
Statistica Sinica 26 (2016), 97-117

doi:http://dx.doi.org/10.5705/ss.202014.0161

DETERMINANTAL POINT PROCESS PRIORS

FOR BAYESIAN VARIABLE SELECTION

IN LINEAR REGRESSION

Mutsuki Kojima1 and Fumiyasu Komaki2,3

1Mitsui Sumitomo Insurance Co., Ltd.
2The University of Tokyo and 3RIKEN Brain Science Institute

Abstract: We propose discrete determinantal point processes (DPPs) for priors

on the model parameter in Bayesian variable selection. By our variable selection

method, collinear predictors are less likely to be simultaneously selected due to

the repulsion property of discrete DPPs. Three types of DPP priors are proposed.

Our method is an empirical Bayes approach, so hyperparameters are estimated by

maximizing the marginal likelihood. We show the efficiency of the proposed priors

through numerical experiments and applications to collinear datasets.
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1. Introduction

We consider Bayesian variable selection in linear regression. Suppose we

have n observations on a dependent variable y (n × 1 matrix) and p predictor

variables X = (x1, . . . ,xp) (n × p matrix), for which the normal linear model

holds:

y = Xβ + ε, (1.1)

where ε ∼ N (0, σ2In) (n × 1 matrix) and β = (β1, . . . , βp)
⊤ (p × 1 matrix).

Let γ = (γ1, . . . , γp)
⊤ ∈ {0, 1}p be a model parameter: γi = 1 indicates βi is

nonzero and γi = 0 indicates βi = 0. In Bayesian variable selection, we consider

2p possible submodels of (1.1). Submodels are denoted by Mγ . Let Xγ be the

n × |γ| design matrix consisting of these columns of X that correspond to the

predictors with γi = 1. Here, |γ| is the number of nonzero elements of γ. Under

submodel Mγ , y follows

Mγ : y = Xγβγ + ε,

where βγ is the |γ|-dimensional vector of nonzero regression coefficients of β

with γi = 1. Bayesian variable selection is to identify nonzero components of β

assigning priors to the parameters. We select the best model that attains the

maximum of the posterior probability p(γ|y).
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The normal linear regression model is simple and useful, but the collinearity

problem often arises when we apply it to data. Highly correlated predictors can

make (X⊤X)−1 numerically unstable and the OLS, β̂OLS = (X⊤X)−1X⊤y, un-

reliable. Few Bayesian variable selection methods that consider the correlations

have been proposed (Yuan and Lin (2005); Krishna, Bondell and Ghosh (2009)).

We propose discrete determinantal point processes (DPPs) for prior distributions

on γ that discourage the inclusion of groups of collinear predictors.

DPPs have been studied since Macchi (1975) first identified them as a class of

point processes. Recently, Borodin and Rains (2005) introduced discrete DPPs

that have been applied to machine learning problems by Kulesza and Taskar

(2012). Discrete DPPs are elegant probabilistic models of repulsion, and Kulesza

and Taskar (2012) considered repulsion as diversity of items. For example, in a

document summarization task, modeling the task with discrete DPPs is appro-

priate because a summary of the document requires diversity.

Selected predictors in variable selection should be diverse in the sense that

pairs of selected predictors be nearly uncorrelated. Here, discrete DPPs are

efficient priors on γ in Bayesian variable selection, and we show that they are

useful priors through numerical experiments and applications to datasets.

The remainder of this paper is organized as follows. In Section 2, the def-

inition and examples of discrete DPPs are given. In Section 3, we first review

the Bayesian variable selection method proposed by George and Foster (2000),

and then propose Bayesian variable selection methods using three types of DPP

priors on γ. In Section 4, we show the results of numerical experiments and we

report applications to datasets in Section 5. We conclude the paper in Section 6.

2. Discrete Determinantal Point Processes

Let Λ be {1, . . . , p} and let L be a p× p symmetric positive definite matrix.

We identify {0, 1}p with the power set of Λ (2Λ): for γ ∈ {0, 1}p, γi = 1 indicates

i ∈ γ and γi = 0 indicates i ̸∈ γ.

Definition 1. A random variable X that takes values in the power set of Λ

is called a discrete determinantal point process (DPP) with kernel L, if P (X =

γ) ∝ det(Lγ), where γ ∈ {0, 1}p and Lγ is the |γ| × |γ| matrix whose elements

are Lij (i, j ∈ {k : γk = 1}). For empty set ∅, we define det(L∅) = 1.

The normalization constant is provided by Kulesza and Taskar (2012).

Proposition 1.
∑

γ∈{0,1}p det(Lγ) = det(L+ Ip), where Ip is the p× p identity

matrix, and the sum is taken over all subsets of Λ.

