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Abstract: In this paper we consider the problem of measuring stationarity in lo-

cally stationary long-memory processes. We introduce an L2-distance between the

spectral density of the locally stationary process and its best approximation under

the assumption of stationarity. The distance is estimated by a numerical approx-

imation of the integrated spectral periodogram and asymptotic normality of the

resulting estimate is established. The results can be used to construct a simple

test for the hypothesis of stationarity in locally stationary long-range dependent

processes. We also propose a bootstrap procedure to improve the approximation of

the nominal level and prove its consistency. Throughout the paper, we work with

Riemann sums of a squared periodogram instead of integrals (as it is usually done

in the literature) and as a by-product of independent interest it is demonstrated

that the two approaches behave differently in the limit.
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1. Introduction

The assumption of (second-order) stationarity is quite common in the anal-

ysis of time series data like wind speeds, computer network traffic or stock re-

turns. This condition allows for a well developed statistical analysis, and there

exist numerous books and articles dealing with parameter estimation or fore-

casting techniques. However, many real world phenomena cannot be adequately

described by stationarity models and locally stationary processes have been pro-

posed as an attractive alternative class of models, as they offer a more realistic

theoretical framework for the analysis of time series with varying second-order

characteristics. Early work on this subject can be found in Preistley (1965), who

considered oscillating processes. Neumann and von Sachs (1997) and Nason,

von Sachs, and Kroisandt (2000) discussed the estimation of evolutionary spec-

tra by wavelet methods. Dahlhaus (1997) gave a definition of locally stationary

processes on the basis of a time varying spectral representation and established

the asymptotic theory for statistical inference in such cases (see also Dahlhaus
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Figure 1. Left panel: Plot of the 1967 standardized annual tree ring width
measurements at 2,926m in Bristlecone Pine, Nevada from 1 A.D. to 1969
A.D.; right panel: Sample autocovariance function.

(2000), Dahlhaus and Polonik (2006), and Dahlhaus (2009)). Alternative con-

cepts to model time varying dependencies have recently been introduced by Zhou

and Wu (2009, 2010) and cover a wide range of non-stationary processes. Most

of this literature considers the case of short-range dependent data, while Palma

and Olea (2010), Palma (2010), and Wu and Zhou (2014) developed statistical

methodology for long-range dependent non-stationary processes.

A typical example of data from a long-range dependent process can be found

in the left panel of Figure 1 which shows 1967 standardized annual tree ring width

measurements at 2,926m in Bristlecone Pine, Nevada. In dendrochronology, time

series long-memory occurs frequently and in a “pure” form, and therefore tree

ring series are often used as prime examples of long-memory (see for example

p.5 in Beran et al. (2013)). In the right part of the Figure 1 we display the

sample autocovariance function of the data, which clearly indicates long-range

dependence. In the present paper we are interested in the question whether

data of this type can be analyzed under the assumption of stationarity. For this

purpose we propose a measure of stationarity in long-range dependent locally

stationary processes, which is used for the construction of a consistent test for

the hypothesis of stationarity.

There exist several procedures to validate this condition in the context of

short-memory processes. One of the first tests for stationarity dates back to

Priestley and Subba Rao (1968) and is based on evolutionary spectral analysis.

Von Sachs and Neumann (2000) proposed a test that is based on the estimation

of wavelet coefficients by a localized version of the periodogram. Recently, Nason

(2013) used the same principle and examined the constancy of a wavelet spectrum
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by examining its Haar wavelet coefficients over a finite set of wavelet scales. Pa-

paroditis (2009, 2010) suggested an L2-distance between the estimated spectral

densities under the assumptions of stationarity and of local stationarity. Many

authors have used the localized periodogram to construct a test for stationarity.

Dwivedi and Subba Rao (2010) used the entire length of the time series and de-

veloped a Portmanteau-type test statistic to detect deviations from stationarity.

Jentsch and Subba Rao (2015) utilized the fact that, under the assumption of

stationarity, discrete Fourier transforms (DFT) are asymptotically uncorrelated

for this purpose, while the test of Jin, Wang and Wang (2015) is based on the

Walsh transform. All these methods require the choice of at least one smoothing

parameter, such as the order of the wavelet expansion, a bandwidth for the es-

timation of the spectral density or the order in a Portmanteau-type test. Dette,

Preuß and Vetter (2011a) developed tests for the hypothesis of stationarity in

the framework of locally stationary processes which is based on an estimate of

the L2-distance

D2 :=

∫ 1

0

∫ π

−π

(
f(u, λ)−

∫ 1

0
f(v, λ)dv

)2

dλdu (1.1)

between the time varying spectral density f(u, λ) and its approximation λ 7→∫ 1
0 f(v, λ)dv through a spectral density corresponding to a stationary process. It

is easy to see that the process is stationary (i.e. the time varying spectral density

does not depend on u) if and only if D2 = 0, and D2 can be considered as a

measure of deviation from stationarity in the frequency domain. This quantity

corresponds to the measure used in Paparoditis (2009), but unlike to this author,

Dette, Preuß and Vetter (2011a) estimated D2 directly via Riemann sums of the

(squared) local periodogram instead of a smoothed local periodogram and thus

avoided the choice of a smoothing parameter. Preuß and Vetter and Dette (2013)

proposed an alternative measure for deviations from stationarity based on the

Kolmogorov-Smirnov distance

DKS := sup
(v,ω)∈[0,1]2

1

π

∣∣∣∫ v

0

∫ πω

−πω
f(u, λ)dλdu− v

∫ πω

−πω

∫ 1

0
f(u, λ)dudλ

∣∣∣ (1.2)

(see also Dahlhaus (2009)). Both approaches have pros and cons. In par-

ticular, tests based on the distance (1.2) are
√
T -consistent (here T denotes the

sample size). On the other hand it is well known that - although such tests are

consistent against alternatives converging to the null hypothesis at a parametric

rate - Kolmogorov-type and related tests greatly weigh down contributions from

high frequency components (see Ghosh and Huang (1991), Eubank and LaRic-

cia (1992) or Fan (1996)). Moreover, the limiting distribution of Kolmogorov-

Smirnov-type test statistics is usually not known. In principle this problem can
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be solved by bootstrap methods. However in many cases this yields to a loss of

power. On the other hand, tests based on the L2-approach can often use critical

values from the standard normal distribution.

As all procedures which have been suggested so far for discriminating be-

tween stationarity and non-stationarity, the tests proposed by Dette, Preuß and

Vetter (2011a) and Preuß and Vetter and Dette (2013) are only applicable to

short-memory processes, and the development of a corresponding methodology

in the context of long-range dependence is missing. In fact, although stationary

long-memory models are often employed in practice, there do not exist many

tests for the hypothesis of stationarity which include these processes. Berkes et

al. (2006), Sibbertsen and Kruse (2009) and Dehling, Rooch, and Taqqu (2013)

consider CUSUM and Wilcoxon type tests to discriminate between long-range

dependence and one change in mean. A change with respect to the mean is of

course only the simplest possible deviation from stationarity and there is partic-

ular interest in measuring deviations in the dependency structure over time as

well.

Recently, Preuß and Vetter (2013) developed a test for stationarity which

includes the long-range dependent case and is based on the distance (1.2). There

exist several situations where this approach is not the best and for this reason

we consider an alternative test that is based on the measure defined in (1.1).

For this purpose, we estimate the integrals in the distance D2 in (1.1) by Rie-

mann sums when the unknown spectral densities are replaced by periodograms.

For the resulting statistic we show that an appropriately standardized statistic

converges to a standard normal distribution if the (possibly time varying) long-

memory parameter d(u) is smaller than 1/8. These results are used to develop a

bootstrap procedure for the approximation of the limit distribution and to prove

its consistency in the general case.

The proof of asymptotic normality is of a more theoretical nature, because

the bootstrap procedure can in principle also be applied in the case d(u) < 1/4.

However the results are of interest from several perspectives. Several arguments

used in the proof of asymptotic normality are required in the proof of consistency

of the bootstrap procedure and are illustrated more easily in the unconditional

case. The estimate D̂2
T of D2 is based on estimates of the integrated and inte-

grated squared spectral density
∫ 1
0 f(u, λ) du and

∫ 1
0

∫ π
−π f

2(u, λ) dλ du. We use

Riemann sums of the squared periodogram here instead of non-computable inte-

grals as it is usually done in the literature (see Taniguchi (1980), Fox and Taqqu

(1987) and Palma and Olea (2010), among others). Although one might expect

that both estimators exhibit similar behavior with respect to weak convergence,

it is demonstrated in Section 3 that this is not the case in the present context. A
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similar observation was also made by Deo and Chen (2000) in the case of short-

memory stationary processes. To the best of our knowledge, even in the (much

simpler) stationary case, Riemann sums of a squared periodogram have not been

considered in the literature for the long-range dependent case.

The paper is organized as follows. In Section 2, we introduce the necessary

notation and define an empirical measure of stationarity. In Section 3, we prove

that an appropriately standardized version of this measure converges weakly to

a standard normal distribution if the time varying long-memory parameter is

smaller than 1/8. In Section 4, we present a bootstrap procedure to approximate

the distribution of D̂2
T in the more general case and prove its consistency. The

finite sample properties are investigated in Section 5. We defer all technical

details to appendices in Section 6 and 7.

2. Measuring Stationarity in Locally Stationary Long-Memory Pro-

cesses

In order to obtain a measure of stationarity, including the long-range de-

pendent case, we require a set-up that is flexible enough to cover stationary

long-memory processes and a reasonable time-varying extension of it as well.

For this reason, we consider a theoretical framework of a locally stationary long-

memory process (similar approaches can be found in Beran (2009), Palma and

Olea (2010), and Roueff and von Sachs (2011)).

Let {Xt,T }t=1,...,T be a sequence of stochastic processes that have a MA(∞)

representation of the form

Xt,T =

∞∑
l=0

ψt,T,lZt−l, t = 1, . . . , T, (2.1)

where {Zt}t∈Z are independent and standard normal random variables. We as-

sume the following.

Assumption 1.

(1) There exist twice continuously differentiable functions ψl : [0, 1] → R (l ∈ Z)
such that

sup
t=1,...,T

∣∣∣ψt,T,l − ψl(t/T )
∣∣∣ ≤ C

TI(l)1−d∞
, ∀l ∈ N, (2.2)

and

ψl(u) =
a(u)

I(l)1−d(u)
+O

(
1

I(l)2−d∞

)
(2.3)

holds uniformly in u as l → ∞, where d : [0, 1] → [0, 1/2) and a : [0, 1] → R+

are twice differentiable functions, C ∈ R+ and d∞ = supu∈[0,1] d(u) < 1/4

are constants and I(x) := |x| · 1{x̸=0} + 1{x=0}.
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(2) The time varying spectral density

f(u, λ) :=
1

2π

∣∣∣ ∞∑
l=0

ψl(u) exp(−iλl)
∣∣∣2 (2.4)

is twice continuously differentiable with respect to u and λ on (0, 1)× (0, π).

Moreover, f(u, λ) and all its partial derivatives up to order two are continuous

on [0, 1]× (0, π].

(3) There exists a constant C ∈ R+, independent of u and λ, such that for l ̸= 0

sup
u∈(0,1)

|ψ′
l(u)| ≤

C log(l)

l1−d∞
, (2.5)

sup
u∈(0,1)

|ψ′′
l (u)| ≤

C log2(l)

l1−d∞
, (2.6)

sup
u∈(0,1)

∣∣∣ ∂
∂u
f(u, λ)

∣∣∣ ≤ C log(λ)

λ2d∞
, (2.7)

sup
u∈(0,1)

∣∣∣ ∂2
∂u2

f(u, λ)
∣∣∣ ≤ C log2(λ)

λ2d∞
. (2.8)

For the sake of a transparent notation, we use C ∈ R+ as a universal constant

throughout. Note that the process is stationary if ψl,t,T = ψl for all l, t, T ∈ N.
Condition (2.2) and (2.3) ensure that the infinite sum in (2.1) exists in the L2

sense, and (2.2) means that the process Xt,T can be approximated by a stationary

model on a small time interval. The assumption of Gaussianity is only imposed

here to simplify technical arguments; see Remark 3 for more details. The main

difference of this approach to that of Palma and Olea (2010) is that we do not

assume that ψt,T,l − ψl(t/T ) is absolutely summable in l. Thus, a more general

framework than usually considered, allowing for a rigorous proof of time-varying

FARIMA models being included (see the discussion following (2.11) for more

details).

