studied in the literature. A famous result by Szegö, see

Grenander and Szegö (1958), states that the averages of the eigenvalues of Am

tend to the normalized integral of λ(·/2). Further results mainly concern the

extreme eigenvalues. We present the results that we require in Section 3.

The general case

In the general case, the eigenvalues of Bm cannot be expressed in terms of

those of Am, but it is possible to derive certain bounds. First, concerning the

cm,l, and using Γ(x + δ)/Γ(x) ∼ xδ as x → ∞ for all δ ∈ R, it is easily seen

that the inner weights, those for which l grows as pm for some p ∈ (0, 1), decay

according to

cm,l ∼
Γ(2γ)

Γ(γ)2
(p(1− p))γ−1(m+ 1)−1,

while the outer weights with l (or m− l) fixed behave like

cm,l ∼
Γ(2γ)

Γ(γ)2
Γ(l + γ)

Γ(l + 1)
(m+ 1)−γ ,

both as m → ∞. In particular, for γ ≤ 1, the extreme weights satisfy

min
l=0,...,m

cm,l ∼
Γ(2γ)

Γ(γ)24γ−1
(m+ 1)−1, max

l=0,...,m
cm,l ∼

Γ(2γ)

Γ(γ)
(m+ 1)−γ .

(2.15)
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For γ > 1 the roles of min and max are reversed.

From these estimates as well as general bounds on the eigenvalues of products

of positive definite Hermitian matrices, see for instance Wang and Zhang (1992)

and Zhang and Zhang (2006), we obtain the bounds

Γ(2γ)

Γ(γ)24γ−1

αm,m

m+1
(1+o(1))

(≥)

≤ βm,m

(≥)

≤ Γ(2γ)

Γ(γ)

αm,m

(m+ 1)γ
(1+o(1)),

(γ>1)

−1

2
< γ ≤ 1 .

(2.16)

3. Minimax and Efficient Estimation for the Radon Transform

3.1. Limited angle Radon transform

We start with estimation in the limited angle case, where λ = 1[−η,η] for an

η < π/2. The Toeplitz matrices Am generated by this λ are given by

Am =
(sin(2(j − k)η)

π(j − k)

)
j,k=0,...,m

where, for j = k, this expression is understood as the continuous continuation

with value 2η/π. It is well known that the small eigenvalues of Am decay to zero

exponentially fast, see Slepian (1978), and specifically that

αm,m ∼ Cm1/2e−ξm as m → ∞, (3.1)

where the constants C, ξ > 0 only depend on the angle η, and where

ξ = log
(
1 +

2
√

1− cos(π − 2η)
√
2−

√
1− cos(π − 2η)

)
. (3.2)

Slepian (1978) also discusses the behaviour of the other extreme as well as of the

intermediate eigenvalues.

From (2.16) and (2.14) one has exponential decay of σm,m as well, leading

to a severely ill-posed inverse problem, see e.g. Mair and Ruymgaart (1996). In

this case (2.5) fails to hold and therefore the second part of Pinsker’s Theorem

1 as stated above does not apply. Since no general results are available, we start

from scratch and give a specifically tailored result for minimax rates in severely

ill-posed, doubly indexed sequence models, where in particular the rate of decay

of σm,m is only known up to a polynomial factor.

We define the projection estimator θ̂(hPr) with truncation level Mϵ as the

linear estimator with hm,l = 1 for all 0 ≤ l ≤ m ≤ Mϵ, and hm,l = 0 otherwise.

Theorem 2. If there exist ρ1, ρ2 ∈ R and τ1 ≥ τ2 > 0 such that the sequence of

smallest singular values σm,m satisfies

mρ1e−τ1m . σm,m . mρ2e−τ2m as m → ∞, (3.3)
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then rε(Θi(κ,L)) log(1/ε)
2κ(L−1 + o(1)) ∈ [τ2κ2 , τ2κ1 ] as ε → 0 , i = 1, 2. If in

particular τ1 = τ2 = τ , then any projection estimator θ̂(hPr) with truncation level
Mε =

⌊
τ−1 log(1/ε)(1− log(1/ε)−δ)

⌋
for some δ ∈ (0, 1) is efficient on Θi(κ,L),

i = 1, 2, and the corresponding minimax risk is given by

rε(Θi(κ,L)) ∼ τ2κL log(
1

ε
)−2κ as ε → 0.

This result now provides the minimax rate for the limited angle tomography
problem for any γ > −1/2. Indeed, in view of (3.1) as well as the bound given
in (2.16),

m−1/4e−ξm/2
(&)

. σm,m

(&)

. e−ξm/2m1/4−γ/2,
(γ>1)

−1 < γ ≤ 1 .