For more detailed properties of discrete DPPs, see Kulesza and Taskar (2012).

See Hough et al. (2009) for general determinantal point processes.
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Table 1. The distribution of discrete DPPs with kernel L in Example 2.

Subsets Probabilities
∅ 0.157
{1} 0.157
{2} 0.157
{3} 0.157

Subsets Probabilities
{1, 2} 0.030
{1, 3} 0.157
{2, 3} 0.157
{1, 2, 3} 0.030

We briefly explain the repulsion property of DPPs, a key of our proposal.
Let F be a p× q (p < q) matrix, and denote the rows of F by fi (i = 1, 2, . . . , p).
Assume that L = FF⊤. If X follows discrete DPPs with kernel L, then

P (X = γ) ∝ (vol({fi}i∈γ))2, (2.1)

where vol({fi}i∈γ) means the |γ|-dimensional volume of the parallelepiped
spanned by the rows of {fi}i∈γ . When considering fi as the feature vector of
item i, vol({fi}i∈γ) is small if there exist similar items in γ. Accordingly DPPs
favor repulsion, and thus diversity.

The determinant of a symmetric positive definite matrix L is the volume
of the parallelepiped spanned by the rows of L. From this viewpoint, the off-
diagonal elements of L play a key role because they affect the determinant. In
fact,

P (X = {i, j}) ∝ P (X = {i})P (X = {j})−
(

Lij

det(L+ Ip)

)2

. (2.2)

Therefore, if off-diagonal elements are nonzero, the probabilities of including the
corresponding items are small.

We provide two examples of discrete DPPs.

Example 1. Let Λ = {1, . . . , p} and let L be a diagonal matrix with Lii =
w/(1− w), i = 1, . . . , p, where w ∈ (0, 1). Suppose X follows the discrete DPPs
with kernel L. By Proposition 1,

P (X = γ) =
det(Lγ)

det(L+ Ip)
= w|γ|(1− w)p−|γ|.

In this setting, the distribution of X is the Bernoulli distribution with success
probability w.

Example 2. Let Λ = {1, 2, 3} and let

L =

 1 0.9 0

0.9 1 0

0 0 1

 .

Suppose X follows the discrete DPPs with kernel L. The distribution of X is
given in Table 1. One finds there that X equals {1, 2} or {1, 2, 3} is less likely to
occur because of the off-diagonal element L12 = 0.9.
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3. Bayesian Variable Selection Methods

3.1. Bayesian variable selection method proposed by George and
Foster

George and Foster (2000) proposed the following Bayesian variable selection.
Zellner’s g-prior (Zellner (1986)) is assigned to nonzero regression coefficients βγ

under submodel Mγ :

p(βγ |g) ∼ N (0, gσ2(X⊤
γ Xγ)

−1), g > 0, (3.1)

where g is the hyperparameter. For the prior distribution on model parameter
γ, the Bernoulli distribution with success parameter w ∈ (0, 1) is used:

p(γ|w) = w|γ|(1− w)p−|γ|.

The best model is that which maximizes the posterior probability.

γ̂ = argmax
γ

p(γ|y, g, w)

= argmax
γ

exp

(
g

2(1 + g)

(ssγ
σ2

− F (g, w)|γ|
))

= argmax
γ

(ssγ
σ2

− F (g, w)|γ|
)
, (3.2)

where

ssγ = y⊤XγX
⊤
γ y, F (g, w) =

1 + g

g

(
2 log

1− w

w
+ log(1 + g)

)
.

If σ2 is known and the hyperparameters are appropriately calibrated, this Bayesian
variable selection is that of selecting the best model by the typical penalized sum
of squares criteria, such as AIC (Akaike (1973)), BIC (Schwarz (1978)), or RIC
(Foster and George (1994)). For example, if we set g and w such that F (g, w) = 2,
then the highest posterior model maximizes (3.2), ssγ/σ

2 − 2|γ|. In this setting,
the highest posterior model exactly corresponds to the best model with the lowest
AIC.

For hyperparameters g and w, George and Foster (2000) used type-II maxi-
mum likelihood estimators ĝ and ŵ, given by

(ĝ, ŵ) = argmax
g,w

p(y|g, w)

= argmax
g,w

∑
γ∈{0,1}p

p(γ|w)
∫

p(y|γ,βγ)p(βγ |g)dβγ .