We consider the process

Xt(u) :=

∞∑
l=0

ψl(u)Zt−l (2.9)

in order to visualize some properties of a locally stationary long-memory pro-

cess. Here Xt(u) is stationary for every fixed u ∈ [0, 1] and, analogously to the

stationary case, (2.3) implies the existence of bounded functions yi : [0, 1] → R
(i = 1, 2) such that

|Cov (Xt(u), Xt+k(u))| ∼
y1(u)

k1−2d(u)
as k → ∞,
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f(u, λ) ∼ y2(u)

λ2d(u)
as λ→ 0; (2.10)

(see Palma and Olea (2010)). Consequently, the autocovariance function γ(u, k) =

Cov (X0(u), Xk(u)) is not absolutely summable and the time varying spectral

density f(u, λ) has a pole at λ = 0 for any u ∈ [0, 1].

As an example we consider the time varying FARIMA(p, d, q) model defined

by

a(
t

T
,B)Xt,T = b(

t

T
,B)(1−B)−d(t/T )Zt, t = 1, . . . , T, (2.11)

where B denotes the backshift operator,

a(u, z) := 1−
p∑

j=1

aj(u)z
j , b(u, z) := 1 +

q∑
j=1

bj(u)z
j

for given functions aj , bj : [0, 1] → R, and d : [0, 1] → (0, d∞] is twice continuously

differentiable with d∞ < 1/2. It is shown in Preuß and Vetter (2013) that under

certain regularity conditions on the functions aj , bj , these equations have a locally

stationary solution in the sense of Assumption 1. If the functions aj , bj , and d do

not depend on u, (2.11) corresponds to the common FARIMA(p, d, q) equation

(see for example Palma (2007) for conditions for the existence of a solution),

which is included in our theoretical framework.

For the construction of an estimate of the quantity (1.1) we note that

D2 = 2πF1 − 4πF2, (2.12)

where

F1 :=
1

2π

∫ 1

0

∫ π

−π
f2(u, λ)dλdu, (2.13)

F2 :=
1

4π

∫ π

−π

(∫ 1

0
f(u, λ)du

)2
dλ. (2.14)

Consequently, it follows from (2.10) that the distance D2 is only well defined if

d∞ < 1/4. We assume without loss of generality that the sample size T can

be decomposed into M blocks with length N , T = NM where N and M are

positive integers and N is even. A rough estimator for the time-varying spectral

density f(u, λ) is then given by the local periodogram at the rescaled time point

u ∈ [0, 1], defined by

IN (u, λ) :=
1

2πN

∣∣∣N−1∑
s=0

X⌊uT ⌋−N/2+1+s,T exp(−iλs)
∣∣∣2,
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where Xj,T = 0 for j ̸∈ {1, . . . , T} (see Dahlhaus (1997)). This is the usual
periodogram computed from the observations X⌊uT ⌋−N/2+1,T , . . . , X⌊uT ⌋+N/2,T ,
and it can be shown that it is asymptotically unbiased for the time-varying
spectral density f(u, λ) if N → ∞ and N = o(T ). However, IN (u, λ) is not
consistent just as the usual periodogram. In addition, IN (u, λ)2 is an unbiased
(but not consistent) estimate of the quantity 2f2(u, λ) instead of f2(u, λ).

We construct empirical versions of (2.13) and (2.14) by replacing the inte-
grals through appropriate Riemann-sums and substitute f(u, λ) and f2(u, λ) by
IN (u, λ) and IN (u, λ)2/2, respectively. For this purpose, let

uj :=
tj
T

:=
N(j − 1) +N/2

T
, j = 1, . . . ,M,

and consider the statistics

F̂1,T :=
1

T

M∑
j=1

⌊N/2⌋∑
k=1

IN (uj , λk,N )2, (2.15)

F̂2,T :=
1

N

⌊N
2
⌋∑

k=1

( 1

M

M∑
j=1

IN (uj , λk,N )
)2
, (2.16)

where the λk,N = 2πk/N denote the usual Fourier frequencies. The empirical
measure of stationarity (1.1) is then

D̂2
T := 2πF̂1,T − 4πF̂2,T . (2.17)

It is far from obvious that D̂2
T is a consistent estimator of D2. In general it

is not true that an integrated non-linear function of the periodogram converges
to the corresponding integrated function of the spectral density. This - at a
first glance - is a counterintuitive property of the integrated periodogram, and
was already observed by Taniguchi (1980) in the context of stationary short-
memory processes. These problems are also visible here as we require a multiple
of IN (u, λ)2 to obtain an asymptotically unbiased estimator for f2(u, λ). In the
following section we prove consistency of D̂2

T and study its weak convergence.

3. Consistency and Weak Convergence

Throughout this paper, the symbols
P−−→ and

D−−→ denote convergence in
probability and weak convergence, respectively. In order to specify the bias of
F̂1,T and F̂2,T we define

F1,T :=
1

2πM

M∑
j=1

∫ π

−π
f2(uj , λ) dλ, F2,T :=

1

4π

∫ π

−π

( 1

M

M∑
j=1

f(uj , λ)
)2
dλ,

and obtain the following results.
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Theorem 1. Suppose Assumption 1 holds with supu∈[0,1] d(u) < 1/4 and that

the conditions

N → ∞,
N

T
→ 0 (3.1)

are satisfied. Then F̂1,T
P−−→ F1, F̂2,T

P−−→ F2 and, in particular, D̂2
T

P−−→ D2 as

T → ∞.

Remark 1. In the Gaussian case there are at least two heuristic explanations

of why the factor 2 is required for the squared integrated periodogram. First,

IN (u, λj) = |JN (u, λj |2, where JN (u, λj) denotes the localized discrete Fourier

transform (DFT). An expansion in terms of cumulants then yields

E(I2n(u, λj)) = 2E(IN (u, λj))
2

+cum(JN (u, λj), JN (u, λj))cum(JN (u,−λj), JN (u,−λj))
+cum(JN (u, λj), JN (u,−λj), JN (u, λj), JN (u,−λj),

where the third term vanishes (because of the Gaussian assumption) and the

second term is of order o(1) as N → ∞,M → ∞. This implies that I2n(u, λj)/2

is an unbiased estimate of the squared spectral density,

E[I2n(u, λj)] = 2f2(u, λj) + o(1). (3.2)

A second explanation for (3.2) can be obtained from the approximation

In(uj , λk) ≈ f(uj , λk)Zjk, (3.3)

where Zjk are independent identically exponentially distributed random vari-

ables, in particular E[Z2
jk] = 2.

Theorem 2. Suppose Assumption 1 holds with d∞ = supu∈[0,1] d(u) < 1/8 and

that the conditions

N → ∞,
N

T
→ 0,

√
T

N1−4d∞
→ 0 (3.4)

are satisfied. Then as T → ∞ we have

√
T
{
(F̂1,T , F̂2,T )

T − (F1,T , F2,T + dN,T )
T −CT

} D−−→ N (0,Σ),

where the covariance matrix Σ and the constant dN,T are

Σ=

 5
π

∫ π
−π

∫ 1
0 f

4(u, λ)dudλ 2
π

∫ π
−π

(∫ 1
0 f(u, λ)du

∫ 1
0 f

3(u, λ)du
)
dλ

2
π

∫ π
−π

(∫ 1
0f(u, λ)du

∫ 1
0f

3(u, λ)du
)
dλ 1

π

∫ π
−π

((∫ 1
0f(u, λ)du

)2∫ 1
0f

2(u, λ)du
)
dλ

,
(3.5)
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dN,T =
1

4πM2

M∑
j=1

∫ π

−π
f2(uj , λ) dλ, (3.6)

and the vector CT = (Cl,1, Cl,2)
T ∈ R2 is of order O

(
N2/T 2 + log(N)/(MN1−4d∞)

)
,

vanishing if the functions ψl(u) are independent of u for all l ∈ Z.

A similar result for the short-memory situation has been derived by Dette,

Preuß and Vetter (2011a) under the condition
√
T/N → 0. A comparison with

(3.4) shows that a larger size of the window length N is necessary in the case

of long-range dependence, which corresponds to intuition. In contrast to their

result, there appears an additional bias term CT in Theorem 2. This term is

negligible if N2/T 3/2 → 0, which holds under the stronger restriction d∞ < 1/12

due to (3.4). Under the null hypothesis of a time independent spectral density,

H0 : f(u, λ) is independent of u, (3.7)

we have CT = 0 (this follows from the proof of Theorem 2 in the Appendix).

Since the covariance matrix (3.5) contains the integrated fourth power of the

spectral density, we obtain from (2.10) that Theorem 2 is not valid whenever

d∞ ≥ 1/8.

Remark 2. The proof of Theorem 2 is based on a careful calculation of the higher

order cumulants of the statistic (F̂1,T , F̂2,T ) (see Theorem A.1 in the Appendix).

As pointed out by a referee, an alternative proof could be obtained by generaliz-

ing recent results of Lahiri (2003) in several directions. Lahiri (2003) considered

long-range dependent stationary processes, say (X̃T )t∈Z, and investigated condi-

tions, such that Cov(JT (λk), JT (λk′)) is asymptotically negligible, where JT (λk)

denotes the DFT of (X̃t)
T
t=1, at the kth Fourier frequency. We expect that similar

results can be obtained for the localized DFT as it appears in the definition of

the localized periodogram. In particular, bounds for Cov(JN (u, λj1), JN (v, λj2))

and Cov(JN (u, λj1), JN (v, λj1)) could be derived, such that the covariances are

of small order if λj1 and λj2 have enough frequency separation and the distance

between u and v is sufficiently large. An approximation for Cov(JN (u, λj1),

JN (u, λj2)) has to be found if λj1 and λj2 are close. With results of this type it

is possible to derive an approximation for E[F̂2,T ]. For the calculation of E[F̂1,T ]

and the higher order cumulants of (F̂1,T , F̂2,T ), it is necessary to obtain results

of this type for the cumulants

cum(JN (ui1 , λj1), . . . , JN (uiℓ , λjℓ)) (3.8)

for any ℓ ∈ N. The derivation of such bounds in the stationary (generalizing

the results of Lahiri (2003) in a non-trivial direction) and its extension to the
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non-stationary long-memory case is an interesting topic for future research. If

sharp approximations for these cumulants can be derived, it is possible to write

the higher order cumulants of (F̂1,T , F̂2,T ) in terms of the cumulants of JN (ui, λj)

and to prove their convergence (if the statistics are appropriately standardized).

Corollary 1. Under the assumptions of Theorem 2,

√
T
(
D̂2

T −D2
T + 4πdN,T + 4πC2,T − 2πC1,T

)
D−−→ N (0, τ2), (3.9)

where D2
T := 2πF1,T − 4πF2,T and the asymptotic variance is given by

τ2 := 20π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ− 32π

∫ π

−π

(∫ 1

0
f(u, λ)du

∫ 1

0
f3(u, λ)du

)
dλ

+16π

∫ π

−π

((∫ 1

0
f(u, λ)du

)2 ∫ 1

0
f2(u, λ)du

)
dλ. (3.10)

Under the null hypothesis (3.7) we have D2
T = C1,T = C2,T = 0 and the

asymptotic variance in (3.10) reduces to τ2H0
:= 4π

∫ π
−π f

4(λ)dλ. The asymp-

totic bias 4πdN,T = 2πN/TF1,T can easily be estimated by the statistic B̂T :=

2πN/T F̂1,T , and we infer from Theorem 2 that

√
T
(
B̂T − 4πdN,T

)
=

2πN

T

√
T
(
F̂1,T − F1,T

)
P−−→ 0. (3.11)

Thus Slutzky’s Lemma, together with (3.9), yields

√
T
(
D̂2

T + B̂T

)
D−−→ N (0, τ2H0

) (3.12)

under the null hypothesis. To construct an asymptotic level α-test for stationar-

ity, it remains to estimate the variance τ2H0
in (3.12), and an estimator for this

quantity is given by τ̂2H0
:= 4π2τ̂21 with

τ̂21 :=
1

6T

⌊N/2⌋∑
k=1

M∑
j=1

IN (uj , λk,N )4.

Theorem 3. If the assumptions of Theorem 2 are satisfied, we have

τ̂21
P−−→ 1

π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ.

Combining (3.12) with Theorem 3 yields

√
T
(
D̂2

T + B̂T

)
√
τ̂2H0

D−−→ N (0, 1), (3.13)
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and therefore an asymptotic level α-test is obtained by rejecting the null hypoth-

esis (3.7) whenever
√
T
(
D̂2

T + B̂T

)
√
τ̂2H0

≥ u1−α, (3.14)

where u1−α denotes the (1 − α)-quantile of the standard normal. It follows

from Theorem 2 that this test is consistent, because the left hand side of (3.14)

converges to infinity whenever there exists a λ̃ ∈ [−π, π] such that the function

u 7→ f(u, λ̃) is not constant.

