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The supplementary material here includes all the detailed proofs of Theorems 1-3 in the paper
entitled “Semiparametric Longitudinal Model with Irregular Time Autoregressive Error Process”
(SS-13-073), published in Statistica Sinica.

S1 Assumptions and Lemmas

We require the following regularity conditions for proving Theorems 1-3.

(A1) The observation times, t; ;, are i.i.d from an unknown density function, f(¢), which is defined
on the support [0,7] and is uniformly bounded away from infinity and 0.

(A2) The functions g and nx, 1 < k < p, have continuous second derivatives on [0, 7.

(A3) The numbers of measurements m;,1 < i < n are uniformly bounded by a finite constant
independent of n. for all n.

(A4) For every 1 < i < n, (8;1,...,0im,;) are independent of (e;1,...,€;m,). In addition,
maxi<i<n Y50 Blld;;]1* < 0.

(A5) The bandwidth hy satisfies

NRS;/(loglog N)Y/? — 0 and Nh2/(log N)? — 0o as n — oc.

(A6) The bandwidth h% = ¢N~1/5 for some constant ¢ and h/h* = o(1).

The conditions are reasonably mild. Condition (A1) is a standard assumption for nonpara-
metric or semiparametric regression modeling, see, for example, Wang, Li and Huang (2008). The
smoothness condition on g(t) and nx(t) as given in (A2) determines the rate of convergence of the
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profile semiparametric least squares estimator of the parametric part and local polynomial esti-
mator of the nonparametric component. Under (A3), the total sample size N = >"1" | m; is of
the same order as the number of subjects n. It means that we have only local dependency in the
sample. Condition (A4) is a technical assumption and is needed to establish the consistency of Sy.
Condition (Ab) is a standard regularity condition in nonparametric regressions. Condition (A6) is
only needed for Theorem 3.

We first need three lemmas.

Lemma 1. Suppose that assumptions (A1)-(A5) hold. Then,

—t\ (ti; —t\" log N\ /2
i S o () () o =0 s (57)

k 1/2
j—t bos—1 log N
E: EK -~ i =
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and
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where k = 0,1,2,4, hy satisfies Nh%;/(loglog N)'/? — 0 and Nh3;/(log N)? — oo as n — co.

Proof. Lemma 1 follows immediately from the results of Mack and Silverman (1982).

Lemma 2. Suppose that assumptions (A1)-(A5) hold. Then,

13(ti5)l = Op(hy,”) and max _ [&;;] = Op(1/v/nhn)

DU, 1IX) > Sisn,lsg)sm

where (g( 1) g(tl m1) g( n,My )T = (175)(9(“,1)7 oo ’g(t17m1)7g(tn,mn))T and (51,17 o agl,mu
énymn)—r S(El 17~-‘751m175nmn)—r

Proof. By the definition of §(¢; ;) and &; ; we have

n my
g(ti;) Z Z wiy gy (ti )9ty 50) and &5 =" wi, j, (tig)ei 4y

i1=171=1 i1=1j1=1
with
wiy gy (tig) = K((tiy g, — tig)/hn){Da(ti ;) — (tiy j, — tig)}/{D2(ti ;) Dolts ;) — DI (ti;)}

mll

being the local linear weights and Ds(t) = Y70 _ D75 2 (ti, j, — t)°K((ti, j, — t)/hn). Apply-
ing Lemma 1 and the the fact that w; j(t) = (f(t:;) K ((ti; —t)/hn)/(Nhn) + Op{(Nhy) "2}
uniformly over (hy,1 — hy), the lemma follows.

Lemma 3. Suppose the conditions (A1)-(A5) satisfy, we have

n m; n  m;

NZZg ii)€i; = 0,(1/V'N) and ZZUUEU—OP (1/V'N),

=1 j=1 lel

where G(t; ;) and &; ; are defined in Lemma 2.
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Proof. Lemma 2 together with Lemmas A.5 and A.6 in Liang, Hirdle and Carroll (1999) entail
Lemma 3.