Since the g-prior is normal, the marginal distribution can be calculated in the
closed-form:∫

p(y|γ,βγ)p(βγ |g)dβγ =
(1 + g)−|γ|/2

(2π)n/2(σ2)n/2
exp

(
g

1 + g

ssγ
2σ2

− y⊤y

2σ2

)
.
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Therefore, the marginal likelihood for g and w is

p(y|g, w) ∝
∑

γ∈{0,1}p

w|γ|(1− w)p−|γ|

(σ2)n/2(1 + g)|γ|/2
exp

(
g

1 + g

ssγ
2σ2

− y⊤y

2σ2

)
.

We henthforth refer to this model as EB (empirical Bayes).

3.2. DPP priors and proposed methods

Let xij be the (i, j) element of design matrix X and let X̃ = (x̃1, . . . , x̃p)

(n× p matrix) be the standardized matrix defined by

x̃ij =
xij −mj

sj
, mj

def
=

1

n

n∑
i=1

xij , sj
def
=

√√√√ n∑
i=1

(xij −mj)2.

We denote the correlation matrix (p× p matrix) of X by R = X̃⊤X̃. The first

proposal for prior distribution p(γ|w) is

p(γ|w) ∝ det(wRγ) = w|γ| det(Rγ), w > 0. (3.3)

By Proposition 1,

p(γ|w) = det(wRγ)

det(wR+ Ip)
.

We call this the DPP prior. When we put it on the model parameter γ, we can

select diverse predictors. The hyperparameter w controls the expected proportion

of nonzero regression coefficients; if w > 1 then larger subsets are preferable, but

otherwise smaller subsets are preferable.

The DPP prior is a generalization of the Bernoulli distribution, used for

p(γ|w) in the method proposed by George and Foster (2000). We propose two

types of priors to bridge the Bernoulli and DPP priors:

p(γ|w, θ) ∝ det(w(θRγ + (1− θ)Iγ)), w > 0, θ ∈ [0, 1], (3.4)

p(γ|w,α) ∝ det(w(Rα)γ), w > 0, α ≥ 0, (3.5)

where Iγ is the |γ| × |γ| identity matrix and Rα is the α power of R. We call

(3.4) the linear mixture DPP prior (referred to as LDPP) and (3.5) the geometric

mixture DPP prior (referred to as GDPP). LDPP is the DPP prior when θ = 1

and is the Bernoulli when θ = 0. Similarly, GDPP is the DPP prior when α = 1

and the Bernoulli when α = 0.

Properties of DPP priors

We first study the collinearity penalty. Suppose that predictors in S1 (|S1| =
q − s) are mutually uncorrelated and predictors in S0 (|S0| = s) are correlated



102 MUTSUKI KOJIMA AND FUMIYASU KOMAKI

with a particular predictor in S1. Let R be the correlation matrix of X. We

divide RS0∪S1 as

RS0∪S1 =

(
R00 R01

R⊤
01 R11

)
,

where R00, R01, and R11 are the correlation matrices of predictors in S0 and S1.

Here R11 = Iq−s. Then, for determinants of block matrices, we can write

det(RS0∪S1) = det(R11) det(R00 −R01R
−1
11 R

⊤
01)

= det(RS1) det(R00 −R01R
⊤
01).

Thus, the ratio of the prior probability of S0 ∪ S1 over the probability of S1 is

det(RS0∪S1)

det(RS1)
= det(R00 −R01R

⊤
01) ≤ det(RS0).

Since predictors in S0 are correlated with a particular predictor in S1, the upper

bound of the ratio, det(RS0), is quite small. Therefore, we see that the DPP

prior discourages the inclusion of groups of collinear predictors.

We next investigate the induced priors on the model size. By a result of

Kulesza and Taskar (2012), we have

p(|γ| = k) =
ek(λ1, . . . , λp)

det(L+ Ip)
, k = 0, 1, . . . , p, (3.6)

where λ1, . . . , λp are the eigenvalues of L and ek is the k-th elementary symmetric

polynomial:

ek(t1, . . . , tp)
def
=

∑
γ⊂{1,...,p},

|γ|=k

∏
l∈γ

tl.

Generally speaking, when using DPP priors, large submodels are less likely to

be preferable. If the collinearity is severe then, for large k, the prior probability

that the model size is k is small because most k-products of the eigenvalues are

quite small (see (3.6)). We illustrate the property with a simple example. Take

p = 6 and

x1, x2, x3, ε4, ε5, ε6
i.i.d.∼ N (0, I20),

x4 = x1 + x2 + 0.1× ε4,

x5 = x1 + x3 + 0.1× ε5,

x6 = x2 + x3 + 0.1× ε6.

Here, the correlation matrix, R, has three small eigenvalues. Consider the DPP

prior with R and w = 1. Then the induced prior on the model size is as in Figure
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Induced Prior on the Model Size

Figure 1. Induced prior on the model size with w = 1.