Remark 3. If the innovation process (Zt)t∈Z in (2.1) is not Gaussian, it can be

shown that Corollary 1 is still valid, where the asymptotic variance τ2 in (3.10)

has to be replaced by

τ2g = τ2 +
κ4
κ22

{
4

∫ 1

0

(∫ π

−π
f2(u, λ) dλ

)2

du

+4

∫ 1

0

(∫ π

−π
f(u, λ)

(∫ 1

0
f(ν, λ) dν

)
dλ

)2

du

−8

∫ 1

0

(∫ π

−π
f2(u, λ) dλ

∫ π

−π
f(u, λ)

(∫ 1

0
f(ν, λ) dν

)
dλ

)
du

}
,

and κ2 and κ4 denote the second and fourth cumulants of the innovation process.

In particular, under the null hypothesis of stationarity, it follows that τ2g =

τ2 = τ2H0
, and hence no adjustments in the asymptotic level α-test in (3.14) are

necessary to address non normal distributed innovations.

Remark 4. The quantity D2 in (1.1) can be considered as measure of station-

arity, because it quantifies the distance between the spectral density f(u, λ) and

its best approximation by a spectral density of a stationary process. Theorem

1 provides a consistent estimate of this quantity. Moreover, Corollary 1 can be

used to construct an asymptotic confidence interval for D2. Under the condition

d∞ < 1/12, the discussion in the paragraph following Theorem 2 shows that√
TC1,T and

√
TC2,T are asymptotically negligible. Due to Assumption 1(2) it

follows that D2 = D2
T + O(1/M2), and by similar arguments as given in the

proof of Theorem 3 it can be shown that τ̂2H1
= 20π2τ̂21 − 32π2τ̂2 + 16π2τ̂23 is a

consistent estimate of the asymptotic variance τ2, where

τ̂22 =
2

3NM2

⌊N/2⌋∑
k=1

M∑
j1,j2=1

IN (uj1 , λk,N )IN (uj2 , λk,N )3,



MEASURING STATIONARITY IN LONG-MEMORY PROCESSES 325

τ̂23 =
2

NM3

⌊N
2
⌋∑

k=1

M∑
j1,j2,j3=1

IN (uj1 , λk,N )IN (uj2 , λk,N )IN (uj3 , λk,N )2.

Therefore from (3.9) and (3.11), an asymptotic (1 − α) confidence interval for

the measure of stationarity D2 is[
D̂T − B̂T − τ̂H1√

T
u1−α/2, D̂T − B̂T +

τ̂H1√
T
u1−α/2

]
.

Remark 5. For locally stationary long-range dependent models the asymptotic

variances of the statistics

F̃1,T =
1

4πM

M∑
j=1

∫ π

−π
IN (uj , λ)

2 dλ

and of F̂1,T , defined in (2.15), are different. In fact we prove in Section A.2 that

lim
T→∞

T Var (F̃1,T ) =
14

3π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ,

lim
T→∞

T Var (F̂1,T ) =
5

π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ

follows by Theorem 2. Moreover, similar arguments show that, even in the

stationary case, the asymptotic variance of the statistic
∫ π
−π IT (λ)

2 dλ and its

discretized version (2π/T )
∑T

k=1 IT (λk,T )
2 are not the same (here IT (λ) denotes

the usual periodogram and λk,T = 2πk/T are the Fourier frequencies). Deo and

Chen (2000) observed the same effect in the context of stationary short-memory

processes.

4. Critical Values by Resampling

We now consider the more general set-up with d∞ < 1/4 as specified in

Assumption 1. We show that in this case a bootstrap procedure can be used to

approximate the distribution of D̂2
T under the null hypothesis (3.7). We employ

the FARI(∞) bootstrap, recently introduced by Preuß and Vetter (2013), that

fits an FARIMA(p, d, 0)-model to the data, where p = p(T ) converges to infinity

with increasing sample size T . The test statistic investigated by these authors

is different from that in this paper and we therefore require different growth

conditions on p, N , and T to obtain a valid testing bootstrap procedure. These

are summarized in the following.
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Assumption 2. For the stationary process {Xt}t∈Z with strictly positive spectral

density λ 7→
∫ 1
0 f(u, λ)du, there exists a constant d ∈ (0, 1/4) such that the

process

Yt = (1−B)dXt (4.1)

has an AR(∞)-representation of the form

Yt =

∞∑
j=1

ajYt−j + ZAR
t , (4.2)

where {ZAR
j }j∈Z denotes a Gaussian White Noise process with variance σ2 > 0,

and the coefficients in the representation (4.2) satisfy

∞∑
j=1

|aj ||j|7 <∞, (4.3)

1−
∞∑
j=1

ajz
j ̸= 0 for |z| ≤ 1. (4.4)

Under the null hypothesis of a time independent spectral density, it follows

that d = d∞ = d(u) for all u ∈ [0, 1], but under the alternative we usually have

d ̸= d∞. The FARI(∞) bootstrap incorporates the following steps. Choose a

p = p(T ) ∈ N to construct an estimator, say d̂, of the long-range dependence

parameter d in model (4.1); calculate an estimator of

(a1,p, . . . , ap,p) = argmin
b1,p,...,bp,p

E
(
Yt −

p∑
j=1

bj,pYt−j

)2
, (4.5)

by fitting an AR(p)-model to the data. To describe the main idea of our procedure

in detail, take the “true” approximating process to be

Y AR
t (p) =

p∑
j=1

aj,pY
AR
t−j (p) + ZAR

t , (4.6)

where the parameters aj,p are defined in (4.5), and {ZAR
t }t∈Z is a Gaussian

White Noise process with mean zero and variance σ2p = E(Yt −
∑p

j=1 aj,pYt−j)
2.

If p = p(T ) → ∞ the process Y AR
t (p) approximates Yt and therefore (1 −

B)−dY AR
t (p) is “close” to the stationary process Xt whose spectral density is

given by λ 7→
∫ 1
0 f(u, λ)du. Under the null hypothesis of stationarity, this func-

tion coincides with the spectral density of {Xt,T }t=1,...,T . Hence, observing the

data X1,T , . . . , XT,T , the FARI(∞) bootstrap precisely works as follows.
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(1) Choose p = p(T ) ∈ N and calculate θ̂T,p = (d̂, σ̂2p, â1,p, . . . , âp,p) as the mini-
mizer of

1

T

T/2∑
k=1

(
log fθp(λk,T ) +

IT (λk,T )

fθp(λk,T )

)
,

where θp = (d, σ2p, a1,p, . . . , ap,p),

IT (λ) =
1

2πT

∣∣∣ T∑
t=1

Xt,T exp(−iλt)
∣∣∣2

is the usual periodogram, and

fθp(λ) =
|1− exp(−iλ)|−2d

2π
×

σ2p
|1−

∑p
j=1 aj,p exp(−iλj)|2

is the spectral density of a stationary FARIMA(p, d, 0)-model. (The estimator
θ̂T,p is the classical Whittle estimator of a stationary process (see Whittle
(1951))).

(2) Simulate the pseudo-series (X∗
t )t∈Z according to a FARIMA(p, d̂, 0) model

with AR-parameters â1,p, . . . , âp,p and σ̂2p as the variance of the Gaussian
innovations.

(3) Compute D̂2,∗
T in the same way as D̂2

T , where the original observationsX1,T , . . .,
XT,T are replaced by the bootstrap replicates X∗

1,T , . . . , X
∗
T,T .

Theorem 4. Assume the null hypothesis (3.7) and Assumption 1 and 2 hold.
Suppose the conditions

N → ∞,
N

T
→ 0,

T

N1+δ
→ 0 (4.7)

are satisfied for some 0 < δ < 1/2, and assume p = p(T ) satisfies the following.

(i) There exist sequences pmax(T ) ≥ pmin(T )
T→∞−−−−−→ ∞ such that p(T ) ∈

[pmin(T ), pmax(T )],

p9max(T ) log(T )
3N δT−1 = O(1), (4.8)

√
Tp−9

min(T )√
log(T )

= o(1). (4.9)

(ii) The condition

||θ̂T,p − θp||∞ = OP

(√
log(T )

T

)
(4.10)

is fulfilled uniformly with respect to p, where θ̂T,p denotes the estimator used
in step (1) of the bootstrap procedure and θp = (dp, σ

2
p, a1,p, . . . , ap,p) are the

corresponding “true” parameters.
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Then there exist random variables D̂2
T,a and D̂2,∗

T,a such that

(a) D̂2
T,a

D
= D̂2,∗

T,a,

(b) Var (D̂2
T )

−1/2
(
D̂2

T − D̂2
T,a

)
= oP (1),

(c) Var (D̂2,∗
T )−1/2

(
D̂2,∗

T − D̂2,∗
T,a

)
= oP (1),

(d) E
∣∣D̂2,∗

T,a

∣∣ = O

(
Nmax(4d−1/2,0)

√
T

+

√
log(N)1{d=1/8}√

T
+

1

N1−4d

)
.

The estimate in (d) also holds if the null hypothesis (3.7) is not satisfied.

Conditions like (4.8)−(4.10) are standard in the context of parametric boot-

straps [see for example Berg, Paparoditis, and Politis (2010) or Kreiß, Paparo-

ditis, and Politis (2011)] and a detailed discussion of them is given in Preuß and

Vetter (2013). There it is also discussed why (4.10) might hold in the general

framework considered here, but a rigorous proof of such a statement is an open

problem so far.

We obtain an asymptotic level α-test based on D̂2
T as follows. Calculate B

bootstrap replicates D̂2,∗
T , denote by (D̂2,∗

T )T,1, . . . , (D̂
2,∗
T )T,B the resulting order

statistic and reject the null hypothesis whenever

D̂2
T > (D̂2,∗

T )T,⌊(1−α)B⌋. (4.11)

Theorem 4 and the arguments in Paparoditis (2010) indicate that this pro-

cedure yields an asymptotic level α-test. To prove this, we follow Bickel and

Freedman (1981) by considering the Mallows metric d2(F,G) = inf
√
E(X − Y )2

between two distributions F and G, where the infimum is taken over all pairs

(X,Y ) of random variables with marginal distributions F and G. Theorem 4

then yields the following.

Theorem 5. Suppose the null hypothesis (3.7) and the assumptions of Theorem 4

are satisfied. Then, as T → ∞, the Mallows distance d2 between the distributions

of the random variables

D̂2
T√

Var (D̂2
T )

and
D̂2,∗

T√
Var (D̂2,∗

T )

converges to zero in probability.

Consistency under the alternative follows since Theorem 4(d) yields that

each bootstrap statistic D̂2,∗
T converges to zero while D̂2

T exceeds some positive

constant (for T sufficiently large) due to Theorem 1.
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Remark 6. The condition d∞ < 1/4 is required to guarantee the existence of

the integral
∫ 1
0

∫ π
−π f

2(u, λ) dλ du. A way to avoid restrictions of this type is the

consideration of the modified L2-distance

D2
2 :=

∫ 1

0

∫ π

−π
λ2
(
f(u, λ)−

∫ 1

0
f(v, λ)dv

)2

dλdu

to incorporate the case 1/4 ≤ d∞ < 1/2. Here the term λ2 compensates for the

possible pole of the squared time varying spectral density at the origin. With this

definition the restriction d∞ < 1/8 in the decision rule (3.14) (and d∞ < 1/4 in

the bootstrap version (4.11)) can be omitted and the corresponding test statistic

becomes D̂2
2,T := 2πF̂1,2,T − 4πF̂2,2,T , where

F̂1,2,T :=
1

T

M∑
j=1

⌊N/2⌋∑
k=1

λ2k,NIN (uj , λk,N )2,

F̂2,2,T :=
1

N

⌊N/2⌋∑
k=1

λ2k,N

( 1

M

M∑
j=1

IN (uj , λk,N )
)2
.

By using similar arguments as in the proof of Theorems 2 and 3 one obtains that,

under H0, the term
√
T (D̂2

2,T + B̂2,T )/τ̂2 is asymptotically normal with variance

one, where

B̂2,T :=
2πN

T 2

M∑
j=1

⌊N/2⌋∑
k=1

λ2k,NIN (uj , λk,N )2

τ̂2 :=
2π2

3

1

T

⌊N/2⌋∑
k=1

M∑
j=1

λ4k,NIN (uj , λk,N )4

are the estimators for the corresponding bias and variance term (cf. BT and

τ̂1 in (3.14)). This yields a test for stationarity in the long-range dependent

framework that is based on quantiles of the standard normal and does not im-

pose any restrictions on the range of the time-varying long memory parameter.