For simplicity of notation, below denote d; j, k(a,b) = a+bd; .k~ In particular, we write d°
d; j.k(@ok, bok). Let (Bo, ao, bo) be the true value of (8, a, b), respectively.

1]k_

S2 Detailed Proofs

Proof of Theorem 1. Let 6y = (37 ,ag ,bq )" be the true value of the parameters and write 6 =
(o, wh) T with u = (ug,--- up)T, v= (v, ,vg)" and w = (wy, - ,wy)". Let R; ;(Bo) =
Yi;— XZ ,jBo. Some calculation shows that

Q(Go-ﬁ-n_%@)—Q(ao) =S+t s+ Jy+J5+ Jg+ Jr + g,

where
my q N 2 q R 2
! Z > [{ JU = Zd?,j,kXiijk“} + { Zdi,j,k(wkavk)Ri,jfk(BO)} },
i=1 j=q+1 = =
mn m;
J2:—2TL_%’U,TZ Z {E ZdzijZJ kﬁo }{ ZdzkaJ k}
i=1 j=q+1
3= —2n" ;Z Z {R,g Bo) — Zdwk ii—k(Bo) }Zd,m Vg, W) Ri i1 (Bo),
=1 j=q+1
n m; q
R DD IR LT zdg,mz,j,k)}Zdi,ﬁk(vk,wmﬁi,jfkwo),
i=1 j=q+1 k=1 k=1
n m; q q
Js=2n"tuT Y N Hﬁi,j(ﬁo) =" dl kR jor(Bo) —n 2 ()?u - ngj,k)?i,j—k)
i=1 j=q+1 k=1 k=1

q q
—nE > diji (v, wk)}Rivj—k(ﬁO) Z i (Vs wk)Xi’j_k} ’
k=1

n

J@Zn—QuTZ i {zq:di)j7k(vk,wk Xi - k}{zdﬂ’ Uk, W)X, J_k}TU,

i=1j=q+1 k=1
q

Jr=—2n"%u" Zn) > Rij(B0)Xiy and Js =n"tu” Z ZX &

i=1j=1 i=1j=1
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For J;, by Lemma 2 we have

n m; . q N - a ~ T
Jy=n"tul Z Z {Xi,j - Zd?,LkXi,jfk}{Xi,j - Z(%k + bOkdi,j,k)XiJ*k} u
k=1 k=1

i=1 j=q+1

n  m; q
n-1 Z Z { Z di,j7k(vk7 wk)(g(ti7j,k) ekt §i7j7k;)}2

i=1j=q+1 k=1

k=1 k=1

i=1 j=q+1
n my
Tw)S S (ALByBL A W) +0, {h?v +1ogN(NhN)-1/2}
i=1 j=q+1
=Ji1+J12+0, {h?\/ + log N(NhN)71/2} , say,
where
Aij = (Ig,diag(di g1, ,dijg)), Bij = (€ijo1,+* +Eij—q) -

It is easy to see that

* ok T
Ji1—pu nl;ngo N Z Z 5”5” uand Jy 2 —p hm

—00 n
1=1 j=q+1

For J,, based on Lemmas 2 and 3, it can be shown that

n m; q
Jo=—2n 24" Z Z € j {5i,j - Zd?,j,kfsi,j—k} + 0p(1).

i=1 j=q+1 k=1

Since e; ; and §; ; are not correlated, it follows that Jo —p u' Z; with Z; ~ N(0,A;), where

wﬁz Z 87607 —p Ay

=1 j=q¢+1
For J3, we have
n m;
J3 = —27L7%(UT7U}T) Z Z (ei,jCi,j) =+ Op(].).
=1 j=q+1
Therefore, J3 —p (v, w')Zy, where Zy ~ N(0,A). For .Jy, we have

n my q q
J4 = anluT Z Z {61‘,]‘ — ng,j,kéid—k)} Z('Uk + kai,j,k)Ei,j—k + Op(l)
k=1 k=1

i=1 j=q+1
=2u" - O (N"Y2) = 0,(1).