1. Since the correlation matrix has three small eigenvalues, the prior probabilities

that the model size exceeds 3 are quite small. Generally if R is almost of rank q,

the induced prior assigns small probability to a model whose size is larger than

q.

The θ in LDPP controls the collinearity penalty of the DPP prior and there-

fore the penalty for the model size. This is verified numerically in Figure 2, where

R is the same as above and the kernel matrix is θR+ (1− θ)Ip. From Figure 2,

the penalty for the model size decreases as θ gets smaller. In fact, the eigenvalues

of θR+ (1− θ)Ip are θλi + (1− θ) and for λi < 1, they increase as θ decreases.

Hyperparameter α in GDPP plays a similar role.

Proposed variable selection methods

Our methods proceed as follows. We put the proposed DPP priors (DPP,

LDPP, or GDPP) on model parameter γ and the g-prior on βγ . Hyperparameters

are estimated by maximizing the marginal likelihood

p(y|ξ) ∝
∑

γ∈{0,1}p
p(y|γ, ξ)p(γ|ξ),

where ξ denotes the hyperparameters to be estimated. Here, they are g, σ2 (if un-

known), w, θ (if using LDPP), and α (if using GDPP). The selected model max-

imizes the posterior probability p(γ|y), i.e., the maximum a posteriori (MAP)

model.

Although our interest is in variable selection methods, we can estimate the

regression coefficients after selecting the best model. The estimator β̂ is con-

structed after estimating ĝ and selecting the best model Mγ̂ :

β̂ = E[β|γ̂, ĝ] = ĝ

1 + ĝ
(X⊤

γ̂ Xγ̂)
−1X⊤

γ̂ y. (3.7)
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Induced Prior on the Model Size (θ = 0.7)

Induced Prior on the Model Size (θ = 0)

Figure 2. Induced prior on the model size with θ = 0.7 (the upper panel)
and θ = 0 (the lower panel).

The representation of the estimator is the same whether the best model γ̂ is

selected by EB or by our methods.

Remark 1. Although we select the MAP model, one could choose the median

probability model or apply ad-hoc hard thresholding methods. When dealing

with collinear data, the correlations among the predictors should be taken into

consideration and it is preferable to utilize the joint, not marginal, posterior dis-

tribution of β. Recently, Hahn and Carvalho (2015) provided posterior summary

selection methods that explicitly account for the collinearity. In addition, for

high-dimensional regression, Bondell and Reich (2012) proposed a variable selec-

tion method, using posterior credible regions of β, that does not need MCMC

iterations.

4. Numerical Experiments

In this section, we evaluate the risk of estimated regression coefficients as

the sample size increases through simulations. The following settings were con-
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sidered. First we sampled a 400 × 6 design matrix X∗ with columns x∗
i (i =

1, 2, . . . , 6):

x∗
1, x∗

2, x∗
3, ε∗4, ε∗5, ε∗6

i.i.d.∼ N (0, I400),

x∗
4 = x∗

1 + x∗
2 + 0.1× ε∗4,

x∗
5 = x∗

1 + x∗
3 + 0.1× ε∗5,

x∗
6 = x∗

2 + x∗
3 + 0.1× ε∗6.

LetX∗
k (k = 1, 2, . . . , 20) be the (20k)×6 submatrix ofX∗ whose rows correspond

to the first 20k rows of X∗, and let β∗ = (1,−1, 0, 0, 0, 0)⊤. For each k, we

simulated y
(l)
k ((20k) × 1 matrix), l = 1, . . ., 10,000, following (1.1) with X =

X∗
k , β = β∗, and σ2 = 0.92. From each y

(l)
k and X∗

k , the estimator β̂(l) was
constructed by each procedure. The loss of each estimator was averaged over
10,000 repetitions for each k.

For the loss function, we employed the maximum loss function

∥β∗ − β̂∥∞
def
= max

i
|β∗

i − β̂i|,

where β̂ = (β̂1, . . . , β̂p)
⊤. The usual loss function for estimators of regression

coefficients is either the quadratic loss ∥β∗−β̂∥2 =
∑

i |β∗
i − β̂i|2 or the predictive

loss ∥Xβ∗ − Xβ̂∥2 =
√∑

i ∥xiβ∗
i − xiβ̂i∥22. But, the maximum loss function

seems more appropriate than these usual loss functions when the influence of
collinearity on the estimated regression coefficients is investigated.