However, since the small frequencies are weighted down by the additional factor

λ2, this approach lacks power in detecting changes in the long-range dependence

parameter itself.

5. Finite Sample Properties

In this section we examine the finite sample properties of the proposed deci-

sion rule (4.11). An important problem is the choice of the window length N for

the calculation of the local periodogram and the choice of the AR parameter p in
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the bootstrap procedure. Throughout this section we choose p as the minimizer

of the AIC criterion (see Akaike (1973)),

p̂ = argminp
2π

T

T/2∑
k=1

(
log fθ̂(p)(λk,T ) +

IT (λk,T )

fθ̂(p)(λk,T )

)
+
p

T
,

in the context of stationary processes due to Whittle (1951) [here fθ̂(p) is the

spectral density of the fitted stationary FARIMA(p, d, 0) process and IT is the

usual stationary periodogram]. We therefore restrict ourselves to an analysis of

the sensitivity with respect to N in the following, and it will turn out that the

test (4.11) using the FARI(∞) bootstrap exhibits a remarkable robustness with

respect to the choice of N . All reported results of this section are based on 1,000

simulation runs and 200 bootstrap replications.

5.1. Size and power of the test

In order to investigate the approximation of the nominal level we simulated

data from the FARIMA(1, d, 0) model

(1− ϕB)(1−B)dXt = Zt, (5.1)

and the FARIMA(0, d, 1) process

(1−B)dXt = (1 + θB)Zt (5.2)

for different values of ϕ, θ, and d where Zt are independent standard normal. The

rejection probabilities for the bootstrap test (4.11) are displayed in Tables 1−4

where d ∈ {0.1, 0.2}. We observe a very precise approximation of the nominal

level in nearly all cases that is rather robust with respect to different choices of

the parameter M and N .

To study the power of the test we considered the alternatives

Xt,T = Z
(d)
t + 0.8 cos

(
1.5− cos

(4πt
T

))
Z

(d)
t−1, (5.3)(

1− 0.6 sin
(4πt
T

)
B

)
Xt,T = Z

(d)
t , (5.4)

Xt,T =

√
sin
(πt
T

)
Z

(d)
t , (5.5)

where Z
(d)
t = (1 − B)−dZt and d = 0.2. These kinds of alternatives were

investigated by several authors in the context of locally stationary short-

memory processes (see Paparoditis (2010) and Dahlhaus (1997)). The rejec-

tion frequencies for the bootstrap test (4.11) are depicted in Figures 2−4
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Table 1. Rejection probabilities of the bootstrap test (4.11) under H0 for
different choices of T,N andM . The data was generated according to model
(5.1) with d = 0.1 and different values for ϕ.

T N M
ϕ = −0.9 ϕ = −0.5 ϕ = 0 ϕ = 0.5 ϕ = 0.9
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 0.126 0.182 0.072 0.123 0.036 0.074 0.073 0.126 0.084 0.147
A2 128 8 16 0.140 0.200 0.085 0.132 0.041 0.090 0.073 0.128 0.084 0.118
B1 256 32 8 0.065 0.135 0.064 0.119 0.042 0.088 0.062 0.113 0.075 0.147
B2 256 16 16 0.080 0.132 0.056 0.108 0.040 0.082 0.051 0.109 0.062 0.109
B3 256 8 32 0.068 0.111 0.045 0.095 0.046 0.097 0.072 0.147 0.049 0.114
C1 512 64 8 0.054 0.109 0.049 0.106 0.039 0.089 0.049 0.114 0.082 0.134
C2 512 32 16 0.038 0.093 0.043 0.086 0.039 0.085 0.059 0.108 0.065 0.132
C3 512 16 32 0.061 0.095 0.051 0.102 0.045 0.081 0.059 0.109 0.043 0.104
C4 512 8 64 0.060 0.107 0.053 0.098 0.045 0.083 0.060 0.116 0.042 0.093
D1 1024 128 8 0.039 0.104 0.042 0.093 0.042 0.085 0.035 0.093 0.079 0.132
D2 1024 64 16 0.053 0.104 0.058 0.097 0.050 0.110 0.057 0.101 0.068 0.126
D3 1024 32 32 0.033 0.076 0.058 0.114 0.046 0.086 0.070 0.107 0.062 0.115
D4 1024 16 64 0.046 0.089 0.036 0.091 0.044 0.084 0.054 0.109 0.044 0.099
D5 1024 8 128 0.037 0.073 0.041 0.091 0.041 0.091 0.061 0.131 0.045 0.097

Table 2. Rejection probabilities of the bootstrap test (4.11) under H0 for
different choices of T,N andM . The data was generated according to model
(5.1) with d = 0.2 and different values for ϕ.

T N M
ϕ = −0.9 ϕ = −0.5 ϕ = 0 ϕ = 0.5 ϕ = 0.9
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 0.107 0.164 0.063 0.114 0.050 0.108 0.072 0.121 0.108 0.166
A2 128 8 16 0.106 0.160 0.064 0.118 0.041 0.085 0.073 0.124 0.078 0.138
B1 256 32 8 0.064 0.123 0.048 0.104 0.042 0.094 0.075 0.131 0.079 0.137
B2 256 16 16 0.058 0.125 0.051 0.101 0.040 0.101 0.065 0.112 0.055 0.116
B3 256 8 32 0.079 0.124 0.047 0.089 0.051 0.091 0.053 0.106 0.050 0.105
C1 512 64 8 0.050 0.093 0.048 0.090 0.051 0.103 0.047 0.104 0.075 0.133
C2 512 32 16 0.047 0.104 0.044 0.087 0.039 0.085 0.053 0.109 0.068 0.124
C3 512 16 32 0.042 0.097 0.044 0.087 0.057 0.106 0.046 0.105 0.060 0.104
C4 512 8 64 0.050 0.102 0.053 0.101 0.052 0.088 0.058 0.121 0.062 0.114
D1 1024 128 8 0.044 0.090 0.046 0.102 0.051 0.107 0.039 0.092 0.076 0.140
D2 1024 64 16 0.043 0.082 0.040 0.088 0.050 0.098 0.046 0.098 0.060 0.106
D3 1024 32 32 0.045 0.089 0.054 0.097 0.057 0.103 0.060 0.104 0.066 0.115
D4 1024 16 64 0.044 0.087 0.038 0.087 0.049 0.094 0.059 0.106 0.051 0.101
D5 1024 8 128 0.041 0.082 0.041 0.089 0.038 0.086 0.061 0.103 0.054 0.103

for different combinations of T and N . Additionally, the results for the

Kolmogorov-Smirnov approach of Preuß and Vetter (2013) are presented. We

observe that the new procedure clearly outperforms the test of Preuß and Vetter

(2013) for the models (5.3) and (5.4) while the Kolmogorov-Smirnov test works
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Table 3. Rejection probabilities of the bootstrap test (4.11) under H0 for
different choices of T,N andM . The data was generated according to model
(5.2) with d = 0.1 and different values for θ.

T N M
ϕ = −0.9 ϕ = −0.5 ϕ = 0 ϕ = 0.5 ϕ = 0.9
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 0.072 0.116 0.054 0.107 0.041 0.085 0.044 0.088 0.077 0.123
A2 128 8 16 0.068 0.122 0.054 0.112 0.059 0.125 0.073 0.117 0.070 0.133
B1 256 32 8 0.045 0.100 0.060 0.101 0.041 0.081 0.042 0.082 0.036 0.084
B2 256 16 16 0.053 0.096 0.058 0.104 0.045 0.094 0.045 0.102 0.060 0.104
B3 256 8 32 0.064 0.123 0.057 0.113 0.049 0.101 0.042 0.092 0.061 0.130
C1 512 64 8 0.043 0.089 0.043 0.095 0.044 0.086 0.045 0.088 0.041 0.095
C2 512 32 16 0.046 0.109 0.067 0.112 0.052 0.093 0.051 0.096 0.043 0.086
C3 512 16 32 0.048 0.099 0.055 0.095 0.062 0.114 0.050 0.102 0.051 0.098
C4 512 8 64 0.038 0.097 0.055 0.100 0.047 0.100 0.046 0.093 0.042 0.092
D1 1024 128 8 0.053 0.103 0.060 0.099 0.051 0.099 0.071 0.118 0.044 0.094
D2 1024 64 16 0.044 0.100 0.062 0.124 0.048 0.090 0.068 0.119 0.042 0.093
D3 1024 32 32 0.053 0.107 0.064 0.116 0.044 0.082 0.045 0.094 0.043 0.098
D4 1024 16 64 0.044 0.096 0.038 0.084 0.042 0.093 0.045 0.087 0.042 0.087
D5 1024 8 128 0.049 0.109 0.042 0.085 0.054 0.109 0.048 0.083 0.042 0.096

Table 4. Rejection probabilities of the bootstrap test (4.11) under H0 for
different choices of T,N andM . The data was generated according to model
(5.2) with d = 0.2 and different values for θ.

T N M
θ = −0.9 θ = −0.5 θ = 0 θ = 0.5 θ = 0.9
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 0.068 0.112 0.060 0.103 0.030 0.081 0.060 0.108 0.053 0.111
A2 128 8 16 0.060 0.117 0.051 0.103 0.061 0.110 0.062 0.114 0.068 0.117
B1 256 32 8 0.059 0.122 0.048 0.102 0.045 0.094 0.038 0.078 0.040 0.083
B2 256 16 16 0.053 0.109 0.041 0.095 0.047 0.093 0.040 0.080 0.048 0.091
B3 256 8 32 0.060 0.100 0.048 0.098 0.057 0.119 0.050 0.092 0.061 0.106
C1 512 64 8 0.059 0.110 0.064 0.122 0.052 0.099 0.056 0.099 0.055 0.101
C2 512 32 16 0.060 0.122 0.044 0.107 0.041 0.103 0.043 0.113 0.046 0.086
C3 512 16 32 0.061 0.116 0.056 0.122 0.049 0.089 0.046 0.088 0.052 0.099
C4 512 8 64 0.056 0.095 0.057 0.118 0.057 0.110 0.047 0.100 0.055 0.102
D1 1024 128 8 0.063 0.125 0.054 0.102 0.039 0.086 0.044 0.101 0.051 0.098
D2 1024 64 16 0.051 0.109 0.061 0.112 0.047 0.107 0.056 0.106 0.047 0.100
D3 1024 32 32 0.055 0.092 0.057 0.111 0.048 0.095 0.057 0.106 0.047 0.119
D4 1024 16 64 0.065 0.124 0.061 0.116 0.043 0.092 0.048 0.087 0.049 0.098
D5 1024 8 128 0.059 0.116 0.052 0.095 0.049 0.093 0.035 0.075 0.050 0.115

better for the process (5.5). In addition, we observe that the new decision rule

is less sensitive with respect to different choices of N than the test based on the

Kolmogorov-Smirnov distance.
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Figure 2. Power of the test (4.11) and the Kolmogorov-Smirnov test of Preuß
and Vetter (2013) at 5% level for the model (5.3) under the scenarios A1−D5
from Table 1.

Figure 3. Power of the test (4.11) and the Kolmogorov-Smirnov test of Preuß
and Vetter (2013) at 5% level for the model (5.4) under the scenarios A1−D5
from Table 1.

5.2. Data example

As an illustration we applied the L2-test (3.14) and the bootstrap test (4.11)
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Figure 4. Power of the test (4.11) and the Kolmogorov-Smirnov test of Preuß
and Vetter (2013) at 5% level for the model (5.5) under the scenarios A1−D5
from Table 1.

to the annual tree ring width measurements described in the introduction. The

p-values for the bootstrap test were calculated by replicating the bootstrap pro-

cedure 5,000 times. The p-values for the L2-test for M = 4 and M = 8 blocks

were 0.27 and 0.43, respectively, and the p-values for the bootstrap test forM = 4

and M = 8 were 0.18 and 0.33. Hence the null hypothesis of stationarity can not

be rejected.
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Appendix A: Technical Details

We state two results are central for the proof of the statements in Sections

3 and 4.

Theorem A.1. If Assumption 1 is satisfied with d∞ < 1/4, the following hold.
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(a)
E
(
(F̂1,T , F̂2,T )

T
)
= (F1,T , F2,T + dN,T )

T + C̃T +O
( 1

N1−4d∞

)
,

where the vector C̃T ∈ R2 is of order O
(
N2/T 2 + log(N)/(MN1−4d∞)

)
and

vanishes if the functions ψl(u) are independent of u for all l ∈ Z. Here the
big O notation is to be understood componentwise.