Corollary 1. For any γ > −1/2, the limited angle tomography problem with
η < π/2 has minimax risk

rε(Θi(κ,L)) ∼ (
ξ

2
)2κL log(

1

ε
)−2κ as ε → 0, i = 1, 2,

where ξ is given in (3.2).

Remark 3. In severely ill-posed problems, the variance is dominated by the
bias, even when achieving the optimal constant. Therefore, there are several
asymptotically efficient estimators, among them the simple projection estimator.

Remark 4. The projection estimator is asymptotically efficient and does not
depend on the parameters κ and L of the smoothness class Θi, it is thus adaptive.
Since the projection estimator is linear and the Pinsker estimator linear minimax
(for fixed ϵ), the Pinsker estimator is also efficient.

Remark 5. Golubev and Khasminskii (1999) also investigate a single indexed
sequence model, in which σ−2

k = eαk/k for an α > 0. They show that the
Pinsker estimator is even second order minimax, the second order term being
of order ∼ log log ϵ−2/(log ϵ−2)2κ+1, where the parameter κ corresponds to the
smoothness class. Analogous results in our model appear to be difficult, since
the singular values are less precisely known.

Finally, we show that the logarithmic rate remains true for general λ (not
necessarily an indicator function) which vanishes on an interval at the boundaries.

Corollary 2. Let the weight function λ : [−π/2, π/2] → [0,∞) be Lebesgue
measurable and bounded above. If there exist 0 < η1 < η2 < π/2 such that
inf |φ|≤η1 λ(φ) > 0 and sup|φ|>η2 λ(φ) = 0, then

rε(Θi(κ,L)) log(
1

ε
)2κ(22κL−1 + o(1)) ∈ [ξ2κ2 , ξ2κ1 ] as ε → 0, i = 1, 2,

for any γ > −1/2, where the ξj correspond to ηj according to (3.2).
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3.2. Weight functions with isolated zeros

In case of a single root of λ (mod π, typically π/2), the extreme eigenvalues

αmm of the sequence of Toeplitz matrices Am decay polynomially, with degree

depending on the order of the root. More precisely, if λ : R → R+ is continuous

and π-periodic, if there is a unique value φ0 (mod π) such that λ(φ0) = 0, and

if there exists ρ > 0 such that, with k = k(ρ) = ⌊ρ/2⌋, g(φ) = λ(φ)2k/ρ has 2k

continuous derivatives in some neighborhood of φ0, and g(2k) is the first non-

vanishing derivative of g at φ0, then there exists C > 0 such that α−1
m,m ∼ Cmρ,

see Parter (1961). For example, for λ = cos2, α−1
m,m ≍ m2. By (2.16), this implies

polynomial decay of the singular values σm,l as well.

Here is a general result.

Proposition 1.

a. If there exists ρ ≥ 0 such that βm,m & m−ρ as m → ∞, then

rε(Θi(κ,L)) = O
(
ε4κ/(2κ+ρ+2)

)
as ε → 0, i = 1, 2.

b. Let C > 0 and 0 ≤ ρ1 ≤ ρ < ρ1 + 1. If

m−ρ . βm,m . m−ρ1 as m → ∞, (3.4)

then the Pinsker estimator on Θi(α,L) is asymptotically efficient, and

rε(Θi(α,L)) & ε(4κ+2(ρ−ρ1))/(2κ+ρ+1) as ε → 0, i = 1, 2.

c. If

β−1
m,m ∼ Cmρ as m → ∞, (3.5)

rε(Θi(κ,L)) ≥ C̃ε4κ/(2κ+ρ+1)(1 + o(1)) as ε → 0, i = 1, 2,

where

C̃= C̃(κ, ρ, L,C)=
( Cκ

π(κ+ ρ+ 1)

)2κ/(2κ+ρ+1) (L(2κ+ ρ+ 1))(ρ+1)/(2κ+ρ+1)

ρ+ 1
.

Remark 6. If the minimal eigenvalue αm,m ≍ m−ρ̃, then from the estimate in

(2.16), the condition of a. is satisfied with ρ = ρ̃ + 1 in case −1/2 < γ ≤ 1, as

well as ρ = ρ̃+ γ for γ > 1. Further, (3.4) is satisfied if 0 < γ < 2, in which case

ρ is as before and ρ1 = ρ̃ + γ for 0 < γ < 1, and ρ1 = ρ̃ + 1 otherwise. Finally,

for condition (3.5) we require γ = 1.

3.3. Exact minimax rates and efficiency constants in case γ = 1

Next we intend to find minimax rates and efficiency constants in case where

the minimal eigenvalue βm,m and hence the minimal singular value σm,m decays
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at a polynomial rate. We require quite precise asymptotics of all singular values

σm,l, for which, in general, only bounds are available.