We took β̂EB, β̂DPP, β̂LDPP, and β̂GDPP, defined by (3.7), for p(γ|w) using
the Bernoulli distribution (EB), DPP prior (DPP), linear mixture DPP prior
(LDPP), and geometric mixture DPP prior (GDPP), respectively. We took σ2 =
0.92 and estimated hyperparameters g, w, and θ (LDPP) by maximizing the
marginal likelihood. Thus, for example, we estimated g, w, and θ, when using
LDPP, by maximizing

p(y|g, w, θ) ∝
∑

γ∈{0,1}p

det(w(θRγ + (1− θ)Iγ)) exp
(
[g/(1 + g)][ssγ/2σ

2]
)

(1 + g)|γ|/2 det(wθR+ (1 + w − wθ)Ip)
.

For α, we used the parameter α̂ that maximizes the marginal likelihood p(y|α)
over [0, 3]. Since X⊤X is ill-conditioned here, we restricted the domain of the
optimization.

For comparison, other estimators were also investigated:

β̂RIDGE
def
= (X⊤X + λIp)

−1X⊤y,

β̂OLS
def
= (X⊤X)−1X⊤y,

β̂ORACLE
def
= (X⊤

γ∗Xγ∗)−1X⊤
γ∗y,
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where λ > 0 is the hyperparameter in ridge regression (putting N (0, σ2λ−1Ip) on

β) and γ∗ is the true subset of nonzero coefficients, γ∗ = {1, 2}. We estimated

λ by maximizing the marginal likelihood

p(y|λ) =
∫

p(y|β)p(β|λ)dβ

∝ λp/2

∫
exp

(
− 1

2σ2
(y −Xβ)⊤(y −Xβ)− λ

2σ2
(β⊤β)

)
dβ.

In addition, the Bayesian elastic net (BEN) was studied. The model is

y | β, σ2 ∼ N (Xβ, σ2In),

β | σ2 ∼ exp
{
− 1

2σ2
(λ1∥β∥1 + λ2∥β∥2)

}
,

σ2 ∼ 1

σ2
,

where ∥ · ∥p is the Lp norm. Hyperparameters λ1 and λ2 were estimated by the

EM algorithm. See Li and Lin (2010) for detailed MCMC sampling schemes.

Figure 3 shows the results of the comparison. From Figure 3, DPP, LDPP,

and GDPP outperform the other estimators. In Section 3, we observed that the

best model selected by EB corresponds to the best model selected by the typical

penalized sum of squares criteria, such as AIC, BIC or RIC. Therefore EB is

considered to evaluate complexity of a submodel by its dimension. Since DPP,

LDPP, and GDPP penalize a submodel not only by its dimension but also by the

correlations among included predictors, they perform better than EB. Although

the ridge estimator reduces the quadratic loss, its maximum risk is worse than

DPP, LDPP, and GDPP. The risk of BEN is similar to that of RIDGE. Since the

elastic net (Zou and Hastie (2005)) has the grouping effect, BEN is considered

not to reduce the maximum risk.

Table 2 shows the medians of estimated hyperparameters θ̂ and α̂. From

Table 2, estimators θ̂ are nearly 0 and α̂ decreases as the sample size increases.

In the simulations, since likelihood p(y|γ) of submodels γ that include collinear

predictors are small, θ̂ is nearly 0. From Figure 4, since the likelihood of γ =

{1, 2}, {1, 4}, {2, 4} and submodels with three predictors are large when the

sample size is 20, estimators α̂ are large. When sample size is 400, α̂ is nearly 1

since the likelihood of γ = {1, 2} is particularly large and the prior probability

of γ = {1, 2} attains its maximum around α = 1.

We provide the reason here why the maximum loss is more appropri-

ate than the usual loss functions. It is well known that the predictive loss

is not affected by collinearity even if it is severe, since specific combinations of

estimated regression coefficients are well determined by ordinary least squares
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Figure 3. Comparison of the maximum risk for each procedure (EB, DPP,
LDPP, GDPP, RIDGE, BEN, and OLS) as the sample size increases. The
upper panel shows the result of the estimated maximum risk for each proce-
dure. Each point displays the average maximum risk at 20k (k = 1, 2, . . . , 20)
observations. Error bars indicate mean ±3×(standard error). The bottom
panel shows an enlargement of the upper panel.

(Belsley, Kuh, and Welsch (1980)). Thus predictive loss is not appropriate for

investigation of the influence of collinearity on estimated regression coefficients.

Since the quadratic loss is mathematically tractable, it has been used when deal-

ing with correlated predictors. Ridge regression (Hoerl and Kennard (1970)) is

the method of constructing estimators with the quadratic penalty for estimated

coefficients. Quadratic loss summarizes componentwise distances from an estima-

tor to the true parameter, while maximum loss evaluates the furthest distance
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Table 2. Median of estimators θ̂ and α̂ in the numerical experiments.