(b) Cov
(
(F̂1,T , F̂2,T )

T
)
= Σ̃T +O(T, d∞), where

O(T, d∞) := O
( log(N)

N1−8d∞T

)
+O

(N2

T 3
+
N2+4d∞

T 3
1{ 1

8
≤d∞< 1

4
}

)
and Σ̃T is the same as the matrix Σ in (3.5) except that the integral

∫ 1
0 is

replaced by 1
TM

∑M
j=1.

(c) If d∞ < 1/8 and l1, l2 ∈ N0 with l1 + l2 ≥ 3, then

cum(
√
T F̂1,T1

T
l1 ,

√
T F̂2,T1

T
l2) = O

(
T (1− l1+l2

2
)(1−8d∞)

)
,

where 1li ∈ Rli denotes a vector containing merely ones (i = 1, 2).

It follows by the same arguments as given in Section 4 of Preuß and Vetter

(2013), that there exist parameters ψ̂l,p such that the bootstrap process X∗
t,T

defined in part 2) of the bootstrap description in Section 4 can be represented as

X∗
t,T =

∞∑
l=0

ψ̂l,pZ
∗
t−l, (A.1)

where {Z∗
t }t∈Z denotes an independent sequence of standard normals. Assume

that the null hypothesis (3.7) holds, and consider the process

X∗
t,T,2 =

∞∑
l=0

ψlZ
∗
t−l, (A.2)

where the coefficients ψl = ψl(u) are the coefficients in (2.9). We define D̂2,∗
T,2 as

D̂2
T in (2.17) whereby the random variables Xt,T are replaced by X∗

t,T,2.

Theorem A.2. Let α > 0 be fixed and denote by AT (α) the event that |d̂−d| ≤
α/4. If Assumption 1 and the inequality

|ψ̂l,p − ψl|l1−max(d̂,d) ≤ C
p4 log(T )3/2√

T
∀l ∈ N (A.3)

are satisfied, then

(a) E
(
(D̂2,∗

T − D̂2,∗
T,2)1AT (α)

)
= O

(
p4 log(T )3/2N4d−1+αT−1/2

)
,

(b) Var
(
(D̂2,∗

T − D̂2,∗
T,2)1AT (α)

)
= O

(
p8 log(T )3log(N)2Nmax(8d−1,0)+2αT−2

)
.
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A.1. Proof of Theorem A.1.

Proof of part (a). Let t̃j := tj − N/2 + 1, ψ̃l(uj,p) := ψl

(
t̃j+p
T

)
, Za,b :=

Za−N/2+1+b and, because of

E[F̂1,T ] =
1

2
E
( 1
T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

IN (uj , λk,N )2
)
(1 + o(

1√
T
)),

consider similar to Dette, Preuß and Vetter (2011b),

1

2
E
( 1
T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

IN (uj , λk,N )2
)

=
1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N

ψt̃j+p,T,lψt̃j+q,T,mψt̃j+r,T,nψt̃j+s,T,oE[Ztj ,p−lZtj ,q−mZtj ,r−nZtj ,s−o]

= E1
N,T + E2

N,T +AN,T +BN,T ,

where we use the notation

E1
N,T =

1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj)

e−i(p−q+r−s)λk,N

(
E[Ztj ,p−lZtj ,q−m]E[Ztj ,r−nZtj ,s−o]

+E[Ztj ,p−lZtj ,s−o]E[Ztj ,q−mZtj ,r−n]
)
,

E2
N,T =

1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj)

e−i(p−q+r−s)λk,NE[Ztj ,p−lZtj ,r−n]E[Ztj ,q−mZtj ,s−o],

AN,T =
1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N

E[Ztj ,p−lZtj ,q−mZtj ,r−nZtj ,s−o]
{(
ψ̃l(uj,p)− ψl(uj)

)
ψ̃m(uj,q)ψ̃n(uj,r)ψ̃o(uj,s)

+ψl(uj)
(
ψ̃m(uj,q)− ψm(uj)

)
ψ̃n(uj,r)ψ̃o(uj,s)

+ψl(uj)ψm(uj)
(
ψ̃n(uj,r)− ψn(uj)

)
ψ̃o(uj,s)

+ψl(uj)ψm(uj)ψn(uj)
(
ψ̃o(uj,s)− ψo(uj)

)}
,
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BN,T =
1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N

×E[Ztj ,p−lZtj ,q−mZtj ,r−nZtj ,s−o]

×
{(
ψt̃j+p,T,l − ψ̃l(uj,p)

)
ψ̃m(uj,q)ψ̃n(uj,r)ψ̃o(uj,s)

+ψt̃j+p,T,l

(
ψt̃j+q,T,m − ψ̃m(uj,q)

)
ψ̃n(uj,r)ψ̃o(uj,s)

+ψt̃j+p,T,lψt̃j+q,T,m

(
ψt̃j+r,T,n − ψ̃n(uj,r)

)
ψ̃o(uj,s)

+ψt̃j+p,T,lψt̃j+q,T,mψt̃j+r,T,n

(
ψt̃j+s,T,o − ψ̃o(uj,s)

)}
.

Here BN,T corresponds to the error that occurs if the coefficients ψt,T,l are

replaced by ψl(t/T ) and that AN,T contains the approximation error of ψl(t/T )

through ψl(tj/T ) with tj denoting the midpoint of the j-th block. The proof for

E[F̂1,T ] follows from

E1
N,T =

1

2πM

M∑
j=1

∫ π

−π
f2(uj , λ) dλ+O

( 1

N1−4d∞

)
, (A.4)

E2
N,T = O

( 1

N1−4d∞

)
, (A.5)

AN,T = O
( logN

MN1−4d∞

)
+O

(N2

T 2

)
, (A.6)

BN,T = O
( 1
T

)
. (A.7)

Proof of (A.4). Without loss of generality, we only consider the first summand

in E1
N,T . Due to the independence of the random variables Zt, only those terms

contribute to the sum where the conditions 0 ≤ p = q + l − m ≤ N − 1 and

0 ≤ r = s+n−o ≤ N−1 are satisfied, which implies max{|l−m|, |n−o|} ≤ N−1.

Thus, the first term in E1
N,T can be expressed as

1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

∞∑
l,m,n,o=0

|l−m|≤N−1
|n−o|≤N−1

ψl(uj)ψm(uj)ψn(uj)ψo(uj)e
−i(l−m+n−o)λk,N

×(N − |l −m|)(N − |n− o|)

=
1

2M

M∑
j=1

1∑
h=−1

1

(2πN)2

∞∑
l,m,n,o=0

|l−m|≤N−1
|n−o|≤N−1

l−m+n−o=hN

ψl(uj)ψm(uj)ψn(uj)ψo(uj)

×(N − |l −m|)(N − |n− o|),
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where we used the well-known identity,

N−1∑
k=0

exp(−iλk,Nr) =

{
N if r = Nh for some h ∈ Z,
0 else,

(A.8)

(we have only to consider three possible values of h since max{|l−m|, |n− o|} ≤
N − 1). It is easy to see that E1

N,T = E1
N,T,0 + E1

N,T,1 + E1
N,T,2 +E1

N,T,3 where

E1
N,T,0 =

1

2M

M∑
j=1

1

(2π)2

∞∑
l,m,n,o=0

l−m+n−o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj)

=
1

4πM

M∑
j=1

∫ π

−π
f2(uj , λ) dλ,

E1
N,T,1 =

1

MN2

M∑
j=1

1∑
h=−1

∞∑
l,m,n,o=0

|l−m|≤N−1
|n−o|≤N−1

l−m+n−o=hN

ψl(uj)ψm(uj)ψn(uj)ψo(uj) (A.9)

×(−N |l −m| −N |n− o|+ |l −m||n− o|),

E1
N,T,2 =

1

M

M∑
j=1

∑
h∈{−1,1}

∞∑
l,m,n,o=0

|l−m|≤N−1
|n−o|≤N−1

l−m+n−o=hN

ψl(uj)ψm(uj)ψn(uj)ψo(uj), (A.10)

E1
N,T,3 =

1

M

M∑
j=1

∞∑
l,m,n,o=0
N≤|l−m|
N≤|n−o|

l−m+n−o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj). (A.11)

In order to complete the proof of (A.4), it therefore suffices to demonstrate that

the last three expressions are of order O
(
1/N1−4d∞

)
. We commence with (A.9).

Setting o = l −m + n − hN ≥ 0 and using (2.3), it follows that there exists a

constant C ∈ R such that

E1
N,T,1 ≤

C

MN

M∑
j=1

1∑
h=−1

∞∑
l,m,n=1

1≤|l−m−hN |≤N−1
1≤l−m+n−hN

1

l1−d∞

1

m1−d∞

1

n1−d∞

|l −m− hN |
(l−m+n−hN)1−d∞

(A.12)

(all terms where one of the variables l,m, n or l −m + n − hN vanishes are of

smaller or the same order). This argument is employed throughout this proof



MEASURING STATIONARITY IN LONG-MEMORY PROCESSES 339

without mentioning it explicitly. The summand |l − m| does not occur in the

numerator of the above expression due to the symmetry of |l−m| and |n− o| in
(A.9), while C ∈ R+ denotes a universal constant throughout the proof. Setting

z := l −m − hN , we obtain |z| = |l −m − hN | ≤ N − 1 and the expression on

the right hand side of (A.12) can be written as

C

N

1∑
h=−1

∑
z∈Z

1≤|z|≤N−1

∞∑
m,n=1

1≤z+m+hN
1≤n+z

1

(z +m+ hN)1−d∞

1

m1−d∞

1

n1−d∞

|z|
(n+ z)1−d∞

(B.2)

. 1

N

1∑
h=−1

∑
z∈Z

1≤|z|≤N−1

|z|2d∞
|z + hN |1−2d∞

. 1

N1−2d∞

1∑
h=−1

∑
z∈Z

1≤|z|≤N−1

1

|z + hN |1−2d∞
. 1

N1−4d∞
,

where an . bn means that an/bn is bounded by some finite constant for all

n ∈ N. By using (2.3), (A.8), (B.2), and similar arguments, we obtain that

(A.10) is bounded by

∑
h∈{−1,1}

∑
z∈Z

1≤|z|≤N−1

1

|z + hN |1−2d∞

1

|z|1−2d∞

(B.1),(B.2)

. 1

N1−4d∞
,

and, since (A.11) is shown analogously, we therefore conclude the proof of (A.4).

Proof of (A.5). The result follows by similar arguments as used in the treatment

of (A.9)–(A.11).

Proof of (A.6). Without loss of generality, we only consider the first summand

and replace ψ̃m(uj,q)ψ̃n(uj,r)ψ̃o(uj,s) by ψm(uj)ψn(uj)ψo(uj) (the error due to

this replacement is negligible, which follows by analogous arguments as given for

the term A
(2)
N,T,1 at a later stage of this proof). Due to the independence of the

random variables Zt, we obtain the sum of three terms (compare the definition

of E1
N,T for the first two summands and the definition of E2

N,T for the third one)

and we restrict ourselves to the first one,

AN,T,1 :=
1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N

E[Ztj ,p−lZtj ,q−m]E[Ztj ,r−nZtj ,s−o]
(
ψ̃l(uj,p)−ψl(uj)

)
ψm(uj)ψn(uj)ψo(uj).
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Using a Taylor expansion, we can write

ψ̃l(uj,p)− ψl(uj) = ψ
′
l(uj)

(−N/2 + 1 + p

T

)
+
ψ

′′
(ηl,j,p)

2

(−N/2 + 1 + p

T

)2
with ηl,j,p ∈ (uj − N/(2T ), uj + N/(2T )), and therefore AN,T,1 splits into two

terms that are denoted by A
(1)
N,T,1 and A

(2)
N,T,1 in the following discussion. We

start with the treatment of the first summand. Employing the independence of

the innovations we obtain that the indices corresponding to non-vanishing terms

must satisfy q = p+m− l and n = o+ r− s. Applying (A.8) subsequently yields

0 ≤ m = l + r − s − hN with h ∈ {−1, 0, 1} and this, combined with (2.3) and

(2.5), implies

A
(1)
N,T,1 .

