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Supplementary Material

This supplementary file covers the regularity conditions and proofs.

S1 Regularity conditions

Technical Conditions for Theorem 1. Let Apin(A) and Apax(A) be the smallest and
largest eigenvalues of any square matrix A, respectively. Let A = Cov{(Y — 3,4 V)V}
and Z(n,C) = {i : 1 < i < n,|v] n| < C}. To study the asymptotical behavior of 3,
the following regularity conditions are needed:

(A1) there are some constants @ > 0 and Cy > 0 such that, for all n with ||n|j2 =1,

- T, N2 _
nh_)rI;OP Z (v;m)">an| =1
i€Z(M,C1)

(A2) for any € > 0, there exists a constant C > 0 such that, for all n with ||n|2 =1,

. T2 _
nlgr;()P Z (vin)*<en| =1
i2Z(1,C2)

(A3) there is a constant C3 > 0 such that lim,,_,», P(max;—1__, ||vi[3 < C3n?) = 1.

gy

(A4) all fourth moments of the predictors V are bounded above by some constant
Cy > 0.

(A5) 0 < L1 < Anin(Bv) € Amax(Bv) < Lo < oo for some constants Ly and Ls.

(A6) var(Y — B4 V) < .
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(A7) 0 < L3 < Apin(A) < Amax(A) < Ly < oo for some constant Lz and Ly.

Technical Conditions for Theorem 3. Let X = Cov{(VH, ., Vi) T}, where
V .1 consists of the first pry components of V. Let dy = p1o+- -+ +pro. The following
technical conditions are needed. There are 0 < ¢; < 1/2,¢1 < ¢ <1, B;, Bo, Bs, B4, B5 >
0 such that, for some k > 0 and § > 0,

D1) 0< Bl < )\mm( ) < )\max(zl) < B2 < 0,

D3) E(Y =B/, Vi1 — - — B, Vi1)?* < By,

D4) all m-th moments of the predictors V', with m = 4(ca — ¢1)k +4 + ¢, are bounded
above by Bs,

(D5) n'/2)X/logn — 0o, A = o(n~(1=c2te1)/2) g = o(nlc2=c)k) and d = o(A2Fnk).

(D1)
(D?) ( Cl) and n(lfc2)/2 minj:5j7g0 |5J‘ > Bg,
(D3)
(D4)

S2 Proofs

Proof of Proposition 1. Without loss of generality, we assume that E(V) = 0gx1.
We can use the basic properties of conditional expectation to obtain

SVE(VY) = ZSUEE{E(VISTV,Y)|Y}Y]
SV EE{E(VISTV)|Y}Y]
= SUEE{ZyS(S'EZyS) ST V(Y)Y
= S(S'ZyS)ISTE(VY),

where the second equality is valid since Y is independent of V' conditioned on sTv,
and the third quality follows from the linearity condition. Set

¢=(¢1,...,0K)" = (S ZyS)'STE(VY).
Then, B, ¢ = E;lCov(V,Y) = (gf)lﬁr, qﬁgﬁg, cee d)K,B;)T. The proof is complete.

Proof of Theorem 1. The proof of this theorem can be found in Wu and Li (2011);
see also Portnoy (1984).

Lemma 1. Under the conditions of Proposition 2, ¢ # Oxx1.

Proof of Lemma 1. We prove it by contradiction. Suppose that ¢ = 024;. It then
follows that E(XY) = Opx1 and E(ZY) = 04«1, that is,

Txa+E{Xg(v'2)} = 0p«, (S2.1)
Szxa+FE{Zgv"Z)} = 0, (S2.2)
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Under (B1), E{Xg(v"Z)} = 0,x1, and so by (52.1) a = 0,x1. Under (B2),
E{Xg(v"2)} = B{E(X|Z)g(v" Z)} = Zx25, E{Zg(v" Z)}. (52.3)

From (S2.1)-(S2.3), we have (X x — EXZE;EZX)O[ = 0. Because X x — ZXZZZIEZX
is positive definite, o = Opx1.

Therefore, under (BO0), if either (B1) or (B2) holds, there is a contradiction. The
proof is complete.