Sample size (20k) θ α
20 9.3e-17 3.00
40 5.4e-16 3.00
60 1.1e-15 3.00
80 1.7e-15 3.00
100 2.3e-15 1.47
120 2.7e-15 0.96
140 3.4e-15 0.94
160 3.9e-15 0.93
180 4.2e-15 0.90
200 4.9e-15 0.90

Sample size (20k) θ α
220 6.2e-15 0.94
240 7.3e-15 0.90
260 8.4e-15 0.90
280 9.3e-15 0.93
300 1.0e-14 0.94
320 1.1e-14 0.96
340 1.1e-14 0.94
360 1.1e-14 0.93
380 1.1e-14 0.92
400 1.1e-14 0.92

in all components. Thus, for example, assume three predictors {xi}3i=1 exist

and x3 is nearly equal to x1 + x2. Suppose that the true regression coefficients

are β∗ = (β∗
1 , β

∗
2 , β

∗
3)

⊤ = (1,−1, 0)⊤ and estimators β̂(1) = (0.5,−1.5, 0.0)⊤,

β̂(2) = (1.1,−0.9,−0.6)⊤ are obtained. β̂(1) is prefered to β̂(2) since the furthest

distance from β̂(1) to β∗ is |β̂(1)
1 −β∗

1 | = 0.5 but that from β̂(2) is |β̂(2)
3 −β∗

3 | = 0.6.

The quadratic losses are

∥β∗ − β̂(1)∥22 = 0.5, ∥β∗ − β̂(2)∥22 = 0.38. (4.1)

Hence, in total, β̂(2) is prefered to β̂(1) with respect to the quadratic loss. Since

one of the serious problems of collinearity is the imprecision of OLS, it is impor-

tant to investigate the estimation accuracy of every component.

5. Applications to Datasets

Let xk be the k-th row of the design matrix X. In this section, we call xk

the k-th observation, with xi as the i-th predictor.

Before we report the results of applications to the Air Pollution Data and

the Body Fat Data, we summarize assumptions and analysis methods for the

datasets.

In practice, since the mean of dependent variable y is almost always nonzero,

we assume that the constant term 1n = (1, . . . , 1)⊤ (n × 1 matrix) is included

and consider Bayesian variable selection in Mγ : y = µ1n +Xγβγ + ε, where µ

is an unknown intercept parameter. We take the columns of X as standardized.

In Bayesian variable selection (EB, DPP, LDPP, and GDPP), hyperparam-

eters µ, σ2, g, w, and θ (LDPP is being used) are estimated by maximizing

the marginal likelihood. For α, the parameter α̂ is used that maximizes the

marginal likelihood p(y|α) over [0, 3]. The best model that maximizes the poste-

rior probability p(γ|y) is selected. The estimator of regression coefficients β̂ are
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Figure 4. The two panels show that the mean of likelihood p(y
(l)
k |γ) (l =

1, . . ., 10,000) when sample size is 20 (the upper panel) or 400 (the lower
panel). Index of predictors has submodels sorted as ∅ < {1} < {2} <
· · · < {6} < {1, 2} < {1, 3} < · · · < {5, 6} < {1, 2, 3} < {1, 2, 4} < · · · <
{1, . . . , 6}. The likelihood of numbers 8 (γ = {1, 2}), 10 (γ = {1, 4}), and
14 (γ = {2, 4}) are large when sample size is 20. In addition, the likelihood
function of submodels with three predictors (numbers: 23-42) are relatively
large. Only number 8 (γ = {1, 2}) is significantly large when sample size is
400.

constructed following (3.7). For ridge regression, we put the normal distribution

N (0, σ2λ−1I) on the regression coefficients β. We estimate hyperparameters µ,
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Figure 5. The upper panel shows that prior probability p(γ = {1, 2}|w =
1, α) when sample size is 400. Similarly, the lower panel shows that prior
probability p(γ = {1, 2}|w,α = 1) when sample size is 400.

σ2 and λ by maximizing the marginal likelihood.