1

N2

1∑
h=−1

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

0≤|r−s−hN |≤N−1

log(l)

l1−d∞

1

(l + r − s− hN)1−d∞

1

(o+ r − s)1−d∞

1

o1−d∞

∣∣∣∣ N−1∑
p=0

0≤p+r−s−hN≤N−1

(−N/2 + 1 + p

T

)∣∣∣∣.
We restrict ourselves to the cases |r − s| ≥ 1 and |r − s − hN | ≥ 1 since the

remaining terms are of smaller order. A straightforward calculation yields∣∣∣∣ N−1∑
p=0

0≤p+q≤N−1

(−N/2 + 1 + p

T

)∣∣∣∣
=
N

2T
× 1{q=0} +min

(
N |q|
T

,
(N − |q|)|q|

T

)
O(1)× 1{1≤|q|≤N−1} (A.13)

and, by using the second summand, it follows that A
(1)
N,T,1 is bounded by

C

NT

1∑
h=−1

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

1≤|r−s−hN |≤N−1

log(l)

l1−d∞

1

(l + r − s− hN)1−d∞

1

(o+ r − s)1−d∞

1

o1−d∞
|r − s− hN |

. log(N)

N1−2d∞T

N−1∑
r,s=0

∞∑
o=1

1≤o+r−s

1

(o+ r − s)1−d∞

1

o1−d∞
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. log(N)

N1−2d∞T

N−1∑
r,s=0

1

|r − s|1−2d∞
. log(N)

MN1−4d∞
,

where we used Lemma B.1(c) and B.1(b) for the first and second inequalities,

respectively. Next, we show that A
(2)
N,T,1 is of order O(N2T−2), and for this

reason we choose ϵ > 0 such that 1− 4d∞ − ϵ > 0. Using (2.3), (2.5), (2.6) and

h ∈ {−1, 0, 1}, the claim then follows by a further application of Lemma B.1(b),

C

N2

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

log2(l)

l1−d∞

1

(l + r − s− hN)1−d∞

1

(o+ r − s)1−d∞

1

o1−d∞

×
N−1∑
p=0

0≤p+r−s−hN≤N−1

(−N/2 + 1 + p

T

)2

. N

T 2

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

1

l1−d∞−ϵ

1

(l + r − s− hN)1−d∞

1

(o+ r − s)1−d∞

1

o1−d∞

. N

T 2

N−1∑
r,s=0

1

|r − s− hN |1−2d∞−ϵ

1

|r − s|1−2d∞
. N2

T 2
.

Proof of (A.7). The statement follows from (2.2) and similar arguments as

given in the proofs of (A.4) and (A.6).

In order to prove the assertion for F̂2,T , one proceeds in the same way and

the details are omitted. However, it turns out that the expression corresponding

to E2
N,T does not vanish in this case and there appears an additional bias, which

is denoted by dN,T .

Proof of part (b). We restrict ourselves to the proof of

Var
( 1
T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

IN (uj , λk,N )2
)
=

20

π

1

TM

M∑
j=1

∫ π

−π
f4(uj , λ) dλ+O(T, d∞),

and recall the definition of the remainder

O(T, d∞) = O
( log(N)

N1−8d∞T

)
+O

(N2

T 3
+
N2+4d∞

T 3
1{ 1

8
≤d∞< 1

4
}

)
.

All other statements can be verified completely analogously and the details

are omitted. By combining the arguments from the proof of part a) and from
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Dette, Preuß and Vetter (2011b), we obtain that

Var
( 1
T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

IN (uj , λk,N )2
)
= 32V ∗(ν

′
) + 8V ∗(ν

′′
) +O(T, d∞),

where

V ∗(ν
′
) =

1

T 2

M∑
j1,j2=1

⌊N/2⌋∑
k1,k2=−⌊(N−1)/2⌋

1

(2πN)4

N−1∑
p1,q1,r1,s1=0

N−1∑
p2,q2,r2,s2=0

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

e−i(p1−q1+r1−s1)λk1e−i(p2−q2+r2−s2)λk2E[Ztj1 ,p1−v1Ztj1 ,q1−w1 ]

E[Ztj1 ,r1−x1Ztj2 ,p2−v2 ]E[Ztj1 ,s1−y1Ztj2 ,q2−w2 ]E[Ztj2 ,r2−x2Ztj2 ,s2−y2 ],

V ∗(ν
′′
) =

1

T 2

M∑
j1,j2=1

⌊N/2⌋∑
k1,k2=−⌊(N−1)/2⌋

1

(2πN)4

N−1∑
p1,q1,r1,s1=0

N−1∑
p2,q2,r2,s2=0

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

e−i(p1−q1+r1−s1)λk1e−i(p2−q2+r2−s2)λk2E[Ztj1 ,p1−v1Ztj2 ,p2−v2 ]

E[Ztj1 ,r1−x1Ztj2 ,r2−x2 ]E[Ztj1 ,q1−w1Ztj2 ,q2−w2 ]E[Ztj1 ,s1−y1Ztj2 ,s2−y2 ].

We start with V ∗(ν
′
). Because of the independence of the random variables

Zt, the restrictions p1 = q1 + v1 − w1, p2 = r1 + v2 − x1 + (j1 − j2)N , q2 =

s1+w2− y1+(j1− j2)N and s2 = r2+ y2−x2 are necessary for a non-vanishing

term. Consider h1, h2 ∈ {−1, 0, 1} and sum over k1, k2 by using (A.8). Then,

V ∗(ν
′
) can be written as

V ∗(ν
′
) =

1

T 2

M∑
j1,j2=1

⌊N/2⌋∑
k1,k2=−⌊(N−1)/2⌋

1

(2πN)4

N−1∑
q1,r1,s1,r2=0

∞∑
v1,w1,x1,y1=0

0≤q1+v1−w1≤N−1

∞∑
v2,w2,x2,y2=0

0≤r1+v2−x1+(j1−j2)N≤N−1
0≤s1+w2−y1+(j1−j2)N≤N−1

0≤r2+y2−x2≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)
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e−i(v1−w1+r1−s1)λk1e−i(r1+v2−x1−s1−w2+y1−y2+x2)λk2

=
1

M2

M∑
j1,j2=1

1∑
h1,h2=−1

1

(2πN)4

N−1∑
r1,s1=0

∞∑
v1,w1,x1,y1=0

v1−w1+r1−s1=h1N
0≤|v1−w1|≤N−1

∞∑
v2,w2,x2,y2=0

r1+v2−x1−s1−w2+y1−y2+x2=h2N
0≤r1+v2−x1+(j1−j2)N≤N−1
0≤s1+w2−y1+(j1−j2)N≤N−1

0≤|y2−x2|≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

(N2 −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2|).

An application of (2.3) yields, similar to the proof of part a), that the above

expression is of order O
(
1/N1−8d∞T

)
, if

(i) h1, h2 ∈ {−1, 1} (compare (A.10)),

(ii) j1 ̸= j2 (we prove this claim in Lemma B.2 in the appendix since this kind

of restriction did not occur in the proof of part a)),

(iii)we drop −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2| (compare (A.9)),

(iv)we drop 0 ≤ |v1 −w1| ≤ N − 1 and 0 ≤ |y2 − x2| ≤ N − 1 (compare (A.11)),

(v) we drop 0 ≤ r1+v2−x1+(j1−j2)N ≤ N−1 and 0 ≤ s1+w2−y1+(j1−j2)N ≤
N − 1 (compare (A.9)).

By rearranging the equation v1−w1+ r1− s1 = 0 to 0 ≤ s1 = r1+v1−w1 ≤
N − 1, it follows that

V ∗(ν
′
) =

1

M2N2

M∑
j1=1

1

(2π)4

N−1∑
r1=0

∞∑
v1,w1,x1,y1=0

0≤r1+v1−w1≤N−1

∞∑
v2,w2,x2,y2=0

w1−v1+v2−x1−w2+y1−y2+x2=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1)

+O(T, d∞)

=
1

M2N

M∑
j1=1

1

(2π)4

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

w1−v1+v2−w2+y1−x1+x2−y2=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1)

+O(T, d∞)

=
1

TM

1

2π

M∑
j1=1

∫ π

−π
f4(uj1 , λ) dλ+O(T, d∞).
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By using the same techniques as in V ∗(ν
′
), we obtain

V ∗(ν
′′
) =

1

M2

M∑
j1=1

1∑
h1=−1

1

(2πN)4

N−1∑
q2,r2,s2=0

0≤q2−r2+s2+h1N≤N−1

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

v1−v2+w2−w1+x1−x2+y2−y1=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1)

+O(T, d∞).

In contrast to the term V ∗(ν
′
), the cases where h1 ∈ {−1, 1} do not vanish. In

fact, using

N−1∑
q2,r2,s2=0

0≤q2−r2+s2≤N−1

=
2

3
N3 +O(N2),

N−1∑
q2,r2,s2=0

0≤q2−r2+s2+N≤N−1

=
1

6
N3 +O(N2),

N−1∑
q2,r2,s2=0

0≤q2−r2+s2−N≤N−1

=
1

6
N3 +O(N2)

we deduce

V ∗(ν
′′
) =

(2
3
+

1

6
+

1

6

) 1

M2N

M∑
j1=1

1

(2π)4

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

v1−v2+w2−w1+x1−x2+y2−y1=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1)

+O(T, d∞)

=
1

TM

1

2π

M∑
j1=1

∫ π

−π
f4(uj1 , λ) dλ+O(T, d∞). (A.14)

Proof of part (c) Exemplarily we consider the case l2 = 0 and l := l1 ≥ 3.
The other cases can be treated similarly with an additional amount of notation.
Following the same lines as in the proof of Theorem 3.1 in Dette, Preuß and
Vetter (2011a), it is sufficient to choose an arbitrary indecomposable partition{

(Zti1 ,a1−v1Zti2 ,a2−w1), (Zti3 ,a3−x1Zti4 ,a4−y1), . . . , (Zti4l−1
,a4l−1−xl

Zti4l ,a4l−yl)
}

of the table

Ztj1 ,p1−g1 Ztj1 ,q1−m1 Ztj1 ,r1−n1 Ztj1 ,s1−o1
...

...
...

...

Ztjl ,pl−gl Ztjl ,ql−ml
Ztjl ,rl−nl

Ztjl ,sl−ol

(A.15)
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(see Brillinger (1981)) and to treat the term

T l/2

T l

1

N2l

M∑
j1,...,jl=1

⌊N/2⌋∑
k1,...,kl=−⌊(N−1)/2⌋

N−1∑
p1,...,sl=0

∞∑
v1,w1,x1,y1=0

· · ·
∞∑

vl,wl,xl,yl=0

ψ̃v1(uj1,p1)ψ̃w1(uj1,q1)ψ̃x1(uj1,r1)ψ̃y1(uj1,s1)

ψ̃v2(uj2,p2)ψ̃w2(uj2,q2)ψ̃x2(uj2,r2)ψ̃y2(uj2,s2)

· · ·
ψ̃vl(ujl,pl)ψ̃wl

(ujl,ql)ψ̃xl
(ujl,rl)ψ̃yl(ujl,sl)e

−i(p1−q1+r1−s1)λk1 · · · e−i(pl−ql+rl−sl)λkl

E[Zti1 ,a1−v1Zti2 ,a2−w1 ]E[Zti3 ,a3−x1Zti4 ,a4−y1 ]

E[Zti5 ,a5−v2Zti6 ,a6−w2 ]E[Zti7 ,a7−x2Zti8 ,a8−y2 ]

· · ·
E[Zti4l−3

,a4l−3−vlZti4l−2
,a4l−2−wl

]E[Zti4l−1
,a4l−1−xl

Zti4l ,a4l−yl ]

with {a1, a2 . . . , a4l} ∈ {p1, . . . , pl, q1, . . . , ql, r1, . . . , rl, s1, . . . , sl}, ai ̸= aj for i ̸=
j, {i1, i2, . . . , i4l} ∈ {j1, j2, . . . jl}, and |{i1, i2, . . . , i4l}| = l. We now discuss the

conditions which yield a contribution different from 0 in this sum. Some of the ik
are equal to each other and we therefore write j1, . . . , jl for the l different values

and consider ik as a function depending on j1, . . . , jl. Using the independence of

the random variables Zt and summing with respect to k1, . . . , kl, the conditions

a4m+1−a4m+2+wm+1−vm+1+(i4m+1−i4m+2)N=0 for m=0, . . . , l−1,(A.16)

a4m+3−a4m+4+ym+1−xm+1+(i4m+3−i4m+4)N=0 for m=0, . . . , l−1,(A.17)

pi−qi+ri−si=hiN for i=1, 2, . . . , l and hi∈{−1, 0, 1} (A.18)

follow. Rearranging the equations in (A.18) for a variable and plugging them into

the l equations (A.16) (where in every equation only one variable is replaced)

yields, due to the indecomposability of the partition and vm+1, xm+1 ≥ 0, that

the conditions

(1) 0 ≤ v1 = ã1 − ã2 + ã3 − ã4 + w1 + (i1 − i2 + h1)N,

(2) 0 ≤ v2 = ã7 − ã8 + ã9 − ã10 + w2 + (i5 − i6 + h2)N,

...