Similarly, we have Js = 0,(1) and Js = 0,(1). For J7, it holds that

noq
J7:—2n*%uTZZ i.g) t €5 — &) (1J)+61J )=—2n" QUTZZ€135”+OP 1).

i=1 j=1 i=1 j=1
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By the Lindeberg conditions, we have J; —p u' Z; with Z; ~ N(0, Ag), where
— Z IREREE z q COV{(E,L Tyen- ,ai,q)—r}(éi,l, .. ,(Si}q)—r —)p AQ,

which in combination with the the covariance matrix in Js leads to A. For Jg, we have

n g n q
s =n" UTZZW i.j) u+n_1uTZZ “+2" Tzzﬁ(ti’j)aju

=1 j=1

= O, (hy R/ Nhn) + Op(hy niluTZ Z 57] kgLTJ X

=1 j=q+1

q
—pu’ Z (6, 15:3)
i=1

which combing the term J; ; leads to the term D.

Thus,
Vi(0) = Q0 +n~20) — Q(60) —, 0720 — 20T Z =V (0), say
~1AD-1
where Z ~ N(0,II) with IT = p %D AO—1 . Therefore, by the argmax continuous map-

ping theorem of Kim and Pollard (1990) (applied to the negative of the criterion here), to prove
argminV,,(¢) — argminV'(#), and therefore parts (i) and (i4) of the theorem, it suffices to show
that argminV,,(6) = O,(1). This can be shown by a standard argument and is omitted here for
brevity. Finally, part (iéi) of the theorem follows from the facts that II is block diagonal and that
uncorrelated random vectors with a joint multivariate normal distribution are independent. This
completes the proof of Theorem 1.

Proof of Theorem 2. Let m} =m; —d. By Theorem 1, we have

n

2
~ 1 1 1 ~
AR WD { zak,mbk,]vdi,j,k)a,j_k} vor

)
v j=q+1 k=1 N
11 1 ’ 1

n Z Y. Qe =) (aey + bk,Ndi,j,k)Ei,jk} +op <ﬁ>
" m’ j= q+1{ k=1 N
: i E Y o)

= - ezy Op
" m’ Jj=q+1 N

Since 62 are i.i.d random variables with mean o2 and variance Ee} —0 , the first claim of Theorem
2 follows from the central limit theorem and Slutsky s lemma. The remaining claims of Theorem 2
follow from Theorem 1, the law of large numbers and Slutsky’s lemma.
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Proof of Theorem 3. Denote M} = D;‘TWt*D;‘,/hi’j(t) = (1,ti; —t)" and K;,;(t) = K((ti; —

t)/hy )/ According to the definition of (g3 (¢), g% (t)) given in (4.2), it can be shown that
@@, a8 @) = (9(t), 9 ()T =T+ Ja+ s+ Ja+ Js + Jo + J7,

where

= MUY hag (DK (X8 - By)

i=1 j=1
n my
= MY S ha (O] (0)g(tig) — (9(1), ' (6) T
i=1 j*l
MY KT )
=1 j5=1
L= MUY Y b0 (e,
=1 j=q+1
n m; q
Js = =M b (DK ()Y dij(@rn, ben) X (B — Bw)
i=1 j=qt1 k=1
n m; q N
= M;7UY Y (KD digk @ b v )GN (g —k) — gctii—n)}
i=1 j=q+1 k=1
n m; q R
Jr=—-M;"" Z Z hi j(t)K; Z { ag,N — ag) + (bk,n — bk)di,j,k)gi,j—k} :
i=1 j=qt1 k=1

First note that each element of M; = D; T W} D; has the form of a kernel regression, that is,

M — > et Z 1 Ky, (i —t) Doy 2oy (tig —t) Ky (ti; — t)
¢ Dy 2 ( —t) Ky, (tig — 1) Yoimy S (tiy — ) K (tig —1) )

By Lemma 1,

1o I log N \1/2
NMt_f(t)®</$1 /~L2> OP(1+{Nh}kV} )

with probability approaching to 1. Based on the fact 8 — By = O,J(N_%)7 we have H*J; =
O,(N~2) = 0,(h32 + 1/\/NhY), where recall that H* = diag(1, k% ). Since