We investigate prediction accuracy of each procedure (EB, DPP, LDPP,

GDPP, RIDGE, BEN, and OLS). In particular, our interest is robustness of

the predictive performance of each method when the values of predictors X in

the training and test datasets are quite different. In this setting, collinearity in-

fluences prediction. To investigate robustness, we divided the observations into

two parts according to the values of predictors X. The first part is the test

dataset and the second part is the candidate for the training datasets. Let X̃ be

the design matrix before standardization and let x̃ij be (i, j) element of X̃. We



DETERMINANTAL POINT PROCESS PRIORS 111

calculate

m̃
def
=

(
1

n

n∑
i=1

x̃i1, . . . ,
1

n

n∑
i=1

x̃ip

)⊤
, Σ̃

def
=

1

n− 1
Ã⊤Ã,

where Ã
def
= X̃ −

(
m̃11n, . . . , m̃p1n

)
. Using m̃ and Σ̃, we calculate the Maha-

lanobis distance from m̃ to each observation x̃k. The furthest 10 observations

from m̃ are assigned to the first part (the test dataset). The second part con-

sists of the remaining observations excluding the furthest 20 (in the Air Pollution

Data) or 50 (in the Body Fat Data) observations from m̃. Note that 10 (in the

Air Pollution Data) or 40 (in the Body Fat Data) observations are not included

in either part as our aim is to investigate prediction accuracy when the values of

predictors in the training and test datasets are quite different. For k = 1, . . . , 100,

we randomly sample 20 observations (X(k) (20× p matrix) and y(k) (20× 1 ma-

trix)) from the second part. Then, the prediction accuracy of each procedure is

evaluated by the prediction mean squared error (PMSE):

PMSE(k) def
=

√√√√ 1

10

10∑
i=1

(ytesti − ŷ
(k)
i )2,

where ytesti (i = 1, . . . , 10) is the value of the dependent variable in the test

dataset and ŷ
(k)
i is prediction value of ytesti based on the training dataset (X(k)

and y(k)), and the values of predictors in the test dataset.

To reduce the computational burden of estimating hyperparameters, we se-

lect 10 important predictors by least angle regression (Efron et al. (2004)) be-

forehand. Thus for k = 1, 2, . . . , 100, we select 10 predictors xk1 , . . . ,

xk10 by least angle regression and estimate hyperparameters by maximizing∑
γk1={0,1}

∑
γk2={0,1}

· · ·
∑

γk10={0,1}

p(y|γ̃, ξ)p(γ̃|ξ), (5.1)

where γ̃ = (γk1 , . . . , γk10)
⊤ (10× 1 matrix) and ξ denotes the hyperparameter to

be estimated. Evaluation of the marginal likelihood needs to sum p(y,γ|ξ)p(γ|ξ)
2p times. Since this computation is a heavy task even when p is moderately large,

we approximate the marginal likelihood by partial sum (5.1).

5.1. Air pollution data

We applied our methods to the Air Pollution Data. The Air Pollution Data

was originally analyzed by McDonald and Schwing (1973). The data consists of

daily mortality rates in 60 Standard Metropolitan Statistical Areas in the US,

along with 15 predictors. The dataset is available from the R package SMPrac-

ticals (Davison (2013)).
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Figure 6. Box plots of prediction mean squared errors (PMSEs) of EB,
DPP, LDPP, RIDGE, BEN, and OLS: The panel shows the PMSE of each
procedure for the Air Pollution Data when we separate the dataset according
to the Mahalanobis distances of X.

Table 3. Comparison of median prediction mean squared errors (PMSE)
of EB, DPP, LDPP, RIDGE, BEN, and OLS for the Air Pollution Data.
Standard errors are given in parentheses.

Method EB DPP LDPP GDPP RIDGE BEN OLS
Median PMSE 214(23) 119(17) 155(18) 98(18) 197(16) 245(5.8) 403(40)

Table 3 shows the median of PMSE of each method and Figure 6 shows the

result of prediction by each method. DPP, LDPP, and GDPP perform better than

EB, RIDGE, BEN, and OLS. To compare the predictive performances between

EB and DPP, we conducted a paired Wilcoxon signed rank test. The alternative

hypothesis is that DPP outperforms EB. Here, the p-value of the test is 3.5×10−3,

and we consider DPP to outperform EB.

5.2. Body fat data

The dataset consists of estimates of the percentage of body fat determined

by underwater weighing, and 13 body circumference measurements for 252 men.

To assess health, it is important to estimate the percentage of body fat. Since

accurate evaluation of body fat percentage is inconvenient and expensive, we

estimate the percentage from body circumference measurements such as neck
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Figure 7. Box plots of prediction mean squared errors (PMSEs) of EB,
DPP, LDPP, RIDGE, BEN, and OLS. The panel shows the PMSE of each
procedure for the Body Fat Data when we separate the dataset according to
the Mahalanobis distances of X.

Table 4. Comparison of median of prediction mean squared errors (PM-
SEs) of EB, DPP, LDPP, RIDGE, BEN, and OLS for the Body Fat Data.
Standard errors are given in parentheses.