(l) 0 ≤ vl = ã6l−5−ã6l−4+ã6l−3−ã6l−2+wl+(i4l−3−i4l−2 + hl)N, (A.19)

(l + 1) 0 ≤ x1 = ã5 − ã6 + y1 + (i3 − i4)N,

(l + 2) 0 ≤ x2 = ã11 − ã12 + y2 + (i7 − i8)N,

...

(2l) 0 ≤ xl = ã6l−1 − ã6l + yl + (i4l−1 − i4l)N
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must hold, where {ã1, ã2, . . . , ã6l} ∈ {p1, . . . , sl} and |{ã1, ã2, . . . , ã6l}| = 3l. By

employing (2.3), we can bound the above expression up to a constant by

1

M l

T l/2

N2l

M∑
j1,...,jl=1

1∑
h1,...,hl=−1

N−1∑
ã1,...,ã6l=0

∞∑
w1,y1=1

ã1−ã2+ã3−ã4+w1+(i1−i2+h1)N≥1
ã5−ã6+y1+(i3−i4)N≥1

· · ·
∞∑

wl,yl=1
ã6l−5−ã6l−4+ã6l−3−ã6l−2+wl+(i4l−3−i4l−2+hl)N≥1

ã6l−1−ã6l+yl+(i4l−1−i4l)N≥1

1

(ã1 − ã2 + ã3 − ã4 + w1 + (i1 − i2 + h1)N)1−d∞

1

w1−d∞
1

1

(ã5 − ã6 + y1 + (i3 − i4)N)1−d∞

1

y1−d∞
1

1

(ã7 − ã8 + ã9 − ã10 + w2 + (i5 − i6 + h2)N)1−d∞

1

w1−d∞
2

1

(ã11 − ã12 + y2 + (i7 − i8)N)1−d∞

1

y1−d∞
2

...
1

(ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + wl + (i4l−3 − i4l−2 + hl)N)1−d∞

1

w1−d∞
l

1

(ã6l−1 − ã6l + yl + (i4l−1 − i4l)N)1−d∞

1

y1−d∞
l

.

Using Lemma B.1(b) in the Appendix, this term can be (up to a constant)

bounded by

1

M l

T l/2

N2l

M∑
j1,...,jl=1

1∑
h1,...,hl=−1

N−1∑
ã1,ã2,...,ã6=0

|ã1−ã2+ã3−ã4+(i1−i2+h1)N |≥1
|ã5−ã6+(i3−i4)N |≥1

· · ·

N−1∑
ã6l−5,ã6l−4,...,ã6l=0

|ã6l−5−ã6l−4+ã6l−3−ã6l−2+(i4l−3−i4l−2+hl)N |≥1
|ã6l−1−ã6l+(i4l−1−i4l)N |≥1

1

|ã1 − ã2 + ã3 − ã4 + (i1 − i2 + h1)N |1−2d∞

1

|ã5 − ã6 + (i3 − i4)N |1−2d∞

1

|ã7 − ã8 + ã9 − ã10 + (i5 − i6 + h2)N |1−2d∞

1

|ã11 − ã12 + (i7 − i8)N |1−2d∞

· · ·
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1

|ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + (i4l−3 − i4l−2 + hl)N |1−2d∞

1

|ã6l−1 − ã6l + (i4l−1 − i4l)N |1−2d∞
.

We now assume without loss of generality that

ã6m+1 − ã6m+2 + ã6m+3 − ã6m+4 + (i4m+1 − i4m+2 + hm+1)N ≥ 1,

ã6m+5 − ã6m+6 + (i4m+3 − i4m+4)N ≥ 1 (A.20)

holds for m = 0, 1, 2, . . . , l − 1 (the more general case follows analogously with
an additional amount of notation). In this case the absolute values in the above
expression can be skipped. It follows, as in Dette, Preuß and Vetter (2011a),
that the conditions on the ãi imply that, if i1 is chosen, there are only finitely
many possible choices for ik, k = 2, . . . , l. Thus it suffices to consider the sum

1

M l−1

T l/2

N2l

N−1∑
ã1,ã2,...,ã6=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

· · ·
N−1∑

ã6l−5,ã6l−4,...,ã6l=0
ã6l−5−ã6l−4+ã6l−3−ã6l−2+ClN≥1

ã6l−1−ã6l+C2lN≥1

1

(ã1 − ã2 + ã3 − ã4 + C1N)1−2d∞

1

(ã5 − ã6 + Cl+1N)1−2d∞

1

(ã7 − ã8 + ã9 − ã10 + C2N)1−2d∞

1

(ã11 − ã12 + Cl+2N)1−2d∞

· · ·
1

(ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + ClN)1−2d∞

1

(ã6l−1 − ã6l + C2lN)1−2d∞

with C1, C2, . . . , Cl ∈ {−1, 0 . . . ,M} and Cl+1, Cl+2, . . . , C2l ∈ {0, 1 . . . ,M − 1}
(because of (A.20) and ãi ∈ {0, 1, 2, . . . , N − 1}, there are no other possible val-
ues for Ci). We remind that (due to the indecomposability of the partition) the
2l-fractions inside the addend are hooked. This means that for two different frac-
tions there exists a chain of fractions (starting with the first considered fraction
and ending with the second one), such that in every element of the chain there
exists at least one element ãi which also occurs in the consecutive fraction. We
perform a summation in a particular way and in order to illustrate this, we con-
sider the first two fractions and assume that ã1 and ã6 are (up to a the algebraic
sign) the same. We distinguish two cases.

(i) If ã1 = ã6, we obtain from Lemma B.1 (a) that

N−1∑
ã1=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

1

(ã1−ã2+ã3−ã4+C1N)1−2d∞

1

(ã5−ã6+Cl+1N)1−2d∞
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. 1

(−ã2 + ã3 − ã4 + ã5 + (C1 + Cl+1)N)1−4d∞
(A.21)

. T 2d∞

(−ã2 + ã3 − ã4 + ã5 + (C1 + Cl+1)N)1−2d∞
. (A.22)

Furthermore we have −ã2 + ã3 − ã4 + ã5 + (C1 + Cl+1)N ≥ 2 which follows

from the conditions ã1 − ã2 + ã3 − ã4 + C1N ≥ 1 and ã5 − ã6 + Cl+1N =

ã5 − ã1 + Cl+1N ≥ 1.

(ii) If ã1 = −ã6 and −ã2 + ã3 − ã4 − ã5 + (C1 − Cl+1)N ̸= 0, it follows from

Lemma B.1(b) that

N−1∑
ã1=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

1

(ã1−ã2+ã3−ã4+C1N)1−2d∞

1

(ã5−ã6+Cl+1N)1−2d∞

. 1

| − ã2 + ã3 − ã4 − ã5 + (C1 − Cl+1)N |1−4d∞
(A.23)

. T 2d∞

| − ã2 + ã3 − ã4 − ã5 + (C1 − Cl+1)N |1−2d∞
. (A.24)

In both cases, it is possible that variables cancel out, for example if ã4 = ã5
and ã3 = ã5 in the first and second case, respectively. We apply (A.21)−(A.24)

in total 2l − 2-times. In the first 2l − 4-applications, we use (A.22) and (A.24)

(depending on the algebraic sign of the variable that appears in both fractions)

and in the (2l−3)th and (2l−2)th application we employ (A.21) and (A.23). We

furthermore assume that h variables cancel out while utilizing these inequalities.

Then 3l− (2l− 2)−h = l+2−h variables remain with 0 ≤ h ≤ l, namely ã6l−1,

ã6l and l − h other variables with values in {0, 1, 2, . . . , N − 1}. Denoting these

l − h variables by b1, b2, . . . , bl−h, we obtain

1

M l−1

T 1/2

N2l

N−1∑
ã1,ã2,...,ã6=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

· · ·
N−1∑

ã6l−5,ã6l−4,...,ã6l=0
ã6l−5−ã6l−4+ã6l−3−ã6l−2+ClN≥1

ã6l−1−ã6l+C2lN≥1

1

(ã1 − ã2 + ã3 − ã4 + C1N)1−2d∞

1

(ã5 − ã6 + Cl+1N)1−2d∞

1

(ã7 − ã8 + ã9 − ã10 + C2N)1−2d∞

1

(ã11 − ã12 + Cl+2N)1−2d∞

· · ·
1

(ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + ClN)1−2d∞

1

(ã6l−1 − ã6l + C2lN)1−2d∞
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. 1

M l−1

T 1/2

N2l

N−1∑
ã6l−1,ã6l=0

ã6l−1−ã6l+C2lN≥1

N−1∑
b1,b2,...,bl−h=0

1≤|ã6l−1−ã6l+
∑l−h

j=1(−1)kj 2bj+
∑2l−1

j=1 (−1)kjCjN |

NhT (2l−4)2d∞

|ã6l−1 − ã6l+
l−h∑
j=1

(−1)kj2bj+
2l−1∑
j=1

(−1)kjCjN |1−6d∞

1

(ã6l−1−ã6l+C2lN)1−2d∞

with some kj ∈ {0, 1}. We first consider the case h = l. If
∑2l−1

j=1 (−1)kjCjN = 0

and C2l = 0, it follows that this term is

1

M l−1

T 1/2N lT (2l−4)2d∞

N2l

N−1∑
ã6l−1,ã6l=0
1≤ã6l−1−ã6l

1

(ã6l−1 − ã6l)2−8d∞

. 1

M l−1

T 1/2N l+1T (2l−4)2d∞

N2l
= T (1− l

2
)(1−8d∞).

If |
∑2l−1

j=1 (−1)kjClN | ≥ 1 or C2l = 1, we apply Lemma B.1(a) and (b) in order to

obtain the same upper bound (it can be shown that, in this case, there appears

an additional factor N1−8d∞ in the denominator, so the corresponding term is,

in fact, of smaller order). The same upper bound holds for h ≤ l − 1.

A.2. Proof of Remark 5.

If we replace F̂1,T by the corresponding integrated version

F̃1,T =
1

4πM

M∑
j=1

∫ π

−π
IN (uj , λ)

2 dλ,

the derivation of the asymptotic variance can be carried out almost analogously

to the proof of Theorem A.1(b), except that the term where the variable h1 in

V ∗(v
′′
) is −1 or 1, does not occur, because for the integrated version one can use

1

2π

∫ π

−π
exp(−iλr)dλ =

{
1 if r = 0,

0 else,
(A.25)

(for r ∈ Z) instead of (A.8). Therefore, in the integrated case, we obtain

V ∗(ν
′′
) =

2

3

1

M2N

M∑
j1=1

1

(4π)2
1

(2π)2

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

v1−v2+w2−w1+x1−x2+y2−y1=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1)
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+O(T, d∞)

=
2

3

1

TM

1

8π

M∑
j1=1

∫ π

−π
f4(uj1 , λ) dλ+O(T, d∞)

instead of (A.14), and we recall that the order O(T, d∞) is defined in (A.1). This

yields that the asymptotic variance of
√
T F̃1,T is (14/3π)

∫ π
−π

∫ 1
0 f

4(u, λ)dudλ and

does not coincide with the asymptotic variance of
√
T F̂1,T .

A.3. Proof of Theorem A.2

Proof of part (a). We define F̂ ∗
1,T and F̂ ∗

1,T,2 as F̂1,T where the observed data

Xt,T are replaced by X∗
t,T and X∗

t,T,2, respectively. By using (A.1) and writing

I∗N (u, λ) for the bootstrap analogue of IN (u, λ), we get

E((F̂ ∗
1,T − F̂ ∗

1,T,2)1AT (α)|X1,T , . . . , XT,T )

=
1

2T

M∑
j=1

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N ψ̂l,m,n,o,p1AT (α)

E[Z∗
tj ,p−lZ

∗
tj ,q−mZ

∗
tj ,r−nZ

∗
tj ,s−o],

(compare the first set of equalities in the proof of Theorem A.1(a)), where

ψ̂l,m,n,o,p = ψ̂l,pψ̂m,pψ̂n,pψ̂o,p − ψlψmψnψo. By using the decomposition

ψ̂l,m,n,o,p = (ψ̂l,p − ψl)ψ̂m,pψ̂n,pψ̂o,p + ψl(ψ̂m,p − ψm)ψ̂n,pψ̂o,p

+ψlψm(ψ̂n,p − ψn)ψ̂o,p + ψlψmψn(ψ̂o,p − ψo)

this expression splits into four terms and for the sake of brevity we only con-

sider the first one, other cases being treated similarly. As in the proof of Theorem

A.1(a), we obtain terms E1,∗
N,T and E2,∗

N,T which are defined as E1
N,T , E

2
N,T where

the coefficients ψl(uj)ψm(uj)ψm(uj)ψo(uj) are replaced by (ψ̂l,p−ψl)ψ̂m,pψ̂n,pψ̂o,p

(note that A∗
N,T = B∗

N,T = 0 since the coefficients of the bootstrap process do

not possess any time dependence). If we employ (A.3) and combine it with the

fact that |d̂− d| < α/4 on the set AT (α), we get

|ψ̂l,p − ψl| ≤ Cp4 log(T )3/2T−1/2|l|α/4+d−1 ∀l ∈ N, (A.26)

which, together with (2.3) and the assumptions of the theorem, implies

|ψ̂l,p| ≤ C|l|α/4+d−1 ∀l, p ∈ N. (A.27)

The coefficients in the MA(∞) representation of the bootstrap processes do

not depend on time and that for such processes we only require

sup
u

|ψl(u)| ≤ C|l|d−1 (A.28)
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in the proof of Theorem A.1(a) to obtain appropriate bounds for the error. By

using (A.26) and (A.27), instead of (A.28) and similar arguments as given in the

proof of Theorem A.1(a), it follows that

E((F̂ ∗
1,T − F̂ ∗

1,T,2)1AT (α)|X1,T , . . . , XT,T ) = F ∗,−
1,T +O

(
N4d−1+αp4 log(T )3/2T−1/2

)
,

where F ∗,−
1,T is defined as F1,T but with f(u, λ) replaced by

σ2p
2π

∞∑
l,m,n,o=−∞

ψ̂l,m,n,o,p exp(−iλ(l −m+ n− o))× 1AT (α).