Therefore, in this section we restrict ourselves to the case γ = 1 (fan beam

design), so that σm,l =
√

παm,l/(m+ 1) as given in (2.14). We impose assump-

tions on the eigenvalues αm,l of the Toeplitz matrices Am.

Assumption. There exist C > 0 and ρ ≥ 1 such that

m∑
l=0

α−1
m,l ∼ Cmρ−1 as m → ∞. (3.6)

Assumption. There exist ρ ≥ 2, δ > 0, and a positive, bounded sequence

c = (c0, c1, . . .) such that

α−1
m,l = cm−ll

ρ−1 +O
(
((m− l + 1)(l + 1))ρ−1−δ

)
, m ≥ l ≥ 0. (3.7)

Remark 7. We use the exponent ρ− 1 instead of ρ since the parameter ρ then

corresponds to that of Section 3.2.

First we show that the above conditions are satisfied in certain specific cases.

We say that λ is banded if

λ(φ) =
r∑

k=−r

dke
i2k φ, r ∈ N, dr ̸= 0, d̄k = d−k,

since, by construction, the Hermitian Toeplitz matrices Am generated by λ are

banded in this case, and in fact, the coefficients dk are exactly the entries of Am.

In particular, the condition d̄k = d−k ensures that λ is real.

Using the results of Böttcher, Grudsky, and Maksimenko (2010) on the uni-

form behavior of the eigenvalues of banded Toeplitz matrices Am, we obtain

Proposition 2. Suppose λ is banded and satisfies λ(−π/2) = λ(π/2) = 0.

Further, assume that there is a unique maximizer φ0 such that λ is strictly

increasing on (−π/2, φ0) and strictly decreasing on (φ0, π/2), and the second

derivatives of λ at π/2 and φ0 are non-zero. Then the eigenvalues αm,l sat-

isfy (3.6) with ρ = 3 and C = 4/(3λ′′(π/2)), as well as (3.7) with ρ = 3 and

cj = (8/λ′′(π/2)π2)(j + 1)−2.

Linear Minimax risk on Θ1 under (3.6)

Let am,l = (m+1)κ be the ellipsoid weights corresponding to Θ1(κ,L). From

(2.6) we have

(m, l)ϵ = max
{
(m̃, l̃) : ε2

∑
(m,l)≺1(m̃,l̃)

σ−2
m,lam,l(am̃,l̃ − am,l) ≤ L

}
,
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where the maximum is taken w.r.t. the total ordering ≺1 defined at the end of

Section 2. Since am,0 = . . . = am,m for allm, we may include all l for the maximal

value of m (since these do not increase the sum). Therefore, (m, l)ϵ = (Nϵ, Nϵ),

where

Nε = max
{
n : ε2

n∑
m=0

m∑
l=0

σ−2
m,lam,l(an,n − am,l) ≤ L

}
.

By (3.6) we have
∑m

l=0 σ
−2
m,l ∼ Cπ−1mρ, yielding

n∑
m=0

m∑
l=0

σ−2
m,lam,l(an,n − am,l) ∼

C

π

n∑
m=0

(
nκmκ+ρ −m2κ+ρ

)
∼ C

π

κ

(κ+ ρ+ 1)(2κ+ ρ+ 1)
n2κ+ρ+1

as n → ∞, and thus

Nε ∼
(πL(κ+ ρ+ 1)(2κ+ ρ+ 1)

Cκε2

)1/(2κ+ρ+1)
as ε → 0.

Since cε ∼ N−κ
ε by (2.6), and minding that (1− cεam,l)+ = 0 for m > Nε, from

Pinsker’s theorem we obtain

rLε (Θ1(κ,L)) ∼ ε2
Nε∑
m=0

m∑
l=0

σ−2
m,l(1−N−κ

ε (m+ 1)κ)

∼ Cε2

π

Nε∑
m=0

(
mρ −N−κ

ε mκ+ρ
)

∼ Cε2

π

κ

(ρ+ 1)(κ+ ρ+ 1)
Nρ+1

ε

∼ C∗
1 ε

4κ/(2κ+ρ+1)

(3.8)

with C∗
1 = C∗

1 (κ, ρ, L,C) given in Theorem 3 below.