Proof of Proposition 2. We prove the statement by contradiction. By Lemma 1,
there are two possibilities: (¢1 # 0,¢2 = 0) and (¢1 = 0,¢2 # 0). Since B¢ = S¢, we
have

E(XY) = ¢1Zxa+¢23xz7,

E(ZY) = ¢1Zzxa+ ¢2Xz7.

If ¢1 # 0 and ¢ = 0, then

Sxa+E{Xg(v"2)} = #HZxa, (S2.4)
Szxa+E{Zg(v"Z)} = 6H3Zzxa. (S2.5)

By (S2.4) and (S2.5),
E{Zg(v"2)} = Ssx3x E{Xg(v" Z)}. (52.6)

Under (B1), £zx = 04x1, so by (S2.5) E{Zg(v"Z)} = 0,x1. Under (B2), by
(52.3) and (S2.6),

(Bz - 22x2%' Ex2)87' E{Zg(v" Z)} = 041
Because Xz — EZXE}lﬁxz is positive definite, E{Zg(y" Z)} = 0gx1.

So given (B0), a contradiction occurs if either (B1) or (B2) holds. Thus, we can
conclude that if ¢; # 0, then ¢o # 0.

On the other hand, if we assume that ¢; = 0 and ¢5 # 0, then

Sxa+E{Xg(v'2)} = ¢:Zxz7, (S2.7)
Szxa+E{Zgy Z)} = ¢:5z7. (52.8)

By (S2.7) and (S2.8),
Sxa+E{Xgv'2)} =Zxz3,' Suxa+Exz3, ' E{Zg(~" Z)}. (S2.9)

Under (B1), E{Xg(v"Z)} = 0,x1, so by (52.7) a = 0,x1. Under (B2), by (S2.3)
and (S2.9),
(EX — Exzzglzzx)a = 0p><1.
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Because X x — EXZEEIEZX is positive definite, oo = Opx .

Similarly, given (B0), there is a contradiction in each case. Thus, if ¢o # 0, then we
must have ¢ # 0. The proof is complete.

Proof of Theorem 2. For the sake of simplicity, we assume for the moment that d is
a large but fixed constant. Let ¢1 = T},1/Tn2. Then, we can write

&—a=(p1—p)B + 1By — By) + (41— 1) (By — By). (52.10)

We need to consider the term ¢; — ¢. The whole proof is divided into two main steps.

Step 1. We consider the numerator 1,7 of ¢;. Note that

T = — Z{yz 2] Boi Bo)Hmi — it (2] B2: B2)} ' B

- fZ{yz 2] BB Ha: — (=] B2 8} By

+-— Z{yz 2] By Bo)Hai — 1y (2] B3 B2)} (B — By) + R
= nl + Rnla
where
Ry = — Z{yl ﬁQaﬁZ)}{Hl( :52§ﬁ2) - ﬂ1(z;r32§,32)}—r31

+- Z{ﬂ /62»ﬁ2 (2?62332)}{-’31‘ - H1(21‘Tﬁ2;52)}T61

+- Z{M 1 B2; Ba) — (2 Bo; Bo) Havi (2] Bai B2) — i1 (2] Ba; B2)} B

= Rnll + Rp12 + Rnis.

First, consider R,11. It has the following decomposition:

Roi = —Z{y, — (2] Bo; Ba) M (2] Ba; Ba) — i (2 Ba; B2)} By
+- Z{yz 2] B Bo) it (2] B Ba) — i (2 B B2)} ' B,
= o Z{ez + Wlﬁiii}{ﬂl(z;rﬁz;ﬁﬂ - ﬂ1(2;r/62§,62)}—r31
i=1

I I R
T Z{Q +@181 @i Hin (2] Bo; Ba) — i1 (2] Ba: B2)} ' By
i=1

1 2
R1(1 1)1 + R'gL 1)1 )
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where ; = z; — E(z;|z] B5). An application of Proposition 1 (iii) in Cui, Hérdle, and
Zhu (2011) yields that

ﬂl(ziTB2;BQ) - ﬂl(zjﬁz;ﬁz)
T
= {HII(Z;F/GQ;ﬂQ) +Op ( h* + nlhg> } (32 - Bs).