R * / ti»jit h}‘\?g”(t) ti,jit 2 %2
oltis) = 9(0)+ g/ (O (=) + =5 () +olid)

Jy can be rewritten as

i=1 j=1
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Therefore,

"

R (o (200} R ) o] =

Ra2g (t)
We now show that

VN H*J3 —p N(0,TT5), (S2.1)
where N ¢ Var(e,)
= _ ar Ei7* 1
FITS:{HmZ 1201 J} 22(711 12 )
n—sco N F)(pe —p)?\ Y21 V22

For any constants di and da, let Z, = N=1 3" &, where

\/hTZ{d1+d2( = >}K£5j(t)5m"

We have E(Z;) = 0 and some calculation shows

Var(\/NZt) = dear(eM)f(u)Vo + d%Var(em)f(u)Vg + 2d1d2Var(6i7j)f(u)1/1 + 0(1),

and

3
—t .
‘} Kps (tij —t) = O(Nhy /).

ZE|@|3 <01 Zh*‘”z {|d1| + |da| -

There the Lyapunov condition for the central limit theorem is satisfied. Hence, (S2.1) holds. By
the same argument, we can show that

h*

VN H*J, —p N(0,T795), (S2.2)
where 5
r7s :{ lim Ze iz (i _d)} 1 . 2( Y11 M2 )
n—o0 N f@®)(p2 = p)? \ 721 722
In addition, since {€; g4+1,...,€im,;} and {€;1,...,€; 4} are uncorrelated for alli = 1,...,n, we have

VNBAH* (5 + Jy) -2 N(0,T75).
By the same argument as for Jy, we can show that H*Js = Op(N’%) = 0p(h3¢ + 1/\/NhY)
and H*J; = Op(N~2) = 0,(h32 + 1//Nh%).

Therefore, in order to complete the proof, we just need to show that H*Js = o,(h}? +
1/4/Nhy ). Based on Theorem 1, it can be shown that

H*Js = H*Mt*‘lzn: i hi () K

1=1 j=q+1

q
Z ak+bkdljk {gN( 9, — k) g(tiyj,k)}‘f'Op(N_i).
k=1

S7
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By the standard results from nonparametric regression,

n
~ MQ
gn(tig) —gltiy) = N Z Z Ky, (tir = tij)€in

(/~L2 - N1 =1 ji=1
n
T 3 5 () st
(B2 — Nl =1 j=1

hi 1 — pps
FraL s g
2 pe—py

Let w(t) = ua(f(t)) /(42 — ). We have

1 n m; q .
NZ D Kng(tig =)D digk(an, bi) X7 ;& (ti )

tij) +op(h) =& (tig) + altiy) + E(ti ) + o(hy), say

i=1 j—q+1 k=1
1 n my q n
= N Z Z Kh?\f (tiﬂj - t)zdi,j7k(ak7bk) ( 4,j— k) Z Z Kh bivgr — ,]*k>€i1,j1
i=1 j=q+1 k=1 11 1j=1
1 n my
= N § E €iy,j1 Vi1
i1=171=1

with

1 n myg q
Vi = SO Ky (tig = )Y dij(ar, be)w(ti ji) Ky, (ti, g, — tij—k)-
k=1

i=1 j=q+1

Obviously, €;, and Jy; are independent. We can show that v;,;, is bounded. Therefore,

NZ D Ky (tig =)D dij(ar, be)éa(tij—x) = Op(N72).
i=1j k=1

By the same argument, we can show that
l 2 ]
N D> Ky (tig— 1) dijrlar, br)alts k) = Op(N72).
i=1 j=q+1 k=1
Moreover, combining Lemma 1 it is easy to see that
i S Ky (tiy = 1)) dijular, be) (€s(tij—r) + 0p(h%)) = Op(h3) = 0, (h).
i=1 j=q+1 k=1

This implies that H*.Js = o,(h3? + 1/\/Nh% ). The proof is complete.