Since F̂ ∗
2,T and F̂ ∗

2,T,2 are treated analogously, the claim follows (note that

F ∗,−
1,T cancels out since the coefficients do not possess any time dependence).

Proof of part (b). The assertion follows by similar arguments as given in the

proof of Theorem A.1(b) employing (A.26) and (A.27) instead of (A.28) as above.

The details are omitted.

A.4. Proofs of the results in Section 3 and 4.

Proof of Theorem 2. The claim follows by employing the Cramér-Wold device

in combination with Theorem A.1.

Proof of Theorem 3. Similarly to the proof of Theorem A.1, the equations

E(τ̂21 ) =
1

πM

M∑
j=1

∫ π

−π
f4(uj , λ) +O

( 1

N1−8d∞

)
,

Var (τ̂21 ) = O
( 1

MN1−8d∞

)
can be established. By Markov’s inequality the assertion of the theorem follows.

Proof of Theorem 4. We define D̂2,∗
T,a as D̂2,∗

T,2 and D̂2
T,a as D̂2

T , but with

Xt,T replaced by Xt(t/T ) from (2.9). Then part a) is obvious, because we have

ψl = ψl(u) for all u ∈ [0, 1] under the null hypothesis, and Zt and Z
∗
t are both

independent and standard normal. Part b) follows from the proof of Theorem

A.1, so we focus on part (c) and (d). Here (2.10) and Theorem A.1 (a), (b) imply

C1N
max(8d−1,0)

T
≤

Var (D̂∗
T,a)

T
≤
C2(N

max(8d−1,0) + log(N)1{d=1/8})

T

which directly yields part (d). If we have

P (AT (α)) → 1 as T → ∞ (A.29)
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for every α > 0, Part (c) follows from Theorem A.2, (4.7), the conditions on the

rate of p(T ) if α is chosen sufficiently small. Finally, (A.29) is a consequence of

Lemma 4.3 in Preuß and Vetter (2013).

Proof of Theorem 5. By employing the triangle inequality we can bound the

Mallows metric between D̂2
T /
√

Var (D̂2
T ) and D̂

2,∗
T /
√

Var (D̂2,∗
T ) by

d2

( D̂2
T√

Var (D̂2
T )
,

D̂2
T,a√

Var (D̂2
T,a)

)
+ d2

( D̂2
T,a√

Var (D̂2
T,a)

,
D̂2,∗

T,a√
Var (D̂2,∗

T,a)

)

+d2

( D̂2,∗
T,a√

Var (D̂2,∗
T,a)

,
D̂2,∗

T√
Var (D̂2,∗

T )

)
,

where D̂2
T,a and D̂2,∗

T,a are the random variables in the proof of Theorem 4. It

follows from the proof of Theorem A.1 that the first summand converges to zero

and the second summand is zero because of Theorem 4(a). So it suffices to treat

the third summand which is bounded by

2E
( D̂2,∗

T,a√
Var (D̂2,∗

T,a)
−

D̂2,∗
T√

Var (D̂2,∗
T,a)

)2
+ 2E

( D̂2,∗
T√

Var (D̂2,∗
T,a)

−
D̂2,∗

T√
Var (D̂2,∗

T )

)2
.

We obtain from Theorem A.1 (a) and (b) that a constant L > 0 exists such

that

Var (D̂2,∗
T,a) ≥ LN8d∞−1T−1 (A.30)

(We are under the null hypothesis go d∞ = d). This combined with Theorem

A.2, (A.29) and the conditions on the growth rate on p = p(T ) yields that we can

restrict ourselves to the second term, which is (up to the constant 2) bounded by

E((D̂2,∗
T )2)

Var (D̂2,∗
T,a)Var (D̂

2,∗
T )

(√
Var (D̂2,∗

T,a)−
√

Var (D̂2,∗
T )
)2

≤
E((D̂2,∗

T )2)

Var (D̂2,∗
T,a)Var (D̂

2,∗
T )

∣∣∣Var (D̂2,∗
T,a)−Var (D̂2,∗

T )
∣∣∣.

If we follow the proof of Theorem A.1(a), (b) and employ (A.27) and (A.29),

we obtain that

E((D̂2,∗
T )2) = O(log(N)Nmax(8d−1,0)+2αT−1 +N8d+2α−2) (A.31)
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holds for every fixed α > 0. By employing (A.26) and similar arguments as in
the proof of Theorem A.2 we obtain thereafter∣∣∣Var (D̂2,∗

T,a1AT (α))−Var (D̂2,∗
T 1AT (α))

∣∣∣
= O(p8 log(T )3 log(N)2(Nmax(8d−1,0)+2αT−2 +N8d−2+2αT−1)).

The assertion then follows with (A.29)−(A.31) and the assumptions on the
growth rate of p = p(T ).

Appendix B: Auxiliary Lemmas

Finally we show some lemmas that have been employed here.

Lemma B.1. Suppose µ, ν, a, b ∈ R. Then there exists a constant C ∈ R such
that the following hold:
(a) If µ, ν > 0 and b > a, then

N−1∑
k=0

k−a≥1
−k+b≥1

1

(k − a)1−µ

1

(b− k)1−ν
≤

b−1∑
k=1+a

1

(k − a)1−µ

1

(b− k)1−ν
≤ C

(b− a)1−µ−ν
.

(B.1)
(b) If 0 < µ, ν and 0 < 1− µ− ν, then it follows for |a+ b| > 0

N−1∑
k=1

k+b≥1
k−a≥1

1

(k + b)1−µ

1

(k − a)1−ν
≤

∞∑
k=1

k+b≥1
k−a≥1

1

(k + b)1−µ

1

(k − a)1−ν
≤ C

|a+ b|1−µ−ν
.

(B.2)
(c) If 0 < ν < 1− µ and y, z ≥ 1, then

∞∑
k=1+y

log(k)

k1−µ

1

(k − y)1−ν
≤ C

log(y)

y1−µ−ν
, (B.3)

∞∑
k=1

log(k + z)

(k + z)1−µ

1

k1−ν
≤ C

log(z)

z1−µ−ν
. (B.4)

Proof. (a) Using 3.196(3) in Gradshteyn and Ryzhik (1980), it follows that

b−1∑
k=1+a

1

(k − a)1−µ

1

(b− k)1−ν
≤
∫ b

a

1

(x− a)1−µ

1

(b− x)1−ν
dx . 1

(b− a)1−µ−ν
.

(b) If a+ b > 0 we can bound the middle sum in (B.2) by

∞∑
k=max{1,1−b,1+a}

1

(k + b)1−µ

1

(k − a)1−ν
≤

∞∑
k=1+a

1

(k + b)1−µ

1

(k − a)1−ν
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≤
∫ ∞

a

1

(x+ b)1−µ

1

(x− a)1−ν
dx

. 1

(a+ b)1−µ−ν
.

The last inequality follows from the equations 3.196(2) and 3.191(2) (for choosing

b = 0) in Gradshteyn and Ryzhik (1980). On the other hand, if a + b < 0 we

have

∞∑
k=max{1,1−b,1+a}

1

(k + b)1−µ

1

(k − a)1−ν
≤

∞∑
k=1−b

1

(k + b)1−µ

1

(k − a)1−ν

=

∞∑
k=1+(−b)

1

(k − (−b))1−µ

1

(k + (−a))1−ν
. 1

(−a− b)1−µ−ν
.

The last inequality follows with Gradshteyn and Ryzhik (1980) as above.

(c) We start with (B.3). Using 13.2(18) in Erdélyi (1954b) yields

∞∑
k=1+y

log(k)

k1−µ

1

(k − y)1−ν
≤
∫ ∞

y

log(x)

x1−µ

1

(x− y)1−ν
dx . log(y)

y1−µ−ν
.

Concerning (B.4) we use 6.4(23) in Erdélyi (1954a) that implies

∞∑
k=1

log(k + z)

(k + z)1−µ

1

k1−ν
≤
∫ ∞

0

log(x+ z)

(x+ z)1−µ

1

x1−ν
dx . log(z)

z1−µ−ν
.

Lemma B.2. If 0 < d∞ < 1/4, then

1

M2N4

M∑
j1,j2=1
j1 ̸=j2

N−1∑
r1,s1=0

∞∑
v1,w1,x1,y1=0

v1−w1+r1−s1=0
0≤|v1−w1|≤N−1

∞∑
v2,w2,x2,y2=0

r1+v2−x1−s1−w2+y1−y2+x2=0
0≤r1+v2−x1+(j1−j2)N≤N−1
0≤s1+w2−y1+(j1−j2)N≤N−1

0≤|y2−x2|≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

(N2 −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2|) = O
( log(N)

N1−8d∞T

)
.

Proof.
¯

We set 0 ≤ w1 = r1−s1+v1 and 0 ≤ x2 = s1−r1−v2+x1+w2−y1+y2.
Then we define p := r1 + v2 − x1 + (j1 − j2)N and rearrange to 0 ≤ x1 =

r1−p+v2+(j1−j2)N . Since p ∈ {0, 1, 2 . . . , N−1}, it follows that if p, r1, v2, x1, j1
are fixed, there are at most two possible values for j2. Hence it is enough to
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consider the following expression with 1 ≤ |C1| ≤M − 1

1

MN4

N−1∑
r1,s1=0

∞∑
v1,w1,x1,y1=0

v1−w1+r1−s1=0
0≤|v1−w1|≤N−1

∞∑
v2,w2,x2,y2=0

r1+v2−x1−s1−w2+y1−y2+x2=0
0≤r1+v2−x1+C1N≤N−1
0≤s1+w2−y1+C1N≤N−1

0≤|y2−x2|≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

(N2 −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2|)
(2.3)

. 1

MN2

N−1∑
p,r1,s1=0

∞∑
v1,x1,y1=1
1≤r1−s1+v1

∞∑
v2,w2,x2,y2=1

1≤r1−p+v2+C1N
1≤s1−p+w2+y2−y1+C1N

1

v1−d∞
1

1

y1−d∞
1

1

v1−d∞
2

1

w1−d∞
2

1

y1−d∞
2

1

(r1 − s1 + v1)1−d∞

1

(r1 − p+ v2 + C1N)1−d∞

1

(s1 − p+ w2 + y2 − y1 + C1N)1−d∞

(B.1)

. 1

MN2

N−1∑
p,r1=0

∞∑
v1,x1,y1=1

∞∑
v2,w2,x2,y2=1

1≤r1−p+v2+C1N
1≤r1−p+w2−y1+y2+v1+C1N

1

v1−d∞
1

1

y1−d∞
1

1

v1−d∞
2

1

w1−d∞
2

1

y1−d∞
2

1

(r1 − p+ v2 + C1N)1−d∞

1

(r1 − p+ w2 − y1 + y2 + v1 + C1N)1−2d∞

(B.1),(B.2)

. 1

MN2

N−1∑
p,r1=0

1

|r1 − p+ C1N |2−8d∞
. 1

MN2

N−1∑
p,r1=0

1

(r1 − p+N)2−8d∞

. log(N)

MN2−8d∞
=

log(N)

N1−8d∞T
.

The factor log(N) is due to the possible case D = 0.
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