It follows that Rfl)l = op(n~1/?). Using equivalent kernel (Fan and Gijbels (1996), page
64), we can show that

R .
RE’Lll)l = 2 Z ZKh(ijfiQ — 2] By)(ei + 18] &)

i=1 j=1
{N1(z;rﬂ2§/32) - wj}—rlél
fﬁ,jZ(ziT 2)

{14+ 0p(1)}

n ~T

n*h =1 fg;’Z(Zz' B2)
= %UJBl{l +op(1)} +op <\/1£) )

where f4r 7 (+) is the density function of By Z and U, is a U-statistic with kernel function
2
H(mi7 z;r/g27 €Ly, z;ﬁQa 6])

T . e
= LKWz By 2l o)l + o8] ) PP D)

fg;’Z(zzTIB2)
, (2] By Bo) —
+§Kh(z;'rﬂ2 - z;—ﬁz)(ﬁj + 018, Z;) 1f3];FZ2(ij2ﬂ2)

A simple calculation yields

E{H(:Elv ZI/B% €15 L2, Z;ﬁ% 62)} =0
and
B{[|H(z1, 2| By, €1; @2, 25 By, €2) 3} = o(n).
By invoking Lemma 3.1 of Powell, Stock, and Stoker (1989), we obtain

1 2 = -~ 1
R’Sll)l = E ZH(wiazzTﬁQaei) +op (\/ﬁ) ,

i=1

where

_g($17ZI/82761)
= E{H(wlvzirﬁ%el;mQaz;ﬂQaGQ)‘wlazI/g%el}
1er +§D1,8;ri¢1

= imE[{m(zIﬁz;ﬁﬁ - $2}Kh(z2Tﬁ2 - ZIﬁz)L’Bla Z1Tﬁ27 €.

S5



S6 TAO WANG, JUN ZHANG, HUA LIANG AND LIXING ZHU
It is easy to obtain that E{H(z1, 2] By, €1)} = 0 and E{||H(z1, 2] By, €1)|13} = O(h?).
It then follows that R'Y, = op(n=1/2). Thus, Ru11 = op(n=1/2).

Similarly, we obtain R,12 = op(n~'/2).

Next, we consider R,;3. By Lemma A.4 in Wang et al. (2010) and the Cauchy-
Schwarz inequality, for log? n = o(nh?),

1/2
Ruz < [ Z{M § B2; Bs) — (zjﬁzﬂ%)}ﬂ

n 1/2
X <:L Z[{Nl(zjﬁﬁﬁg) - ﬂ1(z:B2§B2)}Tﬁﬂ2)

= o (E) <o ().

Thus, we can arrive at R, = 0p(n_1/2).

Step 2. We then deal with the denominator T},2 of ¢1. Write
1 & R P .
To2 = n Z[{mz - I‘l’l(zz—'r/@2;/62)}—rﬁ1}2

_ 2 L T2
= - ZﬁIw @ B+ 2D B EE] (B~ 1) + Buo
= Inp + Rys.
Similarly to the proof of R,;, we can obtain that R, = op(n~1/2).

Note that

n

1 1 ¢ :
L= =Y (6 + Bl &)@ B1 + Y (ci+ 18] 8)] (B, - By)
=1

i=1

and

A Inl 1
Y1 — ¥ <P1+0P< >
— %Z?:l 5i‘~32—ﬁ1 +1 (e — @lﬁfi’iy—r(iﬂ - B4) +op (1>
%Z?:u@lTi ﬂl+ S B EiE] (81— By) vn

_ IS ez B — 13, p181 & (B, - B)) Yo (1)
IS Blaa, B "\vn)
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Therefore, by (52.10),

1 n -
n Doy 6T

Z?:l ﬁ?iii;ﬁl I %Z:’L:l ﬁriii’}jﬁl
. 1
+01(8, — By) +op (\/ﬁ>

1§ . 15 5 AT

- sz':161$2 —aa’ HZi:NBzwz‘
o 1\ Ta.al 1\ T,

521:10‘ TiT; & w2 T o

+¢1(8, — B) + op (%) .

~ T
a—a = ﬁlﬁl 1
n

The proof is complete.

Proof of Theorem 3. See Wang, Xu, and Zhu (2012).
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