Linear Minimax risk on Θ2 under (3.7)

In order to simplify calculations, note that the ellipsoid Θ2 can be rewritten

as

Θ2(κ,L) =
{
θ :

∑
j,k≥0

(j + 1)2κ(k + 1)2κθ2j+k,k ≤ L
}
,

corresponding to the sequence of ellipsoid weights aj+k,k = (j + 1)κ(k + 1)κ,

j, k ≥ 0. (3.7) then reads

α−1
j+k,k = cjk

ρ−1 +O
(
((j + 1)(k + 1))ρ−1−δ

)
, j, k ≥ 0. (3.9)
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Define the totally ordered index sets (n) =
{
(j, k) ∈ N2

0 : (j+1)(k+1) ≤ n
}

, n ∈ N. Similarly as above, for the parameter (j, k)ϵ in (2.6) we have
{
(j, k) ≺2

(j, k)ϵ
}
∪ {(j, k)ϵ} = (Nϵ), where

Nε = max
{
n : ε2

∑
(j,k)∈(n)

σ−2
j+k,kaj+k,k

(
nκ − aj+k,k

)
≤ L

}
.

Since σ−2
j+k,k = (j + k + 1)π−1α−1

j+k,k, Lemma A.6 in Section A.3 gives

∑
(j,k)∈(n)

σ−2
j+k,kaj+k,k

(
nκ − aj+k,k

)
∼ K(ρ, c)

π

κ

(κ+ ρ+ 1)(2κ+ ρ+ 1)
n2κ+ρ+1

as n → ∞, where

K(ρ, c) =
∞∑
j=0

cj(j + 1)−(ρ+1). (3.10)

Therefore,

Nε ∼
(πL(κ+ ρ+ 1)(2κ+ ρ+ 1)

K(ρ, c)κε2

)1/(2κ+ρ+1)
as ε → 0,

so following the lines in (3.8) and using Lemma A.6, we find that

rLε (Θ2(κ,L)) = ε2
∑

(j,k)∈(Nε)

σ−2
j+k,k(1−N−κ

ε aj+k,k)

∼ C∗
2 ε

4κ/(2κ+ρ+1)

(3.11)

with C∗
2 = C∗

2 (κ, ρ, L, c) given in Theorem 3 below.

Asymptotic efficiency on Θ1 and Θ2

Given (3.8) and (3.11), we now easily arrive at

Theorem 3. For i = 1, 2, under (3.6) and (3.7), respectively,

rε(Θi(κ,L)) ∼ C∗
i ε

4κ/(2κ+ρ+1) as ε → 0,

where

C∗
i =

( Ξiκ

π(κ+ ρ+ 1)

)2κ/(2κ+ρ+1)
(
L(2κ+ ρ+ 1)

)(ρ+1)/(2κ+ρ+1)

ρ+ 1
,

Ξi =

{
C, i = 1,

K(ρ, c), i = 2.
(3.12)
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Example 1. For the ordinary Radon transform, λ = 1, we have
∑m

l=0 α
−1
m,l =

m+1, whence (3.6) is satisfied for C = 1 and ρ = 2, leading to the minimax rate

rε(Θ1(κ,L)) ≍ ε4κ/(2κ+3) as ε → 0.

On the other hand, Cavalier and Tsybakov (2002) proved that in this case we
have

rε(Θ2(κ,L)) ≍ ε4κ/(2κ+2) as ε → 0,

so we apparently improve by estimating within the smaller ellipsoid Θ2. This
is no longer true in general, however, when the inverse problem gets more ill-
posed. For a banded weight function λ satisfying the assumptions of Proposition
2, Theorem 3 implies that

rε(Θi(κ,L)) ≍ ε4κ/(2κ+4) as ε → 0

for both i = 1 and i = 2. A slight improvement can only be found for the
efficiency constant. Here, Ξ1 = 4/(3λ

′′
(π/2)) and Ξ2 = 8/(λ

′′
(π/2)ζ(6)π2),

where ζ denotes the Riemann zeta function. Thus, Ξ1/Ξ2 = π2ζ(6)/6 ≈ 1.63.

4. Concluding Remarks

We have shown how the design influences the degree of ill-posedness of the
Radon transform in two dimensions, and that the whole range from mildly ill-
posedness to severely ill-posedness may arise quite naturally. Without weight
on the angle, the rate of convergence remains the same over Θ1(κ, L) for all
parameters γ ∈ (0, 1] (which governs the weight function on the signed distance),
see Section B.3 in the supplement, where we also derive the asymptotic minimax
constants. In order to avoid computation of the spectral data, iterative methods
might be an alternative, see Bissantz et al. (2007). The case of an unknown weight
function, for which additional data is available (e.g. in the random coefficients
model) leads to a problem with noisy operator, as studied in Hoffmann and Reiß
(2008). Finally, we remark that in higher dimensions, injectivity of the limited
angle Radon transform as well as the analytic form of its SVD seem not be
established.

Supplementary Materials
The online supplement Hohmann and Holzmann (2015) contains the proofs

as well as a detailed derivation of the singular value decomposition of the weighted
angle Radon transform.
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Grenander, U. and Szegö, G. (1958). Toeplitz Forms and Their Applications. Univ. of California

Press.
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