Method EB DPP LDPP GDPP
Median PMSE (×102) 2.17(0.16) 2.12(0.10) 2.17(0.15) 2.12(0.10)

Method RIDGE BEN OLS
Median PMSE (×102) 2.87(0.12) 2.96(0.09) 5.11(0.24)

circumference and ankle circumference. We can compute body fat percentages

from Siri’s equation

body fat =
495

(body density)
− 450.

The dataset is available from Statlib (http://lib.stat.cmu.edu/datasets/

bodyfat).

Figure 7 shows the result of prediction by each method and Table 4 shows

the median of PMSE of each method. EB, DPP, LDPP, and GDPP perform

better than RIDGE , BEN, and OLS. As in Section 4, the performance of BEN

http://lib.stat.cmu.edu/datasets/bodyfat
http://lib.stat.cmu.edu/datasets/bodyfat
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Figure 8. Comparison of prediction mean squared errors (PMSEs) of EB
and DPP: The panel shows the PMSEs of EB and DPP for the Body Fat
Data when the best model selected by EB differs from that by DPP.

is similar to that of RIDGE under collinearity.

The regression coefficients estimated by DPP are similar to those by EB

when the methods select the same best model. For the Body Fat Data, EB and

DPP select the same model 71 of 100 times. We consider EB to perform as well

as DPP. We compared EB to DPP when they selected a different best model.

Figure 8 shows the result. We conclude that DPP performs better than EB when

they select different predictors.

From Figure 6, DPP, LDPP, and GDPP outperform EB, RIDGE, BEN, and

OLS for the Air Pollution Data. Moreover, from Figure 7, our methods and

EB outperform RIDGE, BEN, and OLS. We conclude that the predictive perfor-

mances of our methods are better than those of EB, RIDGE, BEN, and OLS as

prediction by our methods is more accurate and robust. We consider the robust-

ness to arise from the repulsion property of DPPs. If the values of the predictors

X in the training and test datasets are quite different, collinearity influences pre-

diction. In this setting, EB, RIDGE, BEN, and OLS are inappropriate because

they do not consider correlations among predictors. Since DPP priors assign

small prior probabilities to submodels including collinear predictors, predictions

by our methods are robust and accurate.

6. Conclusion

We considered Bayesian variable selection in linear regression, and proposed

discrete determinantal point processes (DPPs) for prior distributions on model

parameter γ. Since the proposed prior (DPP prior) assigns small probabilities to
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submodels including collinear predictors, the best model is less likely to include

collinear predictors. We observed that the DPP prior is a generalization of the

Bernoulli distribution, which is used for p(γ) in the method proposed by George

and Foster (2000) (EB). Therefore, our method is a generalization of EB. We

also proposed the linear mixture DPP prior (LDPP) and the geometric mixture

DPP prior (GDPP) that bridge the Bernoulli distribution and the DPP prior.

Ročkóva and George (2014a) propose using DPPs for priors on model pa-

rameter γ in Bayesian variable selection, independent of our study. We propose

estimating hyperparameters in the DPP priors by maximizing the marginal like-

lihood and selecting the best model that maximizes the posterior probability.

Ročkóva and George (2014a) propose marginalizing hyperparameters with re-

spect to a hyper prior and combining EMVS (Ročkóva and George (2014b)).

Since the EM algorithm is an iterative method, when p (the number of pre-

dictors) is not large, our methods are faster than that of Ročkóva and George.

However, when p is large, EMVS can find the best model faster than our meth-

ods (and other MCMC methods). For approximating the marginal likelihood,

our methods would be as fast as EMVS even when p is not small.

In the simulations, the estimators of regression coefficients constructed by

our methods reduce the maximum risk more than do EB, the ridge estimator

(RIDGE), the Bayesian elastic net (BEN), and the ordinary least squares esti-

mator (OLS) when collinearity is severe. In the experiments, since the correlation

matrix of predictors is ill-conditioned, we restricted the domain of optimization

when maximizing the marginal likelihood using GDPP. Relaxation of the restric-

tion is a future task.

We also applied our methods to air pollution data and body fat data. Our

interest was in the robustness of the predictive performance when the value of

predictors X in the training dataset and the test dataset are quite different.

For air pollution data, our proposed methods yielded more accurate prediction

than did the others. For body fat data, our proposed methods and EB yielded

more accurate prediction than did RIDGE, BEN, and OLS. From these results

of the applications, we find that predictions by our methods are more accurate

and robust compared to others. We consider the robustness to arise from the

repulsion property of DPPs.

In the large p small n setting, wherein there exist many more predictors than

observations, we intend to combine the proposed DPP priors with the stochastic

search method proposed by Kwon et al. (2011). In this setting, since too many

predictors exist and collinearity is severe, our methods will be efficient